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Following a methodology similar to [1], we derive a holographic complexity for two dimensional 
holographic superconductors (gauge/string superconductors) with backreactions. Applying a perturbation 
method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum 
system near critical points. We show that when a system moves from the normal phase (T > Tc) to 
the superconductor phase (T < Tc), the holographic complexity will be divergent.
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1. Introduction

The anti-de Sitter/conformal field theories (AdS/CFT) correspon-
dence provides us a holographic dual description of the strong 
interacting systems in various fields of physics, especially in con-
densed matter physics. More precisely, this correspondence es-
tablishes a dual relationship between the d dimensional strongly 
interacting theories on the boundary and the d + 1 dimensional 
weakly coupled gravity theories in the bulk [3]. One of the most 
widely investigated objects is the holographic superconductors. 
The simple holographic superconductor model dual to gravity the-
ories was made by applying a scalar field and a Maxwell field cou-
pled in an AdS black hole background [4–6]. Then a lot of works 
have been carried out for investigating holographic superconduc-
tors in other complicated gravity theories such as Einstein–Gauss–
Bonnet gravity, Horava–Lifshitz gravity, non-linear electrodynamics 
gravity and so on [7–9].

According to AdS/CFT duality, instability of the bulk black hole 
leads to exist a conductor and superconductor phase transition in 
holographic superconductor models. A holographic superconduc-
tor/insulator phase transition model was also built at zero temper-
ature [10]. Then, in Ref. [11] authors investigated a complete phase 
diagram for a holographic s-wave superconductor/conductor/insu-
lator system by mixing the conductor/superconductor phase tran-
sition with the insulator/superconductor phase transition.

On the other hand, the entanglement entropy plays a main role 
in distinguishing different phases and corresponding phase transi-
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tions. It is also considered as a useful tool for keeping track of the 
degrees of freedom of strongly coupled systems.

In framework of AdS/CFT duality, a holographic method for 
evaluating the entanglement of quantum systems has been pro-
posed by Ryu and Takayanagi [12]. Following this conjecture, the 
entanglement entropy of CFT’s states living on the boundary of an 
AdS spacetime is associated with the area of a minimal surface 
defined in the bulk of that spacetime. Namely, the holographic en-
tanglement entropy of subsystem A with its complement is given 
by:

S A = Area(γA)

4Gd+1
(1)

where G and γA are the gravitational constant in the bulk and 
the (d − 1)-minimal surface extended into the bulk with the same 
boundary ∂ A of subsystem A, respectively. Recently, the behavior 
of entanglement entropy for holographic superconductor models 
has been studied in investigating conductor/superconductor phase 
transitions [13,14]. We also obtained an exact form of the holo-
graphic entropy due to an advantage of approximate solutions in-
side normal and superconducting phases with backreactions for 2D 
holographic superconductors [15].

Recently, Susskind has found a new quantity related to com-
plexity in CFTs which is dual to a volume of a codimension one 
time slice in anti-de Sitter (AdS) [16,17]. The time slice connects
two boundaries dual to the thermofield doubled CFTs, through the 
Einstein–Rosen bridge [18]. Following Refs. [16,17], the holographic 
complexity can be defined as:

CA = V (γ )
, (2)
8π RGd+1
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where R and V (γ ) are the radius of the curvature and the volume 
of the part in the bulk geometry enclosed by the minimal hyper-
surface appearing in the computation of entanglement entropy, re-
spectively. This quantity can be carried out for certain holographic 
models [1]. Today it is used to get more information about the 
quantum systems in black hole physics and cosmology [19,20]. In 
the framework of AdS/CFT correspondence, holographic complexity 
in bulk might provide a dual description of the fidelity defined 
in quantum information [1,21]. Because the fidelity is purely a 
quantum information concept, it would be a great advantage if 
one used it to characterize the quantum phase transitions [22,23]. 
Moreover, if one extends the fidelity to thermal states, the leading 
term (fidelity susceptibility) of the fidelity between two neighbor-
ing thermal states is simply the specific heat [24]. Roughly speak-
ing, the fidelity approach is a powerful tool to talk about quantum 
(or thermal) phase transitions [22,23]. In this paper, we will in-
vestigate behaviors of phase transitions for 2D holographic super-
conductors by calculating the holographic complexity. The case of 
2D holographic superconductivity of our interest is based on the 
AdS3/CFT2 correspondence. We also consider the influence of the 
backreaction on the dynamics of perturbation in the background 
spacetime. Then by applying the domain wall approximation anal-
ysis [25], we will get the holographic complexity which would be 
divergent at critical points.

The paper is organized as follows. In the next section, we will 
have a brief glance at 2D holographic superconductors. In Sec-
tion 3, we will calculate the holographic complexity to analyze the 
phase transition in such superconductors. Finally, Section 4 is de-
voted to conclusions.

2. 2D holographic superconductor with backreactions

In this section, we begin with a brief review of 2D holographic 
superconductor away from the probe limit by considering the 
backreaction. The dual gravity description of these superconduc-
tors is defined by the following action [26]:

S =
∫

d3x
√−g

[ 1

2κ2
(R + 2

l2
) − 1

4
F ab Fab

− |(∇ − ie A)ψ |2 − m2|ψ |2
]
, (3)

in which κ2 = 8πG3, Fμν = ∇μ Aν −∇ν Aμ where Aμ are Maxwell’s 
fields, and e and m represent the charge and the mass of the scalar 
field ψ . In order to regard the effect of the backreaction of the 
holographic superconductor, we consider a metric ansatz as fol-
lows:

ds2 = − f (r)e−β(r)dt2 + dr2

f (r)
+ r2

l2
dx2 , (4)

and the electromagnetic field and the scalar field can be chosen 
as:

Aμdxμ = φ(r)dt, ψ ≡ ψ(r). (5)

Furthermore we consider ψ as a real function without loss of 
generality. The Hawking temperature of this black hole, which is 
equivalent to the temperature of the CFT, is given by:

T = f ′(r)e−β(r)/2

4π

∣∣∣∣∣
r=r+

. (6)

Employing the ansatz (4) and (5), the equations of motion can be 
easily obtained by the following relations [27]:
ψ ′′(r) + ψ ′(r)
[

1

r
+ f ′(r)

f (r)
− β ′(r)

2

]

+ ψ(r)

[
e2φ(r)2eβ(r)

f (r)2
− m2

f (r)

]
= 0 ,

φ′′(r) + φ′(r)
[

1

r
+ β ′(r)

2

]
− 2e2φ(r)ψ(r)2

f (r)
= 0 ,

f ′(r) + 2κ2r

[
e2φ(r)2ψ(r)2eβ(r)

f (r)
+ f (r)ψ ′(r)2

+ m2ψ(r)2 + 1

2
eβ(r)φ′(r)2

]
− 2r

l2
= 0,

β ′(r) + 4κ2r

[
e2φ(r)2ψ(r)2eβ(r)

f (r)2
+ ψ ′(r)2

]
= 0. (7)

Here the prime denotes the derivative with respect to r. In 
Ref. [27], to find the effect of the backreaction on the scalar con-
densation, Yunqi Liu et al. did numerical calculations. They showed 
that numerical results in solving equation (7) for various values of 
the backreaction κ2 lead to drop the critical temperatures (Tc ∼ ρ , 
where ρ is the dual chemical potential in CFT) consistently when 
the backreaction grows. It means that the backreaction makes the 
condensation harder to occur. They also confirmed that the gap 
of the condensation operator < O+ > becomes bigger if the back-
reaction increases. Moreover near the phase transition the con-

densation operator shows itself a behavior like < O+ >∼
√

1 − T
Tc

which is the same as expected results from mean field theory. The 
exponent 1

2 implies that the second order phase transition occurs. 
Furthermore, at the zero temperature limit T = 0, the condensate 
< O+ > tends to infinity that it justifies the same results from 
the BCS theory. (See Ref. [28] for an analytic description of phase 
transitions.)

3. Holographic complexity and phase transitions

Now, we study the holographic complexity for 2D holographic 
superconductors. By defining z = r+/r in the Poincaré’s coordi-
nate, and replacing it into the metric (Eq. (4)), the volume function 
yields:

V (γ ) = r2+
l

∫
x(z)dz

z3
√

f (z)
. (8)

In order to find x(z) in above formula, let us consider an entan-
gling region (subsystem A) in the shape of a strip [12,29]. The 
minimal surface γA is a one dimensional hypersurface (geodesic) 
at t = 0 when Eq. (1) is employed. It should be noted that none of 
the coordinates (z; x) is independent of the other. Therefore, con-
sidering z as a function of x, the surface area becomes:

A(z(x)) = r+
∫

dx

z2

√
z′ 2

f (z)
+ z2

l2
. (9)

It is noteworthy that we have not imposed the minimality con-
dition on the surface area yet. We now use the Hamiltonian ap-
proach to minimize the surface area. Therefore, we get to the first 
order differential equation as follows,

z′ 2

f (z)
+ z2

l2
= (Cl2)2. (10)

Defining a turning point z∗ such that z′|z=z∗ = 0, one can obtain 
the following minimal path for x(z) as:
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x(z) = l

∫
dz√

f (z)
√

z2∗ − z2
. (11)

Let us regard f (z) = f0(z) + ε2 f2(z) + . . . , β(z) = ε2β2(z) + . . . , 
and μ = μ0 + ε2δμ2 + . . . where ε is interpreted as the coherence 
length in a superconductor which is considered small and δμ2 �
μ0 [2,30,31]. It is clear that when μ → μ0, the order parameter 
ε2 → 0. The phase transition occurs at the critical value μc = μ0. 
The equation of motion for f (z) is solved at zeroth order by

f0(z) = r2+
l2

(z−2 − 1) + κ2μ2 log z (12)

Near the critical point, T ∼ Tc , we have ψ ∼ ψ1(z) ≈ εz2. There-
fore, one can take the following expression for f2(z) when m2 = 0,

f2(z) = −κ2 (2C2 + C1μ) z (13)

where C1 and C2 are integral constants. Following above consider-
ations, the Eq. (11) can be divided into two parts.

x = l

∫
dz√

z2∗ − z2
√

f0(z)
− ε2l

2

∫
f2(z)dz√

z2∗ − z2 f0(z)3/2
(14)

We assume that effects of backreactions to be small, so one could 
expand the above equation in powers of κ2 as follows:

x(z) = l2

r+

∞∑
n=0

c1/2
n J 1/2

n (z∗|z)

+ ε2κ2l4(2C2 + C1μ)

2r3+

∞∑
n=0

c3/2
n J 3/2

n (z∗|z) (15)

where cm
n = (m)n

n!
(

κlμ
r+

)2n
, (a)n = (a+n−1)!

(a−1)! is the Pochhammer sym-

bol [32] and the auxiliary integrals are defined as:

J 1/2
n (z∗|z) ≡

∞∑
k=0

∞∑
p=0

(n + 1/2)k(1/2)p

k!p!zp+1∗
L(2(n + k) + 1 + p||n)

J 3/2
n (z∗|z) ≡

∞∑
k=0

∞∑
p=0

(n + 3/2)k(1/2)p

k!p!zp+1∗
L(2(n + k) + 4 + p||n),

where

L(M||N) ≡
∫

zM(log z)Ndz (16)

is the Log-integral which satisfies the following recursion relation.

(M + 1)L(M||N) + N L(M||N − 1) = zM+1(log z)N (17)

On the other hand, we can employ the “Domain Wall” method 
in calculating holographic complexity. Domain wall approach was 
proposed to investigate some aspects of the holographic entangle-
ment entropy along renormalization group (RG) trajectories [25]. 
Thus the expression for holographic complexity (8) can be written 
in the below form:

V (γ ) = r2+
l

( zDW∫
z∗

x(z)dz

z3
√

f (z)
+

zU V∫
zDW

x(z)dz

z3
√

f (z)

)
. (18)

By substituting (15) into (18), we arrive at:
V (γ ) = r2+
l2

[ zDW∫
z∗

dz

z3

( ∞∑
n=0

d1/2
n J 1/2

n (z|z∗) +
∞∑

n=0

d3/2
n J 3/2

n (z|z∗)
)

×
( ∞∑

m=0

d1/2
m

(log z)m

(z−2 − 1)m+1/2
+

∞∑
m=0

d3/2
m

(log z)m

(z−2 − 1)m+3/2

)

+
zU V∫

zDW

dz

z3

( ∞∑
n=0

d1/2
n J 1/2

n (z|z∗) +
∞∑

n=0

d3/2
n J 3/2

n (z|z∗)
)

×
( ∞∑

m=0

d1/2
m

(log z)m

(z−2 − 1)m+1/2
+

∞∑
m=0

d3/2
m

(log z)m

(z−2 − 1)m+3/2

)]
,

(19)

in which d1/2
n = l2

r+ c1/2
n , d3/2

n = ε2κ2l4(2C2+C1μ)

2r3+
c3/2

n . Considering the 
following integral function,

K αγ
nm (z<, z>) =

z>∫
z<

Jαn (z|z∗)(log z)m

z3(z−2 − 1)n+γ
dz (20)

with (α, γ ) = (1/2, 3/2) and (z<, z>) = (z∗, zDW , zU V ), one can 
rewrite down the Eq. (19) as the following explicit form,

V (γ ) = r2+
l2

∞∑
n=0

∞∑
m=0

∑
α,β=1/2,3/2

Dα
n Dβ

m

×
(

K αβ
nm (z∗, zDW ) + K αβ

nm (zDW , zU V )
)

(21)

where coefficients can be defined as:

Dα
n = g1/2

n

r2(n+1/2)
+

δα,1/2 + κ2ε2(2C2 + C1μ)h3/2
n

r2(n+3/2)
+

δα,3/2. (22)

It should be noted that the thermal part involved in the temper-
ature and dual chemical potential are stored in the coefficients g
and h. We can express the holographic complexity in terms of the 
temperature T , critical parameters like Tc , μc and dual quantity 
as μ. Note that the coherence length near Tc behaves as:

ε ≈< O+ >≈ √
μ − μc ≈ √

Tc − T (23)

Furthermore we mention here that CFT temperature needs to be 
modified by including the backreaction of fields on the BTZ black 
hole background. According to Eq. (6), the first order correction to 
the temperature is given by the following expression:

T ≈ T0

[
1 − ε2

4

(
2π β2 (z) + r+ f ′

2 (z) T −1
0

)
π

|z=1

]
(24)

where T0 = f ′
0(r+)

4π is Hawking temperature for pure BTZ black 
hole. When μ0 = μc , the above Hawking temperature tends to 
the critical point Tc where the order ε2 → 0. By putting the f2(z)
(Eq. (13)) and

β2(z) = −16κ2
∫

z3dz
(

1 −
l4z2μ2r2+ ln( z

r+ )2

4
(
κ2μ2 ln( z

r+ ) + r2+(1 − z2)
)2

)

(25)

in Eq. (24), we have:

T ≈ T0

[
1 + ε2

(2π C1 + r+κ2 (2 C2 + C1μ)
)
]

(26)

4π T0
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It is also easy to calculate the horizon r+ as a function of other 
variables as:

r+ ≈ 2π T0

κ2(2C2 + C1μ)

[ 2δμ2

μ − μ0

( T

T0
− 1

)
− C1

]
. (27)

Now we want to show that near the critical point, when the sys-

tem moves to the superconductor phase, C( T
T0

, μ, μc) goes to in-
finity. In other words, the holographic complexity will be divergent 
as the fidelity susceptibility near the critical points. For this pur-
pose, let us consider the leading order term of C( T

T0
, μ, μc) when 

one takes m = n = 0 in Eq. (21). Thus we have:

C(
T

T0
,μ,μc)|T →Tc

≈ 1

l3κ2

[
p1/2,1/2

00 (z<, z>)

×
( 2π T0

κ2(2C2 + C1μ)

[ 2δμ2

μ − μc

( T

T0
− 1

)
− C1

])2

+ κ2(2C2 + C1μ)(μ − μc)

δμ2

×
(

p1/2,3/2
00 (z<, z>) + p3/2,1/2

00 (z<, z>)
)

+ κ4(μ − μc)
2(2C2 + C1μ)2

δμ2
2

p3/2,3/2
00 (z<, z>)

×
( 2π T0

κ2(2C2 + C1μ)

[ 2δμ2

μ − μc

( T

T0
− 1

)
− C1

])2]
(28)

It is obvious that when μ → μc , the first term goes to infinity and 
other leading terms have no singularities. In other words, enter-
ing obliquely scalar hair into the system of a normal black hole 
at μc leads to be the divergent holographic complexity function 
of hairy BTZ black hole by varying discontinuously in temperature 
from T > Tc to T < Tc . It is interesting in proving analytic result 
by applying numerical methods in future works.

4. Conclusion

Phase transition is a change in a feature of a physical system, 
often involving the absorption or emission of energy from the sys-
tem, resulting in a transition of that system from one state to an-
other state. The type-II superconductor is a type of phase transition 
of strongly coupled system from a normal phase to a superconduc-
tor phase, requiring free energy. We need a condensate to make 
this phase transition. In gauge-gravity picture, we address phase 
transition by investigating a weakly coupled gravitational theory 
in bulk. In this work we studied phase transition in a two dimen-
sional holographic superconductor with the holographic view of 
complexity. For this purpose, we used the domain wall method to 
calculate the holographic complexity. Our result shows that this 
quantity is singular at critical chemical potential. Its means that 
singularities of the complexity happen at normal/superconductor 
phase transition points for 2D holographic superconductors.
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