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Abstract

Motivation: Horizontally transferred genomic islands (islands, Gls) have been referred to as important factors which
contribute towards bacterial evolution in general and particularly towards the emergences of pathogens and outbreak
instances. The development of tools for identification of such elements and retracing their distribution will help to understand
how such cases arise. Sequence composition has been used to identify Gls, infer their phylogeny; and determine their relative
time of insertion. Collection of metadata on known GIs will enhance insight into horizontal gene transfer ontology and flow.
Results: This paper introduces the merger of SeqWord Genomic Islands Sniffer (SWGIS), which utilizes composition based
approaches for identification of Gls in bacterial genomic sequences, and the Predicted Genomic Islands (Pre_GI) database,
which houses 26,744 islands found in 2,407 bacterial plasmids and chromosomes. SWGIS is a standalone program that
detects GIs using a set of optimized parametric measures with estimates of acceptable false positive and false negative rates.
Pre_GI is a novel repository that includes island ontology and flux. This study furthermore illustrates the need for parametric
optimization towards the prediction of GlIs to minimize false negative and false positive predictions. In addition Pre_GI
emphasizes the practicality of the compounded knowledge that the database affords in detection and visualization of
ontological links between Gls.

Availability: SWGIS is freely available on the web at http://www.bi.up.ac.za/SeqWord/sniffer/index.html, and Pre GI is
freely accessible at http://pregi.bi.up.ac.za/index.php.
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1 Introduction

Recurrent outbreaks of pathogens that possess new virulence factors and broad range antibiotic resistance gene cassettes
reflect the importance of horizontal gene transfer (HGT) in the evolution of pathogenic bacteria (Smith et al., 2000;
Fernandez-Gomez et al., 2012). In many cases, the evolution of pathogens is mediated by mobile genetic elements, which can
easily be interchanged between bacterial taxa inhabiting the same or different environments (Kelly e? al., 2009). Outbreaks of
the suddenly emerged pathogens of unclear aetiology are characterized by an increased virulence and tolerance to many
antibiotics. As a result of the latter, outbreaks of gastrointestinal and nosocomial infections take a heavy death toll (Potron et
al., 2011; Brzuszkiewicz et al., 2011). The two major methods for genomic island (GI) identification use sequence similarity
(mainly BLAST) and DNA/codon composition approaches. However, either approach has its own benefits and limitations. In
this study we show that the composition based approaches may produce reliable predictions when optimal parameters are
introduced. The aspect of base composition similarity among closely related species arises from their common origin
(Sueoka, 1962), i. e. from the same lineage of plasmids or phages, or from the same former host organism. Similarity is also
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stability. Comparative analysis between lmeages have uncovered that genes ac ulred by HGT display atypical
ohgonucleog@ﬁlm1 g@l ?g*}%lp gggt fflnp % %%% et ‘(‘@85 OW"‘ %—%{ fa&C@ ?%%l 001; van Passel
et al., 20053 ﬁﬁtj e pFlI%l%Illf)lfes Henti oned above Wae %’réﬂgh’i prac{1 ica use ﬁy aHln (15 Wea‘édproved that
frequencies of oligonucleotide as short as dinucleotides might possess a genomic signature. Thereafter, distribution of longer
words was shown to be even better phylogenetic descriptors (Reva & Tiimmler, 2004; Deschavanne et al., 1999).

Current databases applicable in bacteriological research include IslandViewer (Langille & Brinkman, 2009), PAIDB (Yoon
et al., 2007) and ACLAME (Lima-Mendez et al., 2010); all of which are constructed to facilitate specific and non-
overlapping research. IslandViewer employs three methods of GI prediction to identify horizontally acquired genomic
fragments of all types in sequenced bacterial genomes. PAIDB catalogues verified pathogenicity islands (PAls) and
ACLAME reconstructs reticulation events in bacterial genomes. Whilst all of the above mentioned resources have numerous
applications, none of them allow identification of GI movement and ontology, including but not limited to PAI.

In this work we present the SeqWord Genomic Islands Sniffer (SWGIS) program developed to identify Gls in bacterial
genome by the composition based approach and distinguishing them from other loci with alternative OU usage and the
Predicted Genomic Islands (Pre_GI) database that house predicted Gls and their ontology. The idea to identify Gls by
alterations in frequencies of oligonucleotide is not new. A number of computational tools based on this approaches have been
proposed recently (Mrazek & Karlin, 1999; Pride & Blaser, 2002; Abe ef al., 2003; Dufraigne et al., 2005; Chatterjee et al.,
2008; Ménigaud et al., 2012). SWGIS uses a set of combinatorial parametric measures to improve sensitivity and specificity
of the composition based methods and in this way it outperforms many other programs. Several sets of the SWGIS
combinatorial parametric measures were revised to improve on rates of prediction of true GIs. SWGIS was then compared to
IslandViewer tools to measure their predictive values on known and curated GI predictions.

Pre_GI serves as a reservoir for island ontology, similarity and flux to further island prediction and reason by affording the
opportunity of compounded knowledge in a friendly and accessible format.

2 Methods

All programming for SWGIS was implemented in Python 2.5. Algorithms of OU pattern calculation and comparison were
described in detail previously (Reva & Tiimmler, 2004 and 2005; Ganesan et al., 2008; Bezuidt ef al., 2011). Several sets of
the SWGIS combinatorial parametric measures were revised to improve on rates of true GI predictions. SWGIS was then
compared to IslandViewer (Langille & Brinkman, 2009) to measure their predictive values on known and curated GI
predictions. SWGIS and LingvoCom utilities are available for download from www.bi.up.ac.za/SeqWord/sniffer/. Sequences
of bacterial chromosomes and plasmids were obtained from GenBank FTP server. Optimization of program run parameters
was performed by the factorial analysis technique (St-Pierre & Weiss, 2009).

SWGIS was used to identify GI housed in Pre_GI. GI compositional similarity was measured by OU pattern similarity
(Reva & Tiimmler, 2004 and 2005) and sequence similarity hits identified through BLAST. Clustering of GI were produced
by the Markov Clustering Algorithm (MCL) (Enright ez al., 2002) with OU pattern hits serving as a measure of relational
scores. Non-overlapping cluster representatives were identified as the nodes with the highest number of compositional
similarity links. Flux determination was based on the assumption of amelioration changing in the GI nucleotide landscape
from time of insertion to equate with that of the host in which it resides, yet for an extended period after insertion a GI may
be traced back to its origin by preserving compositional homomorphism with the donor (Lawrence & Ochman, 1997). This
approach was used in Pre_GI to predict donor-recipient relationships by comparing OU pattern similarity values calculated
for homologous GIs hosted by different organisms. Significant OU pattern differences of homologous Gls to that of hosts
would indicate possible donor-recipient relations. A high OU pattern similarity of both homologous GIs to one host with a
lower OU pattern similarity to another one indicates likelihood that the latter host is the recipient of a given GI from the
former one. Pre_GI was developed to ensure an interactive communication through the Web-based user interface and a
regular updating.

3 SWGIS performance

The basic principle behind the SWGIS algorithm is to superimpose the values of several statistical parameters (Reva &
Tiimmler, 2004 and 2005) calculated for a sliding window that allows identification of loci with an alternative OU pattern
and distinguishing between the different categories of these genomic fragments. Particularly, GIs were i%eﬁiﬁed by an
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skew (PS) comparison is used to filter out rrn operons characterized with extreme values of PS. These parameters are
calculated in SWGIS for genomic loci by the use of a sliding window approach, whereby values of genomic fragments of
8 kbp with a 2 kbp step are compared to the tetranucleotide usage pattern calculated for the whole genome. If the program
recognizes a statistically reliable increase of the local distance D accompanied by a significant increase of V, the window
shifts several steps back and repeats the analysis, this time with the steps of 0.2 kbp to identify exact borders of the foreign
inserts. The thresholds of parameter deviations from the average values to be considered as significant pattern alterations
may be specified by users. This paper is to instruct the users about setting the parameters in a way that will help them to
achieve acceptable false negative and false positive ratios.

SWGIS was developed for identification of GIs in multiple genomes by a single run. It takes as input complete bacterial
genomes in GenBank (preferable) or FASTA format. Several output files are created for each genome depending on the
user’s selected choice. One is a standard text file with extension OUT, which contains a list of identified GIs with their
coordinates, OU statistical values calculated for each GI and annotation of genes within the borders of the GI, if it is
available. The others are the FASTA file with DNA sequences of identified GI; GenBank files created for each GI to
accommodate the annotation data; and lastly, users may instruct the program to create a graphical SVG file comprising a
genomic atlas with indicated positions of predicted GIs. An HTML help file on how to use SWGIS is available at
www.bi.up.ac.za/SeqWord/sniffer/. Also, from the same page the users may download the latest version of the program.

3.1 SWGIS parametric optimization

An empirical analysis was performed to generate optimal parametric threshold values to be used for D and V. Setting the D
and V values below 1.5 resulted in an increased false positive rate, whereas setting these values above 2.0 overlooked many
known GIs (preliminary data not shown). The next step was to use the factorial analysis to determine optimal combinations
of threshold values for D and V to ensure minimal false positive and false negative rates.

3.1.1 False negative rate calculation. The parametric measures for SWGIS were optimized to attain better predictions
through the re-identification of known GIs from PAIDB (Yoon et al., 2007), which were used as training data. The SWGIS
optimization and re-identification analysis was carried out on 51 pathogenicity islands (PAIs) possessed by 24 micro-
organisms. The latter was conducted in comparison to the IslandViewer programs comprising IslandPick, SIGI-HMM, and
IslandPath. From these comparisons the calculations for false negative rates (FNR) were determined. FNR in this instance is
defined as the percentage of the known GIs that were overlooked by either of the programs used in the study. SWGIS was run
for 4 times with different combinations of D and V: [D:1.5; V:1.5]; [D:2.0; V:2.0]; [D:1.5; V:2.0] and [D:2.0; V:1.5]. Results
are shown in Fig. 1. From the comparison of the results attained from all the programs, SWGIS outperformed individual
IslandViewer methods even when the most stringent threshold values [D:2.0; V:2.0] were set. Jointly the IslandViewer
programs identified 69% of the 51 PAls, while SWGIS identified 88% with [D:1.5; V:1.5], 78% with [D:2.0; V:1.5], 65%
with [D:1.5; V:2.0] and 63% with [D:2.0; V:2.0]. All PAIs predicted by the IslandViewer programs except for 2, which were
only predicted by IslandPath, were also predicted by SWGIS [D:1.5; V:1.5]. Four PAIs were not detected by any method.

3.1.2  False positive rate calculation. Diverse native loci of bacterial genomes including rrn gene clusters; operons of
ribosomal proteins; giant genes; and local tandem repeats are also characterized by alternative OU patterns and resemble
horizontally acquired genes (Reva & Tiimmler, 2005 and 2008). SWGIS uses superimposition of different OU statistical
parameters to distinguish between different types of atypical genomic loci. The comparisons of Gls predicted by SWGIS and
the IslandViewer tools were carried out in order to determine the rates of false positives. The estimation of the false positive
rate (FPR) of predictions of GIs is problematic as there is no any formal way to prove that a given genomic fragment has not
been acquired horizontally. As FPR cannot be estimated straight away, we first calculated the statistics of unconfirmed
predictions, i. e. the frequencies of Gls, which were predicted only by one program and not the others. Sets of pre-calculated
GIs predicted in 164 bacterial chromosomes were downloaded from the IslandViewer web resource
(www.pathogenomics.sfu.ca/islandviewer/download.php) and included in the analysis. SWGIS searched for GIs in the same
chromosomes with the run parameters set for [D:1.5; V:1.5]; [D:2.0; V:2.0]; [D:1.5; V:2.0] and [D:2.0; V:1.5]. It was
stipulated that a GI is confirmed, if the genomic loci selected by different programs at least partly overlapped. Numbers of
predicted Gls and frequencies of unconfirmed Gls for each program are summarized in Fig. 2.

A great deal of unconfirmed Gls predicted by different methods was observed. Many false positives might be expected
among these unconfirmed Gls. SWGIS identified more GIs than the other methods with the less stringent parameter [D:1.5;
V:1.5], and g]zsj) resulted in the highest rate of unconfirmed predictions.
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used with the most relaxed parameters [D:1.5; V:1.5].

For the assessment of SWGIS’s performance and selecting the optimal parametric criterion, we performed an estimate for
FPR based on the rate of unconfirmed predictions. First, the ratio of unconfirmed GIs comprising mobile elements associated
genes was performed by a key word search through gene annotation. Predicted loci comprising at least one of mobile element
associated genes (“integrase”, “transposase”, “phage” and “IS-element”) were termed ‘unconfirmed key positives’. Search for
the same key words in gene annotations of 1,252 previously identified true positive Gls (Bezuidt ef al., 2011) showed that
only 56% of them possessed genes associated with mobile elements. From this observation the amount of true positives was
roughly estimated as ‘Number of unconfirmed key positive GIs’x100/56. Estimated FNR, reduced FNR and FPR calculated

for the training set are given in Table 1.

Table 1. Prediction of GIs by SWGIS with different program run parameters and estimated FPR and FNR.

SWGIS [D:1.5; V:1.5] [D:1.5; V:2.0] [D:2.0; V:1.5]  [D:2.0; V:2.0]
Total Gls 2066 928 1571 809
Unconfirmed 902 280 545 188
Key positive 137 44 92 28
Estimated FPR” 657 201 381 138
Reduced FPR' 0.318 0.217 0.243 0.171
FNR 0.118 0.353 0.216 0.373

"Number of false positives was calculated as: “Unconfirmed GIs” — “Unconfirmed key positive GIs”x100/56;
TFPR was calculated as “False positive estimation™/ “Total Gls predicted”.

3.2 Optimization of parametric values by factorial experiment

Factorial experiment design was applied to fit a model of two regression equations 1 and 2 to estimate FNR and FPR for
given D and V thresholds. Sensitivity and specificity parameters were calculated by equations 3 and 4.

FNR =—0.628 +0.118D +0.392V e FPR =0.752-0.121D-0.173V )
. 1-FNP-FPR 1
Sensitivity = ————— Specificity = ———
1- FPR 3) 1+ FPR 4)

Fig. 3A-C show expected FNR, FPR and FNR+FPR values that are likely to occur when different parametric combinations
are in use. Although [D:1.5; V:1.5] resulted in smaller FNR and the highest sensitivity, it however generated an increased
FPR and low specificity. And contrary, the setting [D:2.0; V:2.0] confered the highest specificity but decreased sensitivity.
Changes in the cumulative FNR+FPR, which depend on D and V, are shown in Fig. 3C. It was observed that an increase in V
gradually increased FNR+FPR, while a change in D had no effect as the increase in FNR was compensated by a similar
decrease in FPR. Thus, optimization of specificity and sensitivity of GI identification by this approach may be achieved by an

adjustment of D and keeping V threshold constant and minimal. It was calculated that the optimal specificity and sensitivity
673



combination _is achieved when the parameters are set for [D:1.7; V:l.S]I.1 This settin% serves as a default parameter for
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3.3 Case study of SWGIS failures and problem resolving strategies

The performance of SWGIS may be improved by further analyzing the patterns of genomes in which it performed poorly.
Genomes in Fig. 4 are those in which SWGIS identified too many or too little GIs as compared to the IslandViewer tools.

# Genomes FPR/FNR*
1 Bacillus anthraci s str. Ames [ NC_003997 ]
2 Bacillus anthracis str.'Ames Ancestor' [ NC_007530] ]
3 Bacillus anthracis str. Sterne [ NC_005945 ] [ |
4 Bacillus cereus ATCC 10987 [ NC_003909 ]
5 Bacillus cereus ATCC 14579 [ NC_004722] |
6 Bacillus cereus E33L[ NC_006274 [ |
7 Bacillus licheniformis ATCC 14580 [ NC_006322] |
8 Bacillus thuringiensis str. 97-27, complete [ NC_005957] [ ]
9 Bacillus thuringiensis str. Al Hakam [ NC_008600] 1

10 Bordetella bronchiseptica RBSO [ NC_002927]

11 Bordetella parapertussis 12822 [ NC_002928 ] |

12 Bordetella pertussis Tohama | [ NC_002929] 1

13 Borrelig afzelii PKo [ NC_008277] |

14 Borrelia turicatae 91E135 [ NC_008710] 1

15 Bradyrhizobium japonicum USDA 110 [ NC_004463 ] |

v 16 Burkholderia mallei ATCC 23344 chromosome 1 [ NC_006348 ] [ ]
FNR = -0.628 + 0.118D + 0.392V 7 :

D 15 155 1.6 165 47 175 18 185 1.9 5 17 Burkholdert.amalle{ ATCC 23344 chromosome 2 [ NC_006349] [ ]
1.5[0.14 0.16 0.18 0.2 022 024 0.25 0.27 0.29 0.33 18 Burkholderia mallei NCTC 10229 chromosome | [ NC_008835] [ ]
1-152 g-:g g-f’ g-lg oozf g-§§ g-;‘s‘ 8-23 8-2: 003-51" g-g‘; 19 Burkholderia mallei NCTC 10229 chromosome Il [ NC_008836 ] [ |
1.65/0.15 017 019 0.21 023 0.25 027 0.29 0.31 0.35 20 Burkholderia malle i NCTC 10247 chromosome | [ NC_009079 ] [ |
1.7/0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.36 21 Burkholderia mallei NCTC 10247 chromosome Il [ NC_009080 ] [ ]
1.75/0.17 0.19 0.21 0.23 0.25 0.26 0.28 0.3 0.32 0.36 ) .

1o IR 021 025 025 027 ozoloERE R 22 Burkholderia mallei SAVP1 chromosome | [ NC_008784 ] [ ]
A 1.85/0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.37 23 Burkholderia mallei SAVP1 chromosome Il [ NC_008785 ] [ ]
1.9/0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.38 24 Campylobacter etus 82-40 [ NC_008599 ]
2| 0.2 0.22 0.24 0.25 0.27 0.29 0.31 0.33 0.35 0.39
25 Caulobacter crescentus CB15 [ NC_002696 ] 1
v FPR = 0.752 - 0.121D - 0.173V 26 Clostridium acetobutylicum ATCC 824 [ NC_003030] [ |

D 1.5 1.55 1.6 165 1.7 1.75 1.8 1.85 19 2 27 Ehrlichia canis str. Jake [ NC_007354] ]
1.5[0:31 0.3 029 0.28 0.28 0.27 0.26 0.25 0.24 0.22 . )

155 0.3 03 029 028 027 026 025 024 024 0.22 28 Lactococcus lactis subsp. cremoris MG1363 [ NC_009004 ] 1
16| 0.3 0.29 0.28 0.27 0.26 0.26 0.25 0.24 0.23 0.21 29 Lactococcus lactis subsp. cremoris SK11 [ NC_008527] 1
1-65 ISR L CRI0i2.74 0.26. 0.25 0.24 0.23 10.22 Rgl 30 Lactococcus lactis subsp. lactis 111403 [ NC_002662 ] 1

1.7(0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.23 0.22 0.2 o .
1.75(0.28 0.27 0.26 0.25 0.25 0.24 0.23 0.22 0.21 0.19 31 Leptospira interrogans Lai str. 56601 chromosome | [ NC_004342 ] B
1.8|0.27 0.27 0.26 0.25 0.24 0.23 0.22 0.21 0.21 0.19 32 Magnetospirillum magneticum AMB-1[NC_007626 ] |

1.85|0.27 0.26 0.25 0.24 0.23 0.23 0.22 0.21 0.2 0.18 T

B 1.9(0.26 0.25 0.25 0.24 0.23 0.22 0.21 0.2 0.19 0.18 33Mesorhlzob!vumlon MAFFVSMOQBINC—OOZW] I
2[0.25 0.24 0.23 0.22 0.22 0.21 0.2 0.19 0.18 0.16 34 Mycobacterium smegmatis str. MC2 155 [ NC_008596 ] |
35 Mycobacterium ulcerans Agy99 [ NC_008611] [ ]

FNR+FPR = 0.124 - 0.003D + 0.219V ; ; ;

D V 15 155 16 165 17 175 18 185 1.9 5 36Nmobacterw:r‘mgmdskylNb-255[NC_007406] ]
1.5[0.45 0.46 0.47 048 049 0.5 051 052 0.54)056 37 Pyrococcus furiosus DSM 3638 [ NC_003413 ] 1
1.55|10.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.54 0.56 38 Ralstonia eutropha H16 chromosome 1 [ NC_008313 ] [ |
1.6|0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.54 0.56 . . )
1.65|0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.54 0.56 39 Sphingopysaloskensis RB2256  NC_00B048] n
1.7/0.45 0.46 0.47 0.48 0.49 05 051 0.52 0.53 0.56 40 Staphylococcus aureus RF122 [NC_007622 ] |
1.7510.45 0.46 0.47 048 049 0.5 0.51 0.52 0.53 J0:56 41 Thermosynechococcus elongatus BP-1[NC_004113] 1
1.8(0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.56
105 S o 25 049 05 051052 NN 42Xanthomor.m.soryzae pv. oryzae MAFF 311018 [ NC_007705] 1
1.9/0.45 046 047 048 049 0.5 0.51 0.52 0.53 0.56 43 Xylella fastidiosa 9a5c [NC_002488] -

C 2|0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.56 44 Xylella fastidiosa Temeculal [ NC_004556 ]

Fig. 3. Parts A and B show FNR and FPR calculated for different ~ Fig. 4. Genomes in which numbers of GIs predicted by SWGIS
combinations of D and V, respectively; and their sums are in the were significantly over-ranged regarding to the predictions by other
part C. programs that may indicate large FNR (red leftward bars) or large

FPR (blue rightward bars) in the column FPR/FNR.
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FPR/FNR = (Ngyes ~ N, )/ N, (5)

where Ngpgss is the number of GIs predicted by SWGIS with the parameters [D:1.5; V:1.5]; Ny is the maximum number of
GIs predicted by one of the IslandViewer programs and N,, is the average number of predicted Gls by the all programs.

3.3.1 False positives. To investigate possible causes of failures, predictions of GIs in several genomes were
investigated. These genomes were searched for commonalities, which may explain the excessive number of Gls identified in
them. These genomes showed to exhibit a common compositional polymorphism. Large parts of their chromosomes were
characterized by alternative OU-bias. Compositional polymorphism of genomes of Bacillus cereus and related organisms has
been previously reported by Bohlin ef al. (2012). To avoid this increase in FPR, more stringent parameter settings should be
set, preferably by an increase in the D threshold (see Fig. 3C).

3.3.2  False negatives. Composition based methods are customized to identify GlIs as regions with atypical OU patterns
in a given genome. This approach overlooks GIs, which share OU similarity with host organisms, or ancient acquisitions,
which have already been affected by amelioration of their DNA. SWGIS also suffers from such a drawback. SWGIS was able
to detect only a few Gls in genomes of Bordetella, Borrelia, Burkholderia mallei, Lactococcus and several others. Predictions
in these were found to be inconsistent with those of IslandViewer.

These organisms did not resemble any taxonomic links between themselves. Even in two different strains of the same
species prediction of GIs may suffer in one strain but be normal in another. For example, the reason for GI prediction failure
in X fastidiosa 9a5c is that this organism has developed a mutator phenotype that eroded its chromosomal OU pattern
specificity (Reva & Tiimmler, 2004). It was thus impossible for SWGIS to make predictions. In the contrary, there were no
problems with GI identification in X. fastidiosa Temeculal, which shows a stable chromosomal OU pattern (Fig. 4).

Another example of an overlooked GI is in Thioalkalimicrobium cyclicum ALMI1, as shown in Fig. 5. There is a large
87,608 bp long viral filamentous hemagglutinin gene with multiple constituent repeats, which can clearly be seen on the
genomic atlas (Fig. 5). The reason for discarding this region was that SWGIS considers giant genes with multiple repeats as a
separate category of genomic elements with alternative OU patterns (Reva & Tiimmler, 2008). This special case of a false
negative prediction may be resolved by a visual inspection of the genome maps provided by SWGIS and SeqWord Genome
Browser (Ganesan et al., 2008; and visit www.bi.up.ac.za/SeqWord/mhhapplet.php). Including these giant genes by default
to the SWGIS prediction output would result in too many false positives as these genes are usually resistant to HGT.

4 Pre gi database

Pre_GI is an interactive database freely accessible at http://pregi.bi.up.ac.za. The database allows users to browse current
GIs and/or compare newly predicted GIs against the entries in Pre_GI. An analytical resource for GI ontology and the
deconstruction of MGE fluxes was the driving force behind the development of Pre_GI. The availability of all sequence and
compositional comparison results allows users the opportunity to inspect ontological links between Gls and the donor-
recipient relations to identify fluxes of Gls. The inclusion of host lineages and other metadata, including but not limited to
habitat and isolation, aims at highlighting the biological reasoning and logic behind GI presence in the current genome and its
movement through bacterial species.

4.1 Pre_GI content and GI browsing

SWGIS was used for a semi-automated search of GIs in multiple GenBank files of bacterial chromosomes and plasmids
obtained from the NCBI to populate Pre GI. SWGIS parameters were set at D=1.7 and V = 1.5 to ensure an optimal
sensitivity/specificity ratio. Currently Pre GI contains 26,744 GIs identified in 2,407 bacterial chromosomes and plasmids.
GIs are accessible by means of various browse functions, i. e. host accession, host strain description, host taxonomy and host
information. GIs may furthermore be located by means of gene content and physical location on the host genome.

Each GI is individually represented by means of location on the host genome and all information relating to said GI is
clearly displayed or easily accessible by means of hyperlinks. GI metadata includes positional attributes, SWGIS parameter
statistics, compositional and sequence similarities. Gene content confirmation of HGT events by keyword search and
prediction of the GIs by other methods, i. . IslandViewer and PAIDB, validate true positive prediction of GIs.
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Gene annotations are searchable to identify GIs containing genes with similar annotation. Annotations are linked to the
QuickGO browser from EMBL-EBI (http://www.ebi.ac.uk/QuickGOY/).

The ability to predict donor-recipient flux of GIs with added information on bacterial host lineage and other host related
metadata allows for the logical explanation of evolutionary impact of HGT on strain and species levels to fit to ever changing
environment. Detected fluxes are displayed in the corresponding tables in the Pre_GI interface by means of colored arrows in
the direction of movement between pairs of organisms sharing homologous Gls.

4.2 Novel island comparison to Pre_GI entries

Current sequencing technologies and the ever increasing speed and affordability of these technologies require a dynamic
database to allow for sequence and composition comparison of novel islands identified in newly sequenced bacterial genomes
to known Gls. Sequence similarity search for a novel GI stored in FASTA format may be performed by using BLASTN page.
High scoring hits are hyperlinked to the subject Pre GI entries and may be graphically visualized. Compositional similarity
may be obtained by calculating OU pattern similarity. A novel GI sequence in FASTA format is first compared to the 420
MCA cluster representatives to identify corresponding clusters and then the sequence is compared to all GIs housed in the hit
clusters.

More detailed ontology search to compare multiple novel Gls is possible if the sequences of predicted Gls are stored in
GenBank files (a default SWGIS output option). Both sequence and compositional similarity comparisons are performed on
all loaded GIs against the database to determine novel island ontology and origin. These applications enable quick and
efficient investigation of novel GIs against the wealth of biological data contained in Pre_GI to determine their position in the
general network of the horizontal gene exchange between bacteria.

4.3 The amalgamation of SWGIS and PRE_GI

Let’s consider a case study to demonstrate the interplay between SWGIS and Pre_GI. A confirmed outbreak of canine
brucellosis in Sweden during August of 2013 was caused by Brucella canis strain SVA13 (Kaden et al., 2014). Sweden is
officially free of brucellosis with the outbreaks acquired abroad. The outbreak in 2013 was caused by a male canine imported
from Spain for breeding. The whole genome of the causative agent was sequenced, assembled and analyzed. Whole
sequences were assembled with SeqMan 8.0.2 and aligned against the reference sequence B. canis ATCC 23365, accession
CP007629 for the chromosome 1 and CP007630 for the chromosome 2. SWGIS was used to identify possible GIs in both
chromosomes. The parameters by default were chosen and resulted in 6 GI predicted in CP007629, displayed in Fig. 6, and 1
GI was found in CP007630. All 7 SWGIS predicted Gls in composed GenBank file format were uploaded and compared to
all entries in Pre_GI. An automated search for sequence similarity between the 7 uploaded Gls against the Pre_GI entries was
performed in a batch by BLASN with an e-value cut-off of 1 x 107, Plurality of GIs found in CP007629 and CP007630
showed a high sequence similarity to GIs hosted by B. canis ATCC 23365 (NC_010103), while the fifth GI on CP007629
indicated in Fig. 7 by an arrow showed the best hit to the GI predicted in Bartonella grahamii as4aup (NC_012846). It may
be learnt from the host related data stored in Pre_GI that B. grahamii as4aup was isolated from a wood mouse (Apodemus
sylvaticus) in central Sweden and that Bartonella comprises human and animal pathogens spread by the bite of a blood-
sucking arthropod. It may be possible that the outbreak strain of B. canis resulted from an acquisition of virulence factors
from the zoonotic bacterium B. grahamii. Compositional comparison of other GIs found in B. canis strain SVA13 suggested
possible acquisition of GI 6 from Desulfovibrio aespoeensis through B. ovis.

5 Conclusion

Compositional comparison of bacterial genomes known also as genome linguistics is a prospective approach to cope with
large scale genome comparison projects. Many computational tools based on composition similarity analysis have been
proposed over the past decade and proved to be useful (Abe et al., 2003; Dufraigne et al., 2005; Chatterjee et al., 2008;
Ganesan et al., 2008; Hasan et al., 2012). These showed to be reliable in detection of Gls in complete genome sequences.
SWGIS employs the revised OU statistics, which was introduced in our earlier papers (Reva & Tiimmler, 2004 and 2005;
Ganesan et al., 2008). It is comparable to the other composition based methods for GI identification; particularly SIGI-HMM,
which employs Hidden Markov Models (Langille & Brinkman, 2009), and GOHTAM, which uses both the chaos game
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Thioalkalimicrobium cyclicum ALM1

Brucella canis strain SVAL3 chromosome 1, complete sequence.
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Fig. 5. An insertion of a giant viral gene into chromosome of
Thioalkalimicrobium cyclicum ALMI1 that was overlooked by Fig. 6. Graphical representation of 6 islands found in Brucella canis
SWGIS is highlighted on the atlas. strain SVA13 on the chromosome 1.

On average it took approximately 5-10 min for SWGIS to predict GIs in one bacterial chromosome. FNR/FPR statistics
were also implemented to aid with the selection of optimal parameters for GI identification. A case study was performed to
investigate the failures of the composition based GI detection and to consider possible ways to overcome these failures. The
comparison of different approaches of GI identification is rather problematic. The predictions retrieved by different programs
overlap only partly (see Fig. 1 and 2). This discrepancy results from the extreme versatility of HGT, which occurs through
three different mechanisms: conjugation, transduction and transformation. Having been inserted, the integrated elements fall
under the pressure of fragmentation and amelioration. Efficiency of different methods strongly depends on the lengths of
islands, their genetic content and the time passed after inserting. The best result may be achieved when the outputs of several
programs are combined, as it was implemented in the IslandViewer web-portal (Langille & Brinkman, 2009) and later in
GIST (Hasan et al., 2012). In this work it was shown that SWGIS may significantly contribute towards the identification of
Gls, which in most cases remained undetected by the IslandViewer programs.

An important issue of identification of GIs is the ability to distinguish and filter out false predictions. It has been reported
that not all genomic loci showing alternative DNA compositions were horizontally transferred (Koski et al., 2001; Reva &
Tiimmler, 2004). Nevertheless, no attempts have been made until now to estimate the rates of false negative and false positive
predictions attributed to different methods. There is no consensus at the moment, which predicted GIs should be designated
as false positives. Prophinder (Lima-Mendez et al., 2008), Islander, SIGI-HMM and IslandPath/DIMOB (Mantri & Williams,
2004; Langille et al., 2008) search for genes associated with horizontally transferred islands (transposases, integrases, viral
capsid proteins, etc) to confirm the lateral origin of corresponding genomic fragments. Whereas, GOHTAM (M¢énigaud et al.,
2012) simply returns a whole list of atypical regions found in the given genome together with their annotation data to allow
users to decide themselves which of them were horizontally transferred. SWGIS employs the superposition og,ﬁU statistical



parameters to distinguish between Gls and other categorles of aty] 1ca1 genomic loci (Reva & Tummler 2005 Bezuidt et al.,
2011). It ad! {{Hﬁa“ 5 §> %1 sgér&fol%%ﬁe ﬁg%e?g N“AO{}V%%I%I&S nal 5195 orated database
of 16S rRN s§cfug’rﬁ:8s o discard a&fse se?lecte i opero aw aj hese discrifmit 1att1ng apprgac & is that they
unavoidably increase the percentage of overlooked GIs. The factorlal analysis of the proposed GI identification algorithm
was performed in this work to allow users to make an informative choice in selecting of customizable parameters to ensure
acceptable FNR and FPR.

The collection of identified GIs in appropriate and accessible format aids research on GI ontology, origin and biological
logic of their existence. The collaboration of SWGIS and Pre_GI in GI research offers a valuable addition to other available
GI detection tools with numerous advantages.
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