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Multipotent stem cells residing in the bulge region of the hair follicle give rise to cells of different fates including

those forming hair follicles, interfollicular epidermis, and associated glands. Stem cell fate determination is reg-

ulated by genes involved in both proliferation and differentiation, which are tightly regulated processes. Under-

standing the molecular mechanisms by which proliferation and differentiation are regulated will provide useful

insight into treating human diseases caused by the deregulation of these processes. Two genes involved in

regulating proliferation and differentiation are c-Myc and p63, both of which have been found to be deregulated/

mutated in several human diseases. Accelerating proliferation leads to neoplastic human diseases and deregulated

c-Myc has been implicated in a variety of cancers. Evidence indicates that c-Myc also diverts stem cells to an

epidermal and sebaceous gland fate at the expense of the hair follicle fate. Therefore, deregulation of c-Myc has the

potential to not only accelerate tumorigenesis, but also influence skin tumor phenotype. In addition, the inhibition

of differentiation may also predispose to the development of skin cancer. Recent evidence suggests that the

transcription factor p63, is not only responsible for the initiation of an epithelial stratification program during

development, but also the maintenance of the proliferative potential of basal keratinocytes in mature epidermis.

Mutations in the p63 gene have been shown to cause ectodermal dysplasias and deregulated expression of p63 has

been observed in squamous cell carcinomas. In this review, we will discuss recent data implicating a role for both

c-Myc and p63 in human skin diseases.
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The epidermis is a self-renewing tissue that forms the outer
layer of the skin through an intricate balance of cell prolif-
eration and differentiation. Because the skin is readily ac-
cessible, it represents an attractive system to analyze the
molecular mechanisms responsible for these processes. As
a highly regulated organ, the skin maintains strict control of
proliferation and differentiation. The balance between cell
proliferation and differentiation results in the division of stem
cells and the proper entry of daughter cells into differenti-
ation, thus maintaining epidermal homeostasis. Alterations
in either proliferation or differentiation have the potential to
disrupt normal epidermal homeostasis and lead to disease.
Recent studies focusing on c-Myc and p63, both of which
are involved in regulating proliferation and differentiation,
have provided new insight into the role of these genes
in formation of the epidermis during development, the
maintenance of stem cells in mature epidermis, and the
commitment of multipotent stem cells to different cell fates.
In addition, these studies have revealed that skin disorders
arise when these genes are mutated or deregulated.

Epidermal Stem Cells

The self-renewing characteristic of the skin and its append-
ages is supported by stem cells residing within the epider-
mis and in the bulge region of hair follicles. Stem cells are
unique from other cells because they have a high capacity
for self-renewal and the ability to produce daughter cells
(transit amplifying cells) that undergo terminal differentiation
(Lajtha, 1979). In contrast, transit amplifying cells have a
high potential to undergo differentiation and a low potential
for self-renewal (Jones and Watt, 1993). Since cells in
the epidermis continually differentiate to replenish cells
sloughed from the external surface, the only cells capable of
accumulating genetic mutations required for tumorigenesis
are epidermal stem cells (Owens and Watt, 2003; Perez-
Losada and Balmain, 2003).

Research over the past few years has expanded our
knowledge about epidermal stem cells. Studies utilizing the
unique characteristics of stem cells have led to the iden-
tification of a population of multipotent stem cells within the
epidermis. Label retaining experiments have shown that
cells residing in the bulge region of mouse pelage follicles
are slow cycling and give rise to both the hair follicle and the
epidermis (Taylor et al, 2000). This study established, for
the first time, that these stem cells are bipotent. In addition,
an elegant study using chimeric hair follicles created fromAbbreviation: SAM, sterile a motif
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wild-type and Rosa26 mice, which were genetically engi-
neered to express a reporter gene, b-galactosidase,
showed that stem cells residing in the bulge region of the
hair follicle are multipotent and give rise to hair follicles,
sebaceous glands, and interfollicular epidermis (Oshima et al,
2001). Rosa26 cells that were initially present in the bulge
region of the chimeric hair follicle were detected migrating
downward along the hair follicle towards the hair bulb and
upward into the epidermis 4 wk after transplantation. After 6
wk, the Rosa26 cells could be detected in the hair bulb,
sebaceous glands, and interfollicular epidermis (Oshima
et al, 2001). These studies provide very convincing evidence
that a multipotent stem cell population resides in the bulge
region of hair follicles.

To date, a unique epidermal stem cell marker has not
been identified. But the use of a combination of markers
and adhesive properties has allowed the isolation of en-
riched stem cell populations. Epidermal stem cells express
higher levels of b1-integrin compared with transit amplifying
cells, allowing the isolation of epidermal stem cells based
on their adhesiveness (Jones and Watt, 1993). In addition,
a6-integrin, a basal-specific integrin (Li et al, 1998), was
used to further purify this population. A combination of
these integrins with either CD71, a proposed negative se-
lection marker (Tani et al, 2000) or CD34, a potential positive
marker (Trempus et al, 2003), has also been used for the
enrichment of epidermal stem cells. An additional approach
using a combination of Hoechst and propidium iodide dye
to sort cells has led to the isolation of three distinct pop-
ulations of cells from the basal layer including stem cells,
transient amplifying cells, and non-proliferative basal cells
(Dunnwald et al, 2001). The ability to isolate a pure popu-
lation of epidermal stem cells would be very beneficial for
therapeutic applications for a variety of skin disorders.

Role of c-Myc in the Epidermis

Members of the MYC oncoprotein family, c-Myc, N-Myc,
and L-Myc, play a role in the pathogenesis of many human
neoplastic diseases (Nesbit et al, 1999). Throughout devel-
opment each member is expressed in specific tissues
(Zimmerman et al, 1986). The expression of c-Myc is high in
rapidly proliferating cells and is downregulated during dif-
ferentiation (Mugrauer et al, 1988; Hirning et al, 1991). N-
myc is expressed at high levels in pre-B cells, kidney, fore-
brain, hindbrain, and intestine and continues to be ex-
pressed during differentiation (Mugrauer et al, 1988; Hirning
et al, 1991). L-myc is expressed in the developing kidney,
brain, and neural tube (Hatton et al, 1996). c-Myc knockout
mice are lethal at E10.5 and it is thought that members can
compensate to this point during development (Baudino et
al, 2002). This review focuses on c-Myc since it is the pre-
dominant member expressed in the epidermis.

The oncoprotein c-Myc plays a role in proliferation, dif-
ferentiation, and apoptosis. c-Myc is a transcription factor
that heterodimerizes with members of the Max/Mad family.
To activate transcription of target genes, c-Myc het-
erodimerizes with Max and binds to E box sequences in
the promoters of target genes (Pelengaris and Khan, 2003).
The transcription factor Mad can bind to both Max and

c-Myc, which prevents transcriptional activation of target
genes by competing out the association of c-Myc/Max
complexes as well as binding E box sequences to block c-
Myc/Max binding (Pelengaris and Khan, 2003). In addition,
c-Myc has been shown to directly repress transcription of
genes such as p15INK4b by associating with Max and Miz-1
(Staller et al, 2001). In the epidermis, c-Myc is expressed
at high levels in the basal compartment and as cells differ-
entiate c-Myc levels decline and Mad expression levels
increase (Chin et al, 1995; Hurlin et al, 1995).

Recent studies have shown that c-Myc plays an impor-
tant role in maintaining stem cells and regulating their com-
mitment to different cell fates (Arnold and Watt, 2001;
Waikel et al, 2001). There are a variety of mechanisms by
which c-Myc is tightly regulated including: activation by the
WNT signaling pathway, growth factors, and mitogens, as
well as inhibition by the TGF-b signaling pathway (Pe-
lengaris and Khan, 2003). Previous studies using transgenic
mouse models have provided evidence that the WNT path-
way regulates stem cell fate determination. Collectively,
these studies have found that different levels of active
b-catenin influences the specific fate adopted. An increase in
b-catenin signaling leads to precocious hair formation (Zhou
et al, 1995; Gat et al, 1998), whereas low levels of b-catenin
signaling results in sebaceous-like cyst formation (van
Genderen et al, 1994) and complete inhibition of the WNT
pathway inhibits hair follicle formation (Andl et al, 2002).
b-catenin levels, however, may not be the sole determinate
of stem cell fate. c-Myc has been shown to induce differ-
entiation of epidermal stem cells in vitro (Gandarillas and
Watt, 1997), and recent in vivo studies have found that de-
regulation of c-Myc expression targeted to epidermal stem
cells leads to increased sebaceous gland and epidermal
differentiation at the expense of hair follicles (Fig 1) (Arnold
and Watt, 2001; Waikel et al, 2001). Label retaining cell as-
says revealed that transgenic mice with deregulated c-Myc
expression targeted to epidermal stem cells using a K14
promoter exhibited a depletion of stem cells compared with
wild-type littermates (Waikel et al, 2001). These mice also

Figure1
Influence of c-Myc on Stem Cell Fate. c-Myc diverts multipotent
stem cells residing in the bulge region of the hair follicle to a sebaceous
and/or interfollicular epidermis cell fate at the expense of a hair follicle
fate (adapted from Honeycutt and Roop, 2003).
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exhibited a decrease in integrin expression that accompa-
nied a defect in wound healing. In addition, similar results
were observed in an inducible MycER mouse model, which
also exhibited terminal differentiation of keratinocytes into
interfollicular epidermis and sebocytes at the expense of
hair lineage differentiation (Arnold and Watt, 2001). Both
studies indicate that bypassing the WNT pathway by de-
regulating c-Myc can also influence stem cell fate, sug-
gesting that c-Myc may play a more pivotal role in stem cell
fate determination than previously in realized.

The mechanism by which c-Myc influences stem cell fate
is unknown; however, it is possible that c-Myc activates
direct targets involved in stem cell fate determination. There
have been numerous studies using gene expression profil-
ing to determine potential downstream targets of c-Myc.
Studies using an inducible transgenic mouse model have
found targets of c-Myc to be involved in proliferation, cell
cycle regulation, RNA regulation, protein synthesis and
processing, cell adhesion, and regulation of the cytoskel-
eton (Frye et al, 2003). Among various downstream targets,
this study found a6-integrin, a potential epidermal stem cell
marker, to be decreased in expression 2-fold after activation
of c-Myc expression. Other studies using in vitro gene ex-
pression profiling approaches also provide important insight
into the potential downstream targets of c-Myc. For exam-
ple, studies using an inducible human fibroblast line found
an increase in c-Myc expression led to an increase in CD71
expression (Coller et al, 2000), which has been found to be a
negative epidermal stem cell marker (Tani et al, 2000). This,
in addition to the decrease in a6-integrin, correlates to ev-
idence that c-Myc diverts stem cells from the stem cell
compartment (Waikel et al, 2001). Additionally, a study that
screened the human genome for direct targets of c-Myc
found Smad7 to be a direct target of c-Myc (Fernandez et al,
2003). Smad7 is the inhibitory smad of the TGFb pathway
and overexpression of Smad7 targeted to the epidermal
basal compartment has been shown to increase the number
of sebaceous glands and induce epidermal hyperplasia
(Wang XJ, personal communication), similar to the pheno-
type exhibited by K14.myc2 mice (Waikel et al, 2001). These
results support the ability of c-Myc to divert stem cells from
the stem cell compartment to a sebaceous fate at the ex-
pense of hair follicles through activating specific targets.

Role of c-Myc and Human Disease

Deregulated c-Myc has been found in several cancer types
including breast (Nass and Dickson, 1997), colon (Kopnin,
1993), lung (Gazdar, 1994), and lymphomas (Cotter, 1993).
The role c-Myc plays in cell proliferation is thought to be the
key to its involvement in cancer. Studies analyzing c-Myc
expression in non-proliferating cells of the suprabasal layer
of the epidermis found c-Myc to induce proliferation while
inhibiting terminal differentiation (Waikel et al, 1999). c-Myc
is involved in the G1 to S phase transition of the cell cycle,
which is the time when the DNA is repaired. Premature exit
from G1 without proper DNA repair allows mutations to ac-
cumulate. Recent studies analyzing targets of c-Myc have
found several genes involved in the G1 to S phase transition
to be targets of c-Myc. Genes activated by c-Myc include

cyclinD2 (Bouchard et al, 1999), CDK4 (Hermeking et al,
2000), and MCM7 (Fernandez et al, 2003), whereas c-Myc
has been found to repress p15INK4b (Staller et al, 2001).

Deregulation of c-Myc alone may not be sufficient to in-
duce tumorigenesis, since c-Myc does induce apoptosis
(Pelengaris and Khan, 2003). But if c-Myc induced
apoptosis is blocked, then, tumorigenesis could proceed.
In fact, studies have looked at the effect of deregulated
c-Myc in combination with overexpressing Bcl-xL (Nass
et al, 1996; Pelengaris et al, 2002), a member of the bcl-2
family. The anti-apoptotic family members include bcl-2,
bcl-xL, mcl-1, and bcl-w and the pro-apoptotic members
include bax, bak, bad, bcl-xS, bid, and hrk (Delehedde et al,
1999). This family regulates apoptosis by either promoting
or inhibiting cell death. Human tumor studies have found
Bcl-xL to be highly expressed in human squamous cell car-
cinoma (SCC) (Delehedde et al, 1999). In a study using an
inducible c-Myc pancreatic b cell-specific mouse line, it was
found that induced expression of c-Myc induced apoptosis
(Pelengaris et al, 2002). When this apoptosis was sup-
pressed by co-expression of Bcl-xL, c-Myc expression was
able to induce tumor progression. Also, data from mam-
mary gland tumors suggest cooperation between Bcl-xL

and c-Myc in transformation (Nass et al, 1996). Cell lines
derived from mammary tumors, which arise in MMTV-myc
transgenic mice, can be induced to undergo apoptosis by
exogenous TGFb and inhibited by exogenous epidermal
growth factor (EGF). In a study to analyze apoptotic path-
way genes in these cell lines in the presence or absence of
the growth factors, it was found that the expression of Bcl-
xL increased with EGF and decreased with TGFb. The
change in Bcl-xL expression was greater than the change in
Bcl-2 expression (Nass et al, 1996). This data suggest that
Bcl-xL may be the predominant family member responsible
for inhibiting c-Myc induced apoptosis. Although the coop-
eration between Bcl-xL and c-Myc has not been analyzed in
skin carcinogenesis, both have been found to play a role
(Delehedde et al, 1999; Pelengaris et al, 1999).

Since the activation of oncogenes is important in tumori-
genesis (Bishop, 1991), strategies based on oncogene in-
activation are being investigated for cancer therapy (Jain
et al, 2002). A concern raised with these therapies is that
withdrawal of oncogene inactivation may result in tumor
regrowth. Recent studies have analyzed the role of inacti-
vation/activation of c-Myc in tumor regression and re-
growth. The first study used an inducible mouse model in
which c-Myc expression, targeted to the suprabasal layers
by the involucrin promoter, could be activated by topical
application of 4-hydroxytamoxifen (OHT) (Pelengaris et al,
1999). Activation of c-Myc in the suprabasal layer resulted
in the proliferation of post-mitotic keratinocytes and pro-
longed activation induced the formation of preneoplastic
lesions similar to human epithelial precancerous lesions.
Inactivation of c-Myc in the preneoplastic lesions resulted in
regression of lesions (Pelengaris et al, 1999). Additionally,
studies using osteogenic sarcoma cells derived from a tet-
racycline-regulated transgenic mouse model with c-Myc
targeted to lymphocytes have found that inactivating
c-Myc leads to tumor regression (Jain et al, 2002). When
c-Myc expression was reactivated, the cells underwent
apoptosis as opposed to proliferation. This was further
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analyzed in vivo by implanting osteogenic sarcomas sub-
cutaneously into syngenic mice. Inactivation of c-Myc
expression caused tumor regression and subsequent acti-
vation of c-Myc resulted in a marked increase of apoptosis
in tumor cells (Jain et al, 2002).

In summary, c-Myc plays an important role in stem cell
fate determination and carcinogenesis. It is tempting to
speculate that the effect of c-Myc on stem cell fate deter-
mination could influence tumor phenotype. Nevertheless,
c-Myc appears to be an important player in stem cell fate
determination and the role of c-Myc in both tumor progres-
sion and regression indicates the potential use of c-Myc in
therapeutic strategies for skin cancer treatment. For tumors
with deregulated c-Myc expression, the acute short-term
inhibition of c-Myc may lead to tumor-targeted apoptosis
with the withdrawal of c-Myc inhibition. This would bypass
the potential problems with systemically inhibiting c-Myc
and therefore proliferation.

Function and Structure of p63

In addition to deregulated proliferation, alterations affecting
proper cell differentiation have also been found to give rise
to human disease. Recently p63, a member of the p53 gene
family has been implicated in epidermal development and
differentiation. The p53 gene family now consists of three
genes: p53, p63, and p73. All three genes share sequence
homology, although p63 and p73 are more similar to each
other than to p53 (Saccone et al, 2002; Yang et al, 2002).
Each p53 family member contains the three typical domains
of a transcription factor: a transactivation domain, a DNA
binding domain, and an oligomerization domain (Yang et al,
1998; Yang et al, 2000). In addition, each family member can
bind to consensus p53 binding sites (Bian and Sun, 1997;
Zeng et al, 1998; Sasaki et al, 2001; Fontemaggi et al, 2002).
Furthermore, each family member, when overexpressed,
can transactivate p53 target genes (Jost et al, 1997; Yang
et al, 1998). It, however, remains to be determined if p63
and p73 regulate p53 target genes under physiological
conditions. Despite these similarities between p53, p63,
and p73, they differ in several important respects. Unlike
p53, p63 and p73 do not represent classical tumor sup-
pressor genes: mice heterozygous for either p63 or p73 are
not predisposed to tumor development (Mills et al, 1999;
Yang et al, 1999; Yang et al, 2000), p63 mutations are rarely
found in human tumors (Osada et al, 1998; Ikawa et al,
1999; Nishi et al, 1999; Sunahara et al, 1999; Hibi et al,
2000), and germline mutations in p63 (as found in ectoder-
mal dysplasias; see below) are not associated with a can-
cer-prone phenotype. Rather, p63 and p73 act as key
regulators during development. p73 is required for the de-
velopment of neuronal and pheromonal pathways and p63
for epithelial, limb, and craniofacial development (Mills et al,
1999; Yang et al, 1999; Yang et al, 2000). As expected, the
phenotypes of both p63�/� and p73�/� mice can be linked
to tissues that express high levels of p63 and p73 (Yang
et al, 1998; Mills et al, 1999; Yang et al, 1999; Yang et al,
2000). Contrary to p63, the expression pattern of p73 and
the phenotype of p73�/� mice do not suggest a role for p73
in skin development or skin cancer susceptibility.

p63 is expressed in at least six isoforms (Yang et al,
1998). The use of alternative promoters and transcription
start sites gives rise to two classes of p63 transcripts, those
encoding proteins with an amino terminal transactivation
domain (TA isoforms) and those encoding proteins lacking
this domain (DN isoforms). DNp63 isoforms were shown to
be able to inhibit transactivation of a p53 reporter construct
by TAp63 isoforms, suggesting that DNp63 isoforms have
a dominant-negative function (Yang et al, 1998). DNp63
isoforms, however, were also shown to be able to transac-
tivate target gene expression in cell lines (Dohn et al, 2001b;
Wu et al, 2003) and primary keratincoytes (King et al, 2003).
In addition to alternative promoter usage, alternative splic-
ing in a part of the sequence that is not present in p53, gives
rise to three different carboxy-termini designated a, b, and
g. The a C-terminus of p63 is the longest and is the only C-
terminus that contains a SAM (sterile a motif) domain. SAM
domains are evolutionary conserved domains that are found
in proteins involved in the regulation of developmental
processes and were shown to be able to bind to other SAM
domains or to SH2 domains (Schultz et al, 1997). In addi-
tion, recent evidence has demonstrated that SAM domains
can also bind to RNA or lipids (Aviv et al, 2003; Barrera et al,
2003; Green et al, 2003). Interestingly, although p63 and p73
do not form homo- or heterodimers through their SAM do-
mains (Chi et al, 1999), the p73 SAM domain can interact
with lipids, and a similar function was predicted for the p63
SAM domain (Barrera et al, 2003). The physiological rele-
vance of these interactions, however, is not known. In ad-
dition to interaction with lipids, the SAM domain of p63 was
shown to interact with apobec-1 binding protein (ABBP1),
an RNA processing protein (Fomenkov et al, 2003). Upon
binding to the p63 SAM domain, ABBP1 preferentially
splices Fgfr2 into the epithelial-specific Fgfr2-IIIb (K-SAM)
isoform. In the absence of this isoform, the epidermis ex-
hibits a reduction in keratinocytes proliferation resulting in
severe epidermal hypoplasia (Petiot et al, 2003). Therefore,
the binding of the p63 SAM domain to ABBP1 may con-
tribute to the role of p63 in epidermal development and
differentiation. Although these are just two examples of in-
teractions with the p63 SAM domain, it is likely that p63
participates in other interactions that mediate its function.

Role of p63 in the Epidermis

In the mature epidermis DNp63a is the major p63 isoform
expressed and the highest expression levels are observed
in the proliferating cells of the basal layer and hair follicles
(Yang et al, 1998; Liefer et al, 2000). In the overlying differ-
entiated layers of the epidermis, DNp63a expression is
downregulated (Westfall et al, 2003). These expression data
suggest a role for DNp63a expression in proliferation of ba-
sal keratinocytes. Consistent with this hypothesis, in vitro
data using primary mouse keratinocytes demonstrated that
DNp63a expression can block calcium-induced differentia-
tion of primary keratinocytes, thereby maintaining cells in
a proliferative state (King et al, 2003). In addition, studies
in zebrafish embryos demonstrated that DNp63 isoforms
are required for cell proliferation in the epidermis (Bakkers
et al, 2002; Lee and Kimelman, 2002). In zebrafish embryos,
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DNp63 is synthesized prior to epidermal proliferation; how-
ever, the nuclear translocation of DNp63 during zebrafish
development correlates with the time that epidermal prolif-
eration begins. Moreover, in the absence of DNp63 expres-
sion, epidermal cells in zebrafish embryos fail to proliferate
(Lee and Kimelman, 2002). In addition, in the absence of
DNp63 expression, zebrafish skin does not differentiate re-
sulting in microbial infections and death. Consistent with a
role for p63 in maintaining the proliferative potential of ep-
idermal keratinocytes, the observed downregulation of p63
in differentiated layers of vertebrate epidermis was shown
to be required for terminal differentiation to take place. In
primary keratinocytes, DNp63a was shown to interact with
the promoters of p21WAF1/Cip1 and 14-3-3s resulting in
transcriptional repression (Westfall et al, 2003). Since
p21WAF1/Cip1 and 14-3-3s are required for terminal differ-
entiation of keratinocytes (Steinman et al, 1994; Missero
et al, 1995; Dellambra et al, 2000), this repression may pre-
vent basal keratinocytes from prematurely differentiating.
During terminal differentiation, DNp63a expression is down-
regulated resulting in loss of binding of DNp63a to the
p21WAF1/Cip1 and 14-3-3s promoters. This may result in the
expression of p21WAF1/Cip1 and 14-3-3s thereby allowing for
terminal differentiation to take place. Taken together, these
studies suggest that p63 is required for the maintenance of
the proliferative potential of basal keratinocytes in the ma-
ture epidermis and that p63 expression must be downreg-
ulated for terminal differentiation to take place.

In addition to its role in mature epidermis, p63 expression
is required for development of the epidermis, as clearly
demonstrated by the phenotype of p63�/� mice (Mills et al,
1999; Yang et al, 1999). p63�/� mice fail to form a stratified
epidermis resulting in a lack of barrier formation causing
dehydration and death within hours after birth. In addition to
the failure to develop an epidermis, p63�/� do not develop
epithelial appendages such as teeth, hair follicles, and
mammary glands. This failure to develop appendages is
presumably caused by a failure to participate in epithelial-
mesenchymal signalling required for appendage develop-
ment. In fact, several genes that are induced in the mesen-
chyme of the limb bud as a result of epithelial-mesenchymal
signalling are absent from p63�/� limb buds (Mills et al,
1999; Yang et al, 1999). The single-layered surface epithe-
lium of p63�/� mice does not express keratins K5 and K14.
These keratins are the first differentiation markers ex-
pressed during normal epidermal development and are
markers for epithelia that have committed to initiate an ep-
ithelial stratification program (Fig 2). Therefore, although it
has been proposed that p63 is required for epithelial stem
cell maintenance (Yang et al, 1999; Pellegrini et al, 2001), it
is more plausible that p63 is required for the commitment of
the originally single-layered surface ectoderm to an epithe-
lial stratification program (Koster et al, 2002, 2004). In fact,
we have recently demonstrated that ectopic expression of
TAp63a in single-layered lung epithelia results in the devel-
opment of squamous metaplastic lesions (Koster et al,
2004). Consistent with these data, it had previously been
demonstrated that squamous metaplastic lesions that de-
velop in the lung and uterus express p63, whereas the sur-
rounding single-layered epithelia do not (Kurita and Cunha,
2001; Massion et al, 2003). In addition, we have demon-

strated that deregulated expression of TAp63a in mature
epidermis results in hyperproliferation and a delayed onset
of terminal differentiation (Koster et al, 2004). Taken togeth-
er, these data support a dual role for p63: initiating epithelial
stratification during development and maintaining the pro-
liferative potential of basal keratinocytes in mature epider-
mis (Fig 3). This hypothesis is further supported by the
identification of p63 target genes that are involved in ep-
idermal development and differentiation (Nishi et al, 2001;
Sasaki et al, 2001; Dohn et al, 2001a; Fomenkov et al, 2003;
Wu et al, 2003).

Figure2
Schematic representing stages of epidermal development. Note
that p63 is expressed at E8.5, prior to the onset of stratification
(adapted from Koster and Roop, 2004).

Figure3
Proposed role of p63 in embryonic and mature epidermis. Epithelia
that do not express p63 remain single-layered. Upon induction of p63
expression, epithelia commit to initiate a stratification program (A). In
the mature epidermis, p63 is expressed in the basal layer, and its ex-
pression is downregulated in the differentiated layers. Expression of
p63 in the basal layer may maintain the proliferative potential of ker-
atinocytes (B) (adapted from Koster and Roop, 2004).
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p63 and Human Disease

Mutations in p63 were shown to underlie a number of hu-
man ectodermal dysplasias, which are characterized by
abnormalities of the limbs, hair, teeth, nails, sweat glands,
and mammary glands (Brunner et al, 2002). Therefore, con-
sistent with the phenotype of p63�/� mice, abnormalities in
p63 gene function in humans appear to disrupt the differ-
entiation process of epithelial tissues and their derivatives.
All human ectodermal dysplasias caused by p63 mutations
are inherited in an autosomal-dominant fashion. Since hu-
mans that have a heterozygous deletion of the p63 gene do
not develop characteristics of ectodermal dysplasias, it has
been suggested that the p63 mutations result in a domi-
nant-negative effect or a gain-of-function. Interestingly, a
genotype–phenotype correlation was shown to exist based
on the clustering of p63 mutations in different ectodermal
dysplasias. For example, patients with ectodermal dyspl-
asia and cleft lip (EEC) harbor missense p63 mutations in
the DNA binding domain (Celli et al, 1999). Patients with
ankyloblepharon ectodermal dysplasia and clefting (AEC or
Hay–Wells disease), however, have mutations in the SAM
domain (McGrath et al, 2001). Interestingly it was found that
mutations in the SAM domain abrogate the interaction of
p63 with ABBP1, which may partially account for the de-
fects in epithelial development and differentiation observed
in these patients (Fomenkov et al, 2003). Since the SAM
domain is only contained in p63a isoforms, this suggests
that p63a isoforms are essential for development of
ectodermally derived tissues.

Genes that are active during normal development are
frequently found to be dysregulated during neoplastic
transformation. A number of studies have investigated the
role of p63 in neoplastic transformation and tumor progres-
sion. Although p63 does not function as a classical tumor
suppressor gene (Osada et al, 1998; Ikawa et al, 1999; Nishi
et al, 1999; Sunahara et al, 1999; Hibi et al, 2000), it was
found that SCC from different organs express high levels of
p63 (Crook et al, 2000; Hibi et al, 2000; Park et al, 2000;
Yamaguchi et al, 2000; Choi et al, 2002; Di Como et al,
2002; Reis-Filho et al, 2002; Weber et al, 2002; Massion
et al, 2003; Reis-Filho et al, 2003). The isoform that is most
frequently overexpressed is DNp63a (Parsa et al, 1999;
Crook et al, 2000; Hibi et al, 2000; Massion et al, 2003);
however, overexpression of TAp63 isoforms has also been
documented (Parsa et al, 1999; Nylander et al, 2000, 2002;
Massion et al, 2003). In some cases, the overexpression of
p63 may be caused by amplification of the genomic region
which harbors p63 (Gebhart and Liehr, 2000; Hibi et al,
2000; Yamaguchi et al, 2000; Redon et al, 2001). We pre-
viously generated transgenic mice that express DNp63a in
the epidermis (Liefer et al, 2000). These transgenic mice
were more resistant to UV-B induced apoptosis than control
littermates, suggesting that DNp63a has an oncogenic role.
Based on in vitro evidence suggesting that DNp63 isoforms
have a dominant-negative function towards TAp63 isoforms
(Yang et al, 1998) and that TAp63 isoforms are capable of
inducing apoptosis (Osada et al, 1998; Sasaki et al, 2001;
Dohn et al, 2001a; Dohn et al, 2001b; Dietz et al, 2002;
Flores et al, 2002; Okada et al, 2002), it has been proposed
that TAp63 isoforms may have tumor suppressing abilities.

But all of these in vitro studies have been performed in cell
lines derived from tissues that normally do not express p63.
Since DNp63a was shown to have cell type-specific func-
tions (King et al, 2003), this may also be the case for TAp63
isoforms. Therefore, like DNp63 isoforms, TAp63 isoforms
may also have an oncogenic function.

In summary, although the roles of the different p63 iso-
forms are still elusive, the current data suggest that p63 has
a dual role. During development p63 is required for the in-
itiation of an epithelial stratification program, whereas in the
mature epidermis p63 is required for the maintenance of the
proliferative potential of basal keratinocytes. Deregulation of
p63 expression can result in ectodermal dysplasias and
SCC. The molecular role of p63 in these disorders, however,
remains to be determined and will be further elucidated by
the identification of additional interacting proteins and
downstream target genes.

c-Myc and p63 have complimentary roles in regulating
epidermal homeostasis through the regulation of prolifera-
tion and differentiation, respectively. Deregulation of either
of these processes leads to human disease. The molecular
mechanisms by which these genes regulate epidermal
homeostasis are currently being analyzed and future studies
will uncover the missing links between these genes and the
human diseases in which they are involved.
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