
Efficient Inference
in Bayes Networks
as a Combinatorial

Optimization Problem
Zhaoyu Li and Bruce D'Ambrosio

Department of Computer Science,
Oregon State University, Corvallis, Oregon

ABSTRACT

A number of exact algorithms have been developed in recent years to perform
probabilistic inference in Bayesian belief networks. The techniques used in these
algorithms are closely related to network structures, and some of them are not easy to
understand and implement. We consider the problem from the combinatorial optimiza-
tion point of view and state that efficient probabilistic inference in a belief network is a
problem of finding an optimal factoring given a set of probability distributions. From
this viewpoint, previously developed algorithms can be seen as alternative factoring
strategies. In this paper, we define a combinatorial optimization problem, the optimal
factoring problem, and discuss application of this problem in belief networks. We show
that optimal factoring provMes insight into the key elements of efficient probabilistic
inference, and demonstrate simple, easily implemented algorithms with excellent perfor-
mance.

KEYWORDS: belief network, probabilistic inference, combinatorial optimiza-
tion, optimal factoring, set-factoring, heuristic algorithm

1. PROBABILISTIC INFERENCE IN BELIEF NETWORKS

Bayesian belief networks provide an intuitive knowledge representation
for probabilistic models. A belief network is a directed acyclic graph
containing a set of nodes, a set of arcs, and a set of numeric probability
distributions. A node represents a domain variable with mutually exclusive
and exhaustive values. 1 Arcs and numeric probability distributions describe

Address correspondence to Zhaoyu Li, 1896 Columbia Street, Eugene, OR 97403.
Received July 1992; accepted November 1993.
~We will use the terms node and variable interchangeably.

International Journal of Approximate Reasoning 1994; 11:55- 81
© 1994 Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010 0888-613X/94/$7.00 55

56 Zhaoyu Li and Bruce D'Ambrosio

probabilistic relationship between the nodes. A belief network is called
singly connected if there is at most one undirected path between any two
nodes; otherwise it is called multiply connected. Figure 1 shows a simple
multiply connected belief network.

Probabilistic inference in a belief network is the task of computing the
probability of a set of variables in the network, given evidence on some
subset of the remaining variables. The most common questions we ask in a
belief network are: the marginal probability of a node x, the conditional
probability of x given y, and the joint probability of a set of variables.

A belief network is a compact representation of a full joint probability
distribution over the n domain variables in the network. In particular, the
full joint probability distribution can be calculated as follows [14, 16]:

n

p (x 1 X n) = I - I p (x i l "B'i) , (1)
i=1

where x 1 x n are the n variables in the belief network; ~'i is the set of
direct predecessors of x i and p(x i [7r i) is the conditional probability for
the variable x i if 71 i is not the empty set, and otherwise is the marginal
probability of x r The product of any two terms of the formula is called a
conformal product, the number of variables appearing in a conformal
product is called its dimension, and the maximum number of variables in
any of the conformal products for a query is called the maximum dimen-
sionality of the conformal products (or the query), or the "dimensionality"
for short. The time complexity of computing the full joint probability
distribution of a belief network is exponential in the number of nodes of
the network.

p(a): p(a=l)=0.2
p(b): p(b=l)=0.3
p(cla): p(c=l[a=l)=0.8
p(c=lla=0)=0.3
p(d[a,b):
p(d=lla=l,b=l)=0.7
p(d=lla--1,b=0)=0.5
p(d=l la=0,b=l)=0.5
p(d=l la=0,b=0)=0.2
p(elc,d):
p(e=l[c=l,d=l)=0.5
p(e=ltc=l,d=O)=O.8
p(e=l [c=0,d=l)=0.6
p(e=l [c=0,d=0)=0.3
p(fld):
p(r=lld=l)=0.2
p(f=l Id---0)=0.7

Figure 1. A simple multiply connected belief network.

Efficient Inference in Bayes Networks 57

A number of exact algorithms have been developed in recent years to
perform probabilistic inference in belief networks [13, 16, 8, 14, 17, 1, 18,
19, 6, 15, 22]. These algorithms rely either on the original directed graph,
on a related directed graph, or on a related undirected graph. For
example, the polytree propagation algorithm [14] relies on the original
polytree, and the algorithm developed in [8] relies on the related undi-
rected graph. While the graph topology contains all available information
for performing inference, much of that information is nonlocal and diffi-
cult to extract. We believe that a graph-theoretic perspective from local
properties of a network may not be the most effective one from which to
develop algorithms for inference in belief networks. Shachter et al. have
shown that many of those methods or algorithms derived from those
methods are equivalent to a clustering algorithm [20]. This algorithm was
proposed not as a computational improvement over the different methods,
but rather as a unifying framework in which they can be collectively viewed
and combined.

An important characteristic of a belief network is that any conditional,
marginal, or conjunctive query in it can be calculated from the full joint
probability, and that this is uniquely defined given any network (and a
corresponding set of distributions). This can be done by instantiating
observed variables in the formula and summing over the variables that are
not in the q u e r y . 2

Some variables may not be relevant to every query in a belief network.
In this case, we can save some computation time if we just consider the
variables relevant to the query instead of computing the conformal prod-
ucts for the full joint probability distribution. Theoretical research in [4,
14] provides a way of finding relevant variables to a query in a belief
network in polynomial time in the total number of variables.

The variables related to the query correspond to a new belief network (a
subgraph of the original network) in which the answer can be obtained by
first computing the full joint probability of the new belief network and
then summing over the nonqueried variables. The computational cost of
inference in belief networks, then, is mainly the cost of computing the full
joint probabilities of some subnetwork of the original belief network. This
cost can be reduced if variables can be summed over early in the computa-
tion, rather than performing all marginalization after computing the full
joint probability. The efficiency of probabilistic inference in a belief
network, then, depends on finding a factoring of the expression for the
joint probability over the relevant set of variables, which permits early

2A conditional probability p (X L Y) can be computed by computing p(X, Y) and p(Y), then
using p(X I Y) = p(X, Y) /p(Y).

58 Zhaoyu Li and Brace D'Ambrosio

marginalization of variables not in the query. In Section 2, we will formally
define an optimal factoring problem and discuss its role in efficient
probabilistic inference in belief networks.

2. THE OPTIMAL FACTORING PROBLEM

2.1. An Example

Consider the task of computing the full joint probability of a belief
network with n nodes. That task takes at least 2 n+l - 4 multiplications if
the number of values of each node is 2 and the graph formed by the n
nodes is fully connected. The number of multiplications in the worst
factoring case is (n - 1)/2 times higher than for the best factoring.

For the case of querying subsets of nodes in belief networks, the
variation of the computational cost of different factorings is higher, be-
cause the time complexity can vary widely with different factorings. There-
fore, the computational cost of probabilistic inference in a belief network
depends on the factoring of the conformal product of the distributions for
the relevant variables.

We give a simple example to show the effect of different factoring
strategies. Given the simple belief network in Figure 2, we want to query
the joint probability of nodes d and e, namely p(d, e). One factoring is
given in the formula

P(d,e)=[~a [~b [~c [p(elc)p(dlb, c)]p(cla)]p(bla)]p(a)],
which needs 72 multiplications. Another factoring needs only 28 multipli-
cations:

P(d,e)=[~[p(elc)[~bP(dlb, c)[~aP(Cla)[p(bla'p(a)]]]]]"

Figure 2. A simple belief network.

Efficient Inference in Bayes Networks 59

From this example we can see that different factoring can result in
significantly different computational costs.

In this section, we will formally define a combinatorial optimization
problem, the optimal-factoring problem. The purpose of proposing the
optimal-factoring problem is to apply some mature techniques developed
for solving combinatorial optimization problems to the factoring problem
and to utilize the results obtained from the optimal-factoring problem for
probabilistic inference.

2.2. The Optimal-Factoring Problem

An optimal-factoring problem (OFP) with n expressions can be consid-
ered as a combinatorial optimization problem. Without loss of generality
we assume that the domain size of each variable is 2. The problem can be
described as follows. 3

DEFINITION 2.1 (FP) Given
1. a set of variables V,
2. a set of n subsets of V: S = {Stn, St2 / S t J , and
3. Q c_ V, a set of target variables,

define:
1. the combination of two subsets S t and S]:

Stu j = S I u Sj - {v: v ~ S r for K f11 = ¢, K n J = ~b, and v ~ Q},

I , J ~ {1,2 n}, I n J = ~ b ;

2. the cost function for combining the two subsets:

/ ~ (S tn)=0 for 1 < i _ < n ,

t z (S lu]) = P~(SI) + tz(S]) + 2 ts'us~l.

~ (S I) is not unique if III > 2. In general, it depends on how we combine
the subsets. We indicate these alternative combinations by subscripting /z.
Thus tz,~(S 1) = / z shows the cost of computing S I with respect to a specific
tree-structured combination of I, labeled a. We call this combination a
factoring. The cost of a factoring is the number of multiplications it
requires.

DEFINITION 2.2 (OFP) The optimal-factoring problem is to find a factor-
ing ot such that ll~(Stl,2 }) is minimal.

In above definitions, Q is a set of target (query) variables; the set {v} in
the formula S 1 u] is the set of variables which do not appear in the

3The mapping between OFP and probabilistic inference in belief networks will be discussed
in the next subsection.

60 Zhaoyu Li and Bruce D'Ambrosio

remaining subsets of S after removing S 1 and Sj and which do not appear
in the set Q. The function /z,,(S t u j) is the total cost of combining all sets
S i (i ~ I, J) in a given factoring order, and is determined by the dimen-
sionality or the size of sets to be combined and affected by the size of {v}
in previous combinations. If the domain size of each variable is not limited
to 2, the quantity 2 ts' u sjl in the above formula should be replaced with
the product of the domain sizes of the variables in S t u Sj. All possible
factorings can be generated by permuting the n subsets Si and then
putting parentheses in all valid ways in the permutation to form all
5{1,2 n} "4

The OFP generally seems to be a difficult problem. We guess that it is
an NP-hard problem, although we have not yet proved this. We can see the
similarity between the OFP and the problem of finding the shortest path
among n nodes that passes each node exactly once (SPP) [9], which is
NP-hard. In the SPP, the problem is to find a permutation of n nodes
which results in the shortest path, while in the OFP the problem is to find
a proper permutation of n nodes and then put parentheses in so that it
results in a minimal computation. If we ignore the parentheses in the
result of the OFP, then since the time complexity of putting parentheses in
a given permutation of the n nodes to get an optimal result is polynomial
in the number of the nodes [5], the OFP--like the SPP--is the problem of
finding a proper permutation of n nodes. The difference between the two
problems is that in the SPP edge distances between nodes are static, while
in the OFP they are dynamic, that is, they depend on the path taken to the
edge. 5

2.3. Mapping between OFP and Probabilistic Inference

Our interest is in the application of the OFP to probabilistic inference.
We can map the problem of finding an optimal evaluation tree for
computing the answer to a query in a belief network into an OFP. Given a
belief network with m nodes and a set of observations, computing the
answer to a query involves identification of a subset of n nodes relevant to
the query and computation of the conformal product [19] of marginal and
conditional probabilities of the n nodes. The n nodes with their relations
can be mapped to the symbols in the definition of the OFP: the n nodes

4Strictly speaking, there are many apparent duplicates generated in this way. For example,
((ab)c) is the same factoring as (c(ab)).
5An anonymous referee points out that the OFP is very similar to, but not identical to, the
"secondary optimization problem" of nonserial dynamic programming (NSDP), which is
known to be NP-hard.

Efficient Inference in Bayes Networks 61

with their immediate antecedent nodes are mapped to the n initial subsets;
the queried nodes correspond to the variables in the subset Q; St u J
denotes the intermediate result for the conformal product of the distribu-
tions I and J; and ~ gives the number of multiplications needed for this
computation. Finding an optimal factoring corresponds to finding an
evaluation tree which minimizes the number of multiplications needed for
this computation.

We give a simple example to show the mapping between the OFP and
probabilistic inference. In Figure 2, we want to compute the joint probabil-
ity p(d, e). The mapping is as follows: S 1 = {a}, S 2 = {a, b}, S 3 = {a, c},
S 4 : {b, c, d}, S 5 = {c, e}, Ql = {d, e}. If c~ = ((((5 1 5 2) 5 3) 5 4) S 5) , then
/3~a(5{1,2,3,4,5}) : 28 (see the example in Section 2.1).

From the OFP point of view, we can view previously developed exact
probabilistic inference algorithms as different factoring strategies. How-
ever, since these factoring strategies are constrained by the structure of
the original graph or a derived graph, it may be hard for them to find
optimal factorings.

2.4. Some Results for the OFP

Although the OFP generally is a hard problem, some restricted in-
stances of it have polynomial-time algorithms. For example, given a do-
main of variables, if each pair of sets S i and Sj is disjoint and the set Q is
the union of all the sets Si, then the optimal ordering of a(S~, i.~) can
be obtained in linear time. In this subsection, we will explore factoring
methods for particular instances of the OFP. These factoring methods help
us to find efficient probabilistic inference algorithms. We will also present
an optimal factoring algorithm for an arbitrary belief network.

LEMMA 1 Given a factoring problem with n variables {1, 2 n}: S 1 =
{1}, S 2 = {2} Sn_ 1 = {n - 1}, Sn = {n}, andQ = {1, 2 , . . . ,n} , oneof
the optimal factorings is to combine any int((n + 1)/2) single-variable
factors, called marginals, first, then to combine the rest of the single-varia-
ble factors together, and finally to combine the two results.

Proof We prove the lemma by induction. Given n = 2, there is only
one possible combination. If n = 3, any two marginals can be combined
first; then the result will be combined with the other marginal. The order
of combination meets the order described in the lemma and is optimal.
Assume that the combination order in the lemma is optimal for n less than
or equal to k marginals. In the case n = k + 1, the result of combining
k + 1 marginals must result from the combination of combining k com-
bined marginals with one marginal, or combining k - 1 combined

62 Zhaoyu Li and Bruce D'Ambrosio

marginals with two combined marginals, and so on. Remember that the
cost function defined in the definition of the OFP is

l.~(S1u J) -~- fft~(Sl) Jr [d.,(Sj) Jr 2 Is'Us'l, (2)

that is, the cost for the final step is 2 k+ ~, which is independent of the
distributions of the two factors to be combined. We must prove that the
combination order in the lemma minimizes /.t(S l) + /z(Sj) . If we use a
number to denote the size of a set, then we need to prove that given
k <m,

/z(m + 1) + ~ (k) > / z (m) + / x (k + 1). (3)

According to the cost function (2), there exist mt, m2, kl, and k 2 which
satisfy ml >_ mE, k a >_ k2, ma Jr m 2 = m + 1, and k 1 + k 2 = k such that
/z(m Jr 1) and /z(k) are both optimal in the left side of (3). If we choose
the decomposition for the right side of (3) relevant to ml, mE, kl, and k2,
then to prove (3), we need to prove

/ z (ml) Jr /z(m2) Jr 2 "+ 1 + /z(kl) + / z (k 2) Jr 2 k

is greater than

(4)

/z(m 1 - 1) + /~(m 2) Jr 2" Jr /z(k 1) +/. t , (k 2 Jr 1) + 2 k+l. (5)

From (4) and (5) we get

/ z (ml) + 2m+ 1 Jr /z(k2) + 2 k > /z(m 1 _ 1) + 2" + p,(k 2 + 1) + 2 k+ 1

(6)

Since 2 m+l >__ 2" + 2 k+l, it is sufficient to prove the following inequality
instead of (6):

/z(m 1) Jr //,(k 2) Jr 2 k > / z (r n 1 - 1) + / z (k 2 -t- 1).

If we decompose k 2 Jr 1 into two factors with sizes k and 1, then the
inequality is

~ (m 1) Jr p.(k 2) Jr 2 k > /z(m 1 - 1) J r /~ (k 2) Jr p.(1) Jr 2 k2+l,

that is,

/x(m 1) Jr 2 k > / x (m 1 - 1) + 2 k2+1.

Thus we should prove the following, since k >_ k 2 Jr 1:

/z(m 1) > /~(m 1 - 1). (7)

Efficient Inference in Bayes Networks 63

The correctness of (7) is obvious for marginals. Thus we have proven (3).
From (3) we know that if m + k + 1 is even, the minimal value results
from the decomposit ion into two sets with equal size; and if m + k + 1 is
odd, the minimal value results from the decomposition in which one set
has one more factor than the other set. This meets the combination order
in the lemma. For the two decomposed sets, they both have fewer than k
marginals and can be combined optimally according to the induction
assumption. •

LEMMA 2 Given a factoring problem with n variables {1, 2 , . . . , n}:
S 1 = {1}, S 2 = {2} S,_1 = {n - 1}, Sn = {1, 2 , . . . , n } and Q = {n},
the optimal factoring is to combine any int((n + 1)/2) single-variable
factors according to Lemma 1, then to combine the result with the factor S,.
The original factoring problem then becomes a new factoring problem with
factors Ski, Skz Sk, Sk,+l = {k 1 ki, n} and Q = {n}, where i = n
- int((n + 1)/2), which has the same form as the original problem. The

same strategy can then be used for the problem until a final result is
obtained.

Proof We prove the lemma by induction. For n = 2, the combination
is unique. For n = 3, according to the lemma, we combine two marginals
first and then combine the result with the conditional factor. The cost is
2 2 + 2 3 and is minimum. Assume that the combination order in the lemma
is optimal for n less than or equal to k. Then we will prove the combina-
tion order is also optimal in the case n = k + 1.

Some notation must be introduced first. I f the number of multiplications
for combining m marginals, in accordance with Lemma 1, is denoted as
M(m) , then M(1) = 0, and M(m) , for m > 0, can be recursively computed
as

M (m) = 2 m + M (i n t (m / 2)) + M (m - i n t (m / 2)) . (8)

There is a combination order for $1, S 2 S n and m = in t (n /2) such
that the number of multiplications for combining

is

(Sn(. . . (SlS2) . . , S m)) (. . . (Sm+lSm+ 2) . . . S n_l)

2" + (2 2 + -.. + 2 m) + 2 n-m + (2 2 + .-- + 2 n - m - I) . (9)

We know that the total number of combinations needed for computing $1,
S 2 , S, is n - 1 and the number of multiplications needed for combin-
ing all factors in the worst case is

2 2 + 2 3 + .-- + 2 "-1 = 2" - 4. (10)

64 Zhaoyu Li and Bruce D'Ambrosio

If we denote by F(n) the number of multiplications needed for combin-
ing $1, S 2 S, , then F(n) can be represented as follows if m marginals
are combined first:

F (n) = 2 ~ + M (m) + F (n - m) . (11)

Then, proving the combinat ion order for combining S 1 Sn is equiva-
lent to proving the following inequality: Given s and t, with s ~ t and t
the number chosen as in the lemma, then

2" + M (s) + F (n - s) > 2 n + M (t) + F (n - t) . (12)

First we consider the case n = 2t and s < t, and assume s = t - j for
1 < j < t; then we prove the following inequality in s and t:

M (t - j) + F (n - t + j) > M (t) + F (n - t) . (13)

F rom (8) and (9) we know that the dominan t terms in the left side o f (13)
are 2 '÷j + 2 t - j + The rest of the terms are much smaller. The
dominan t terms in the right side of the formula are 2 t + 2 t + . .- , and the
rest of the terms are again much smaller. According to (10), we know that
(13) is true f o r s = t - j , f o r l < j < t .

Next we prove the case n = 2t and s > t. We consider the case
s = t + j for 1 < j < t. Given s and t, we should prove

M (t + 1) + F (n - t - 1) > M (t) + F (n - t) . (14)

F rom (8) and (9) we know that the dominan t terms in the left side of (14)
are 2 t+j + 2 t - j d- .- . , and the rest o f the terms are much smaller. Simi-
larly, the dominan t terms on the right side are 2 ' + 2 t + . . . , and the rest
of the terms can be ignored in comparison. This tells us that (14) is correct
f o r s = t + j f o r l < j < t .

Similarly we can prove (12) in the case n = 2t - 1 for s < t or s > t.
For s > t the p roof is similar to the above proof. For s < t, if we substitute
s in (12) with s = t - 1, the two sides are equal. Thus if we use s < t - 1
instead of s --- t - 1, (12) is true. This means the optimal combinat ion is
not unique in this case. For example, if n = 5 in the factoring problem, the
combinat ions ((S5(51S2))(S354)) and ((S5((5152)S3))54) have the same
result.

Accord ing to (12), we combine t marginals first, t is de termined as
above. Then we combine the result with the factor S n. After the combina-
tions, the number of marginals left is less than k, and they can be
combined optimally according to the induction assumption. Thus the
combinat ion order for S 1, $ 2 , . . . , S n is proved. •

Efficient Inference in Bayes Networks 65

LEMMA 3 Given a factoring problem with n variables {1, 2 , . . . , n}: S 1 =
{1}, S 2 = {2}, . . . ,S n = {n}, Sn+ 1 = {1, 2 n}, a n d Q = {n}, theoptimal
factoring is to combine S 1 Sn_ 1 with S,+ 1 first, then combine the
result with S,. The order o f combining $1 , . . . , S, _ l with S, + 1 is given in
Lemma 2.

Proof We can see that to combine S 1 , Sn_ 1 with S,+1 is the same
factoring problem described in Lemma 2, so the factoring, according to the
iemma, is optimal. The result of the combination is a set with one variable
in it: {n}. Combining the result with Sn, the dimensionality of the combina-
tion is just 1. So the combination is minimal for any combination of two
factors. On the other hand, if we exchange the combination of any S i
(1 _< i < n) with S,, the result of combining n - 1 marginals with S~+1
has a dimensionality of 2, and the dimensionality of combining the result
with S, is 2 also. Then the cost of this combination order is bigger than
the cost of the given combination in the lemma. Therefore, the combina-
tion given in Lemma 3 is optimal. •

LEMMA 4 Given a factoring problem with n + k - 1 sets on n variables
{1,2 n}:S z={2} S, l = { n - 1},S~ = { 1 , 2 n} ,k{1} ' s (we
may denote them as $1. l = {1} , $1, k = {1}), and Q = {n}, one of the
optimal factorings is to combine the k {1}'s first, then optimally combine the
result with the remaining factors according to Lemma 3.

Proof It is obvious that combining the k SLi = {1}'s (1 < i < k) to-
gether first is optimal. Combining the result with the remaining factors is
optimal according to Lemma 3. Therefore, the factoring in the lemma is
optimal. •

LEMMA 5 Given a factoring problem with n variables {1, 2 n}: S l =
{1}, S 2 = {1, 2}, S 3 = {2, 3} Sn = {n - 1, n}, and Q = {n}, then the
optimal factoring is to combine these factors in the ascending order o f their
subscripts. That is, combine the S t with S 2 first, then combine the result
with S 3, and so on.

Proof From the definition of FP we can see that the dimensionality of
each combination, as specified by the lemma, is 2 and that one variable is
removed from the result after each combination. Since the size of each Si
for i > 1 is equal to 2, every combination step must have a dimensionality
of at least 2. Therefore the given combination is minimal. Therefore, the
factoring is optimal. •

For the arbitrary factoring problem, we have developed an optimal
dynamic factoring algorithm. Dynamic programming is one of the few
general techniques for solving optimization problems [11, 12, 5]. It is
related to branch-and-bound techniques in the sense that it performs an

66 Zhaoyu Li and Bruce D'Ambrosio

intelligent enumeration of all feasible points of a problem. The idea is to
work backwards from the last decisions to the earlier ones. Using the
dynamic programming approach to the OFP, we start backwards from an
assumed optimal result. According to the "principle of optimality," any
subcombination of n factors must be an optimum itself, and all possible
subcombinations may be used in the final optimal result. We keep all
computed optimal subcombinations, and use tables to save all intermediate
results. Thus the dynamic-programming approach for OFP can be de-
scribed as:

1. Generate all combination tables from 1 to n. The ith combination
table can be generated from all pairs of combination tables (j, k)
such that j + k = i. The elements (combined factors) chosen from
the j th and kth tables must be exclusive. For the combinations
having the same elements, only that one which has the minimal
number of multiplications is saved in the table for subsequent use.

2. An optimal combination is any entry in the nth combination table
with the lowest total number of multiplications needed.

The dynamic approach will find an optimal result, but depends on
comparing all possible factoring results in each factoring step to get the
best one. It can be seen that if a kind of best-first search is applied to find
a best result, the time complexity of the algorithm for computing the
(n + 1)th table will be O (n 2 x 2 n) in the number of factors. In the ith
combination table there are n ! / [i ! (n - i)!] elements, since only one com-
bination of any i elements is a candidate for the (i + 1)th combination.
The number of elements in the ith table is the number of combinations of
choosing i elements from n, so there are a total of 2 n elements in all n
tables. Since there are n! distinct factoring results for n factors, the
dynamic-programming approach results in substantial savings. Even though
the dynamic strategy is useless in practice, it is useful in research as an
analytical tool to check how close an approximation algorithm is to an
optimal result.

Since the general OFP appears to be a hard problem, we must search
for approximation methods and heuristics, or identify special cases for
which efficient algorithms exist. Two criteria for a heuristic strategy are
quality, i.e., the closeness of the result of a heuristic to an optimal result,
and the time complexity of the heuristic algorithm itself. There is a
tradeoff between the quality and time complexity in a heuristic algorithm.
The following are some possible heuristic greedy strategies:

1. In each step of choosing a pair of factors to combine, we may
consider the pair of factors which gives the minimum /x value as a
candidate for combination.

2. In each step, we may consider the pair which has the smallest-dimen-
sional result as a candidate for combination.

Efficient Inference in Bayes Networks 67

We will see later that the strategy of taking the pair with the smallest-di-
mensional result as a candidate shows good results in the application of
probabilistic inference in belief networks. Considering the similarity be-
tween SPP and OFP, we may explore extending the heuristic methods used
for SPP to OFP; for example, we may use the "nearest neighbor" strategy
in OFP. We will not further explore that possibility in this paper.

3. OPTIMAL FACTORING FOR SINGLY CONNECTED BELIEF
NETWORKS

From Section 2 we know that finding optimal factoring in general is a
hard problem. That is, we don't expect to find an efficient optimal
factoring algorithm for an arbitrary belief network in probabilistic infer-
ence. However, there exists a polynomial-time algorithm for generating
optimal factoring for tree-structured (including polytree) belief networks.
In this section, we will present the algorithm. The optimal factoring
algorithm is based on the lemmas in Section 2.

The meaning of Lemma 2 to Lemma 5 of Section 2 for networks can be
shown with the help of very simple belief networks. Lemma 2 can be
explained from Figure 3(a), in which the nth variable is queried and the
rest of the variables are marginals. The lemma tells us an optimal factoring
strategy for computing the marginal probability of the nth variable. Lemma
3 refers to a similar graph, where the query is for the conditional
probability of p(n In + 1) and node n + 1 is a child of node n and is
observed. Lemma 4 describes a more general case shown in Figure 3(c). A
ample query for the graph is p(1 12, 3 , . . . , n), where node i (i > 1) is
observed. Lemma 5 refers to a belief network with chain structure [see
Figure 3(b)] in which the marginal probability of node n or the marginal
probability of node 1, given observation of node n, is queried. The lemma
tells us that the cost of combining two nonmarginal nodes which are not
directly connected is always greater than the cost of combining two nodes

(~) (b) (¢)

Figure 3. Different cases of query is polytrees.

68 Zhaoyu Li and Bruce D'Ambrosio

which are directly connected. The networks in Figure 3 represent the basic
structures for decomposing a singly connected belief network.

We introduce some new names for the purpose of easy description in
the rest of the section. We call a node with its parents a group and the
node itself the group head; a marginal node is the only node in a group
and is the group head.

THEOREM i There exists a linear-time algorithm to generate an optimal
factoring for querying the marginal probability of a node in a polytree.

Proof Based on the factoring strategies in Lemma 2 to Lemma 5, we
can construct an optimal factoring strategy for a polytree. Given some
observed nodes and a queried node in a polytree, the nodes relevant to the
query still form a polytree. The nodes that are the antecedents of the
queried node in the original polytree are in the reduced polytree, and the
descendants of those antecedents must be observed nodes or antecedents
of some observed nodes. A queried node divides all nodes of the reduced
polytree into two parts, successor nodes and antecedent nodes. The opti-
mal factoring strategy starts factoring from the queried node and spreads
out to the whole tree.

Two operations used in the factoring strategy are defined as follows:
1. Bottom-up. In computing the marginal probability of a group head,

if some other nodes in the group have unknown marginal probabili-
ties, those groups with an unknown marginal probability node for the
group head should be computed first.

2. Top-down. In computing the marginal probability of a group head,
if the head has any children, then the groups with each child as the
head should be computed first with the head of the first group as the
target variable.

The factoring strategy is the following. Compute the probability of the
queried node from the group in which the queried node is a head. If any
node in the group has unknown marginal probability, then apply the
bottom-up operation. If the queried node has any child node, then apply
the top-down operation. The top-down and bottom-up operations are
repeatedly used for any group wherever they are applicable, but not to one
node repeatedly, in order to avoid an infinite loop. If no more bottom-up
and top-down operations are needed in a group, use Lemma 2 or 3 to
compute the target variable of the group. If some computed group has the
form in Figure 3(c), then apply Lemma 4 to combine the nodes.

Since there is one node to be combined each time, using the top-down
or bottom-up operation, the factoring is linear in the number of nodes
relevant to the query.

The optimality of the factoring strategy can be illustrated as follows.
First we see that the factoring within any group is optimal, i.e., all groups
in the factoring strategy have forms given in Lemma 2 or can be converted

Efficient Inference in Bayes Networks 69

to one of those forms. If the group with the queried node as a head cannot
be computed in one of those forms, we use top-down and/or bottom-up
operations to generate new groups. By repeatedly using the bottom-up
operation we will meet some groups in form 1, since each root node is
either a marginal node, an observed node, or the queried node in the
formed polytree. After these groups have been computed, those groups
which contain the head of the just-computed groups as member have
known marginal probabilities of all nonhead nodes, and they either take
on form 1 or need top-down operation. If some of them are in form 1, they
can be computed again, and so on for the other groups.

The groups generated from top-down operation either are in form 2 or
need more bottom-up and/or top-down operations to generate new groups.
The groups generated by the bottom-up operation have form 1 as de-
scribed above. Those groups generated by repeatedly using top-down
operation must be in form 2, because a leaf in the reduced polytree is an
observed node. By applying Lemma 4 to these groups, we can compute the
values needed to return to the group head that generated the computed
groups using top-down operation. A node may have more than one
returned value, depending on the number of its children. All values
returned to one node can be multiplied together as a new value to return
to the node according to Lemma 4. The group having a returned value
then takes on form 2. Notice that we take the group in form 1 here
because the group with a returned value can be computed in Lemma 3.
This process can be repeated until a value returns to the queried node.

Second, we see that each group generated by using top-down and/or
bottom-up operations can be computed optimally according to Lemma 5.
This can easily be shown by induction on the number of groups in the
polytree. Therefore, the optimality of the factoring strategy is ensured. •

In probability computation, any computation result within a group or
among groups can be cached for subsequent use. The top-down and/or
bottom-up operations will be avoided if there are cached intermediate
results available.

From the combinatorial-optimization point of view the polytree propa-
gation algorithm [7, 14] and the revised polytree algorithm [15], provide an
optimal factoring among groups for computing probabilities; but their
propagation strategies do not provide any factoring strategy within a
group.

4. FACTORING IN MULTIPLY-CONNECTED BELIEF NETWORKS

We doubt if there exists a polynomial-time optimal-factoring algorithm
for an arbitrary belief network, because we believe that the OFP is an
NP-hard problem. In this section we will present an efficient heuristic

70 Zhaoyu Li and Bruce D'Ambrosio

factoring algorithm. After presenting the algorithm, we will discuss some
considerations in designing a factoring strategy for multiply connected
belief networks.

4.1. A Heuristic Factoring Algorithm for Arbitrary Belief Networks

There are three points for reducing the computational cost of proba-
bilistic inference in belief networks: minimizing the maximum dimensional-
ity of a query, avoiding unnecessary computation, and reducing repeated
computation.

The problem of minimizing the maximum dimensionality for a query is
not exactly the OFP. A factoring with minimized dimensionality for a
query may be suboptimal in total number of multiplications, while an
optimal-factoring result will usually have minimal dimensionality.
Nonetheless, minimization of dimensionality is a good approximation of
the OFP for most queries, and is the intuition behind the heuristic
algorithm we present in the following.

4.1.1. THE SET-FACTORING ALGORITHM We now present an efficient
heuristic algorithm, called set factoring, we have developed for finding
good factorings for probability computation. In a belief network with
nodes {x 1, x 2 x n} connected by arcs, the general form of a query is
P(Xj IX K, XE), where Xj is a set of nodes being queried, X K is a set of
conditioning nodes, and X E is a set of observed nodes. P(XjIXK, X E)
can be computed from P(Xj, XKIXe). For simplicity, we will only
consider the case P(Xj IX E) in the algorithm. This ignores several poten-
tial simplifications noted in [19], but simplifies the presentation.

Given a query P(Xj I Xe) in a belief network, often only a subset of the
nodes is involved in the probability computation. The involved nodes can
be chosen from the original belief network by an algorithm which runs in
linear time in the number of nodes and arcs in the belief network [4]. Once
we have obtained the nodes needed for the query, we have all the factors
to be combined. In accordance with Definition 2.1, we have n subsets of n
nodes and the set Q. We use the following algorithm to combine these
factors.

1. Construct a factor set A which contains all factors to be chosen for
the next combination (initially all the relevant network distributions).
Each factor in A is represented as a set of variables. Initialize a
combination candidate set B empty.

2. Add all pairwise combinations of factors of the factor set A to B
which are not already in B, except those combinations in which each
factor is a marginal factor and they have no common child; and
compute u = x u y and sum(u) of each pair, where x and y are

Efficient Inference in Bayes Networks 71

factors in the set A, and sum(u) is the number of variables in u
which can be summed over when the conformal product correspond-
ing to combining the two factors is carried out.

3. Choose elements from the set B such that C = {u I minR(lu l -
sum(u))}, here lul is the size of u excluding observed nodes. If
ICI--1, then x and y are the factors for the next combination;
otherwise, choose elements from C such that D = {u I maxc(Ixl +
[yl), x, y ~ u } . If IDL= 1, x and y are the terms for the next
multiplication; otherwise, choose any member of D.

4. Generate a new factor by combining the pair chosen in the above
steps. Modify the factor set A by deleting the two factors of the
chosen pair from the factor set and adding the new factor in the set.

5. Delete any pair in the set B which has nonempty intersections with
the candidate pair.

6. Repeat steps 2 to 5 until only one element is left in the factor set A,
which is the final result.

Following is an example to illustrate the algorithm by using the network
shown in Figure 4. Suppose that we want to compute the query p(4) for the
belief network, and assume that there are two possible values of each
variable. The nodes relevant to the query are {1, 2, 3, 4}. We use the
set-factoring algorithm to combine the distributions:

Loop 1. The factor set A is {1, 2, 3, 4}; the set B is {(1, 2), (1, 3), (1, 4),
(2, 3), (2, 4), (3, 4)} after step 2; the current combination is (1, 2), i.e.
p(21 1) x p(1), after step 3 (there was more than one candidate in
this step; we chose one arbitrarily); the set A is {(1, 2), 3, 4} after step
4; and the set B is {(3, 4)} after step 5.

Loop 2. The factor set A is {(1, 2), 3, 4}; the set B is {((1, 2), 3), ((1, 2),
4), (3, 4)} after step 2; the current combination is ((1, 2), 3) after step
3; the set A is {(1, 2, 3), 4} after step 4; and the set B is empty after
step 5.

Figure 4. A simple belief network.

72 Zhaoyu Li and Bruce D'Ambrosio

Loop 3. The factor set A is {(1, 2, 3), 4}; the set B is {((1, 2, 3), 4)} after
step 2; the current combination is ((1, 2, 3), 4) after step 3; the set A
is {(1, 2, 3, 4)} after step 4; and the set B is empty after step 5. The
factoring result is

p(4) = ~ (p(412, 3)(~_, (p(311)(p(211)p(1))))).
2,3 1

There are several things that should be noticed in the algorithm. First,
queried nodes should not be deleted from any terms in the expression,
and if a node is a queried node and it has no parents, then the node will
be combined after all other nodes are combined. Second, we assume
that the number of values of all nodes is the same. If the numbers of
values of the nodes in a belief network are different, we can consider the
product of the numbers of values of all nodes related in each step
instead of the number of nodes. Third, a caching strategy can be used in
the algorithm. A caching table is generated before any query. Before
combining any two factors, we check the caching table to see if there is a
cached result for the combination. If there is, we can use it at a cost of 0
instead of doing the real probability computation. If there is no such
cached result, then the real computation will be carried out. This
caching strategy will save some computation time for multiple queries,
and in fact makes this approach as efficient as clique-tree approaches in
computing all marginals.

The heuristic strategy in the algorithm can be explained as follows. In
step 2, x W y shows the number of multiplications needed for combining
the pair x and y.6 The elements in the set B are the candidates for the
next combination. We don't consider pairs consisting of two unrelated
marginal nodes if they don't have common children, since a combination
of the two marginal nodes will usually increase the dimensionality. In
step 3, we choose the pairs which have the lowest resulting dimensional-
ity as candidates, since the best result of the current combination may
need fewer multiplications than those of the other combinations for
subsequent combinations. The effect of summation is considered here; it
always decreases the dimensionality of the result. If more than one
candidate is generated here, we choose the maximum Ixl + lyl in step 4
as a criterion, because this choice maximizes the number of variables
being summed over. Usually, it is better to sum over variables as early as
possible. Steps 4 and 5 are just preparations for the next loop.

The time complexity of the algorithm is primarily a function of the
number of nodes related to the current query. Step 1 is linear in the

6The number of multiplications should be 2 Ix u yl.

Efficient Inference in Bayes Networks 73

number of nodes. In step 2, there are n (n - 1) /2 pairs to be computed
for the set B at the first loop, and n - k new pairs are added in the set
at the end of the kth loop. There are a total of [n(n - 1)/2] + Ek(n -
k) = 17 2 - 3n + 3 pairs to be computed. For each pair, the union
operation is O (m) , here m is the maximum size of x; and sum(u) can be
computed at the same time as computing x u y. So the time complexity
in step 2 is O(n 3) at most. The time cost of step 3 is linear in the
numbers of pairs left in the sets B and C respectively; it is at most
O(n2) , including n - 1 loops needed for the two steps. The modification
of the factor set in step 4 is linear in the number of factors; it has at
most n elements. Deleting some elements from the set B in step 5 is
linear in the number of elements in the set. The time complexity is
O (n 2) in step 4 and O(n 3) in step 5, including n - 1 loops for the
algorithm. Therefore, the time complexity of the algorithm is O (n 3) in
the number of nodes.

4.1.2. EXPERIMENTAL TESTS The time complexity of some exact proba-
bilistic inference algorithms (conditioning, clustering, reduction, and sPI)
has been analyzed, and their efficiency has been experimentally tested [10]
with the implementation of the IDEAL system [21] for conditioning, cluster-
ing, and reduction algorithms and with the implementation of spI [1]. Since
seI had equal or better performance in every case in that study, in this
section we experimentally examine set factoring with Sr'l only.

Three sets of test cases were generated for time-complexity experiments.
We used J. Suermondt's random network generator to generate all test
cases. This generator starts with a fully connected belief network of size n,
and removes arcs selected at random until the number of the remaining
arcs is equal to a selected value. In each test case, we randomly 7 (ranging
from 1 to the number of nodes in the belief network) determined the
number of observations to be inserted in that test case; then we randomly
chose each observation from all unobserved variables in the belief net-
work, and finally we chose at random a set of variables as queries from the
remaining variables after each observation. The number of multiplications
needed for each test case was recorded.

The first set of test cases is randomly generated with from 1.0 to 3.0 arcs
per node and 8 to 13 nodes. The reason for choosing a set of small belief
networks for testing is that we want to compare the results of set factoring
with those of an optimal algorithm, which is limited to running small belief
networks because of time complexity. 8 Table 1 shows the characteristics of

7Unless noted otherwise, all random selections are from uniform distributions over the
indicated range.
8The optimal algorithm is a dynamic-programming algorithm with exponential cost.

74 Zhaoyu Li and Bruce D'Ambrosio

T a b l e 1. Ten Small Test Cases and the Test Results by Algorithms a

net node arc / n obs qry G.SPI set-f opt-aig

1 12 2 3 7 287 52 52
2 11 2.5 3 7 328 196 196
3 9 2.5 4 12 301 252 252
4 11 2 4 4 58 26 26
5 9 2.2 1 3 140 102 102
6 8 2.6 2 4 200 194 186
7 13 1 3 7 109 38 38
8 13 2.5 3 8 2760 1818 1716
9 13 2.4 3 8 144 94 94

10 10 1.7 3 7 237 174 174

aThe generalized sPI, the set-factoring, and the optimal algorithm.

the 10 test cases and the computational results of different algorithms
measured in the number of multiplications. The data collected in this table
are the following:

• net, the index of test cases;
• node, the number of nodes in each belief network;
• arc / n, the average number of arcs per node;
• obs, the number of observations inserted in the belief network;
• qry, the number of queries;
• G.SPI, the test results of the generalized sPI [19];
• set-f, the test results of the set-factoring algorithm;
• opt-aig, the test results of an optimal-factoring algorithm.

From the table we see that set factoring has a bet ter factoring result than
the generalized sPI but is not optimal in two test cases.

The second set of test cases is tree-structured belief networks. They are
randomly generated with from 10 to 30 nodes. Table 2 shows the 10 belief
networks and the test results. Columns 2 to 4 show the number of nodes,
the number of observations, and the number of queries for each test case.
Columns 5 to 7 show the test results for each algorithm as in Table 1.
From the table we see that set factoring has an optimal result for each
tree-structured belief network. The generalized sPI did not give optimal
results for some test cases.

The third set of test cases is that used in testing sPI and generalized sPI
[1, 2, 19]. They are randomly generated from 1.0 to 5.0 arcs per node and
10 to 30 nodes. In Table 3, n is the number of nodes and a the number of
arcs in each belief network; o and q are the numbers of observations and
total queries in each test case respectively; and the rest of the columns
show the number of multiplications for each test case. A new version of sPI

Efficient Inference in Bayes Networks 75

T a b l e 2. T ree S t ruc tu red Tes t Cases and Tes t Resu l t s by A lgo r i t hms a

net node obs qry G.SPI set- f opt-alg

1 23 6 68 728 646 646
2 19 19 89 1881 630 630
3 28 1 4 36 36 36
4 22 16 104 2959 1246 1246
5 17 7 34 809 404 404
6 12 9 27 335 148 148
7 24 17 128 1469 68 68
8 25 1 10 222 178 178
9 24 5 58 1478 1010 1010

10 22 5 46 1427 642 642

aThe generalized seI, the set-factoring, and the optimal algorithm.

Tab le 3. The E x p e r i m e n t a l Resu l t s of 21 Test Cases be tween sPi
and Set Fac to r ing

No. n a o q SPI set-f SPl -cach set-cach

1 23 28 10 13 164 98 140 60
2 13 62 7 6 832 718 368 310
3 13 61 10 4 62 44 32 28
4 18 85 10 8 624 558 422 418
5 16 54 8 9 2,370 1,512 866 898
6 17 34 8 9 2,616 890 1,176 502
7 23 60 10 12 37,514 5,272 10,078 2,978
8 10 15 5 5 286 182 222 92
9 27 35 13 14 1,122 644 800 244

10 12 26 5 7 780 386 452 194
11 23 87 10 12 183,296 73,804 65,216 26,540
12 11 36 5 6 1,896 1,126 668 598
13 14 15 7 6 454 228 264 92
14 16 40 8 8 8,416 3,112 2,204 1,940
15 19 76 9 10 81,696 23,590 13,380 10,462
16 29 131 1 28 * 6,569,756 16,146,192 3,196,900
17 29 90 14 14 1,489,040 143,334 254,292 73,146
18 16 35 9 6 2,480 898 816 450
19 15 53 7 8 15,986 4,168 3,068 1,896
20 26 101 13 13 717,552 124,734 113,248 63,834
21 28 34 14 13 2,052 847 1,384 330

76 Zhaoyu Li and Bruce D'Ambrosio

is used for comparison. SPI-cach and set-cache show the results with
intermediate-result caching for both algorithms. 9

From the above experimental results we see that the factoring strategy
of set factoring gives better factoring results than those of sPI in every
case, particularly when the belief network is large. The number of multipli-
cations in set factoring is about half of that in sPI on average. Set factoring
is more consistent with respect to tasks and different kinds of belief
networks. As shown in Table 3, set factoring is better than sPI with caching
for a large belief network: take network 16 as an example. Since the
dimension in a factor will become large after some combinations, any bad
combination order will cause many more multiplications than a good one
does.

The time complexity of factoring for set factoring and the time complex-
ity of symbolic reasoning for seI are only slightly different. In set factoring,
the time complexity is at m o s t O (n 3) in the number of nodes concerned in
the current query; in sPI it is at most O(n 3) in the number of nodes of the
belief network. The actual time cost for symbolic reasoning in both
algorithms is trivial compared to probability computation.

4.2. Discussion

While these results are preliminary, they seem a strong indication that
the set-factoring algorithm is able to find better factoring for many
problems, particularly in finding optimal factoring for all the tree test
cases. Also, the set-factoring algorithm can be used as a suitable analytical
tool for evaluating other probabilistic inference algorithms. The most
important conclusion from the experimental results is that the OFP is a
useful way of efficiently solving probabilistic inference problems in a belief
network. From the OFP point of view, not only can we get a better
algorithm than those previously developed, but also the algorithm is easy
to understand and implement.

The main idea behind the set-factoring algorithm is, at each step, to find
a pair with the best combination result. We tried the strategy of finding the
pair with minimum multiplication as a candidate for combination; the
results are not as good as those obtained by set factoring. The set-factoring
algorithm only considers information one step in advance for choosing
each pair, so it can be implemented efficiently. It is this characteristic that
prevents the algorithm from guaranteeing an optimal result for some
multiply connected belief networks, because optimal results are related to
all nodes concerned. It also tells us why the algorithm is good in tree-struc-

9The asterisk denotes that the algorithm is too slow to run the test case.

Efficient Inference in Bayes Networks 77

tured belief networks: the factoring information for a tree is locally
determined. Due to the locality of its heuristic strategy, set factoring can
work as a local factoring strategy in other probabilistic inference algo-
rithms. A simple extension would be to look further ahead, for example to
choose triplets or quadruplets. We have not tried this idea.

Since the last several combinations in set factoring usually have large
dimensionality, combinations of them are critical in getting nearly optimal
results. Considering this, we combined the set-factoring and the optimal
algorithm to get a new algorithm in which we used set factoring to
generate a partial result first and then used the optimal algorithm to
complete the last several combinations. Since the optimal algorithm can
run efficiently for about eight factors, the combined algorithm should run
efficiently as well. The results of the combined algorithm are better than
those of the set-factoring algorithm, particularly for large belief networks. 1°
This led us to think of another factoring strategy using the optimal
algorithm. That is, if a belief network can be divided into several con-
nected parts, we might use the optimal algorithm within each part and
then among all parts. We have not tested this idea yet.

The test result on network 3 in Table 3 for set factoring (without
caching) is optimal for each query, but both algorithms with caching give
better results for the same queries. This indicates that a best probabilistic
inference algorithm may depend not only on an optimal factoring strategy,
but also on a good caching method for some tasks and some belief
networks. There is a tradeoff between using a good factoring strategy and
using an effective caching method in an inference algorithm, since a good
factoring strategy, flexible across many belief networks and tasks, may be
hard to combine with any caching method.

We have also studied the opportunities for parallelism in belief-network
inference. Set factoring has shown good factoring results for parallelizing
probabilistic inference [3].

4.3. Features for Efficient Probabilistic Inference in Belief Networks

In this subsection we discuss some influences on the efficiency of
algorithms for probabilistic inference.

4.3.1. F A C T O R I N G VS. N U M E R I C C O M P U T A T I O N W e refer to the com-
putation of conformal products as numeric computation. We find that the
numeric computation in probabilistic inference is exponential in the num-
ber of variables relevant to the computation, while factoring heuristics are

1°Take network 16 in Table 3 as an example: the number of multiplications needed by the
combined algorithm is about 75% of that by set factoring.

78 Zhaoyu Li and Bruce D'Ambrosio

typically polynomial with respect to the number of variables related to the
query [10]. The factoring computation can be very small if we simply
randomly combine the distributions for a query and sum over those
variables not queried. However, the total computational cost (factoring
plus conformal products) could be quite high in that case. The factoring
computation can be very expensive if we want to minimize the numeric
computation. It is important to realize that the critical task for factoring
computation is to use its polynomial-time cost effectively to reduce the
exponential-time cost of numeric computation. Therefore, when designing
a probabilistic inference algorithm, one should spend a lot of time search-
ing for low maximum dimensionality if the maximum dimensionality is
large, since the payoff from such a search is potentially very high. In the
case where the number of nodes relevant to a query is large but the
maximum dimensionality is relatively low, the cost of factoring should be
limited to a low-degree polynomial. It should be clear that the maximum
dimensionality of a query given an algorithm reflects the real computa-
tional complexity of the query in a belief network for the particular
algorithm. The maximum dimensionality will, in general, vary according to
the algorithm used, for the same query in the same belief network. We are
very much interested in finding an algorithm which performs probabilistic
inference in a belief network with the minimal maximum dimensionality.

4.3.2. STATIC FACTORING VS. DYNAMIC FACTORING Factoring strate-
gies can be static (used before any query) or dynamic (used just after each
query but before real probability computation). In this sub-subsection, we
will discuss the advantages and disadvantages in static and dynamic factor-
ing strategies for probabilistic inference in a belief network.

In static factoring, the order of combining factors comes from the
original belief network before any querying and observation. An example
of a static strategy is the partition strategy in sPI [1], which creates a
partition tree before any probability computation. One of the advantages
of static factoring is that it is performed only once, before any querying
and observation, and can be performed off line. A disadvantage is that it
imposes some constraints on the ordering of combining some distributions
without considering the effect of observations and querying tasks. Since
the graphs corresponding to different queries with different observations
are very different for a given belief network, the constraints may exclude
optimal factorings for some queries.

Dynamic factoring is performed at query time, and only the factors
relevant to the current query, not to the original belief network, are
considered. The local ordering heuristic in sPI is an example of dynamic
factoring. The merit of dynamic factoring is that it may find a better
factoring result than a static factoring strategy does because it has more

Efficient Inference in Bayes Networks 79

information available, namely the specific query to be answered. The
drawbacks of dynamic factoring are as follows. First, it runs every time
after each query; and second, caching may be less effective.

One possible difference between static factoring and dynamic factoring
is the reusability of previous factoring structure or intermediate results in
a multiple-query situation. This problem is closely related to the caching
strategy used in a factoring algorithm. Caching may reduce probabilistic
computation, depending on the structure of the belief network and the
tasks to be carried out, as the test results indicated in [1, 19]. Some tasks
favor caching: for example, a set of observations in a belief network and a
set of queries on more than one variable. Some belief networks provide
good caching structures: for example, a belief network having a long chain
will provide many opportunities for caching when the queried nodes are all
in the chain.

An experimental test has been performed for examining the effects of
caching between the sPI algorithm [1], with a static factoring strategy for a
partition tree, and the set-factoring algorithm with a dynamic factoring
strategy for creating an evaluation tree (see Section 4.1). The experiment
showed that the effect of caching for the set-factoring algorithm is signifi-
cant and is comparable to that for the static factoring algorithm (sPD.
These results indicate caching is useful in dynamic factoring algorithms.

5. CONCLUSIONS

In this paper we have presented a combinatorial optimization problem,
optimal factoring. We have proposed that efficient probabilistic inference
in a belief network can be considered as an optimal factoring problem. We
believe that it is a proper way to study the problem. From this point of
view, finding an efficient exact probabilistic inference algorithm means
finding an optimal factoring algorithm. Unfortunately, finding an optimal
factoring in general is a hard problem. Currently developed algorithms rely
on structural properties of the graph to guide factoring. However, it is not
clear this is the most direct way to find efficient factorings. We presented a
heuristic factoring algorithm for multiply connected networks which makes
no reference to graphical structure and yet outperforms current graph-
based algorithms.

References

1. D'Ambrosio, B., Symbolic probabilistic inference, Tech. Report, CS Dept.,
Oregon State Univ., 1989.

80 Zhaoyu Li and Bruce D'Ambrosio

2. D'Ambrosio, B., Factoring heuristics in generalized sPl, Tech. Report, CS
Dept., Oregon State Univ., 1990.

3. D'Ambrosio, B., Fountain, T., and Li, Z., Parallelizing probabilistic inference
--some early explorations, in Proceedings of the Eighth Annual Conference on
Uncertainty in Artificial Intelligence, Palo Alto, July 1992, Morgan Kaufmann.

4. Geiger, G., Verma, T., and Pearl, J., D-separation: From theorems to algo-
rithms, in Proceedings of the Seventh Annual Conference on Uncertainty in
Artificial Intelligence, Univ. of Windsor, Windsor, Ontario, 118-125, 1989.

5. Hu, T. C., CombinatorialAlgorithms, Addison-Wesley, 1982.

6. Jensen, F. V., Oiesen, K. G., and Andersen, S. K., An algebra of bayesian belief
universes for knowledge based systems, Networks 20(5), 637-659, 1990.

7. Kim, J. H., and Pearl, J., A computational model for causal and diagnostic
reasoning in inference engines, in Proceedings of IJCAI-83, Karlsruhe, FRG,
1983.

8. Lauritzen, S., and Spiegelhalter, D., Local computations with probabilities on
graphical structures and their application to expert systems, J. Roy. Statist. Soc.
Set. B 50, 1988.

9. Lawler, Eugene L., Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart and Winston, 1976.

10. Li, Z., Experimental characterization of several algorithms for inference in
belief nets, Tech. Report, Master's Thesis, CS Dept., Oregon State Univ., 1990.

11. Numhauser, Georger, and Wolsey, Laurence A., Integer and Combinatorial
Optimization, Wiley-Interscience, 1988.

12. Papadimitriou, Christos H., and Steiglitz, Kenneth, Combinatorial Optimization
Algorithms and Complexity, Prentice-Hall, 1982.

13. Pearl, J., A constraint-propagation approach to probabilistic reasoning, in
Uncertainty in Artificial Intelligence, 357-370, 1986.

14. Pearl, J., Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, Palo
Alto, 1988.

15. Peot, Mark A., and Shachter, R., Fusion and propagation with multiple
observations in belief networks, Artificial Intelligence 48, 299-318, 1991.

16. Shachter, R., Evaluating influence diagrams, Oper. Res. 34(6), 871-882,
Nov.-Dec. 1986.

17. Shachter, R., Probabilistic inference and inference diagrams, Oper. Res. 36(6),
589-604, July-Aug. 1988.

18. Shachter, R., Evidence absorption and propagation through evidence reversal,
in Proceedings of the Fifth Workshop on Uncertainty on AI, 303-310, Aug. 1989.

Efficient Inference in Bayes Networks 81

19. Shachter, R., D'Ambrosio, B., and DelFavero, B., Symbolic probabilistic infer-
ence in belief networks, in Proceedings Eighth National Conference on AI,
AAAI, 126-131, Aug. 1990.

20. Shachter, Ross D., Andersen, Stig K., and Szolovits, Peter, The equivalence of
exact methods for probabilistic inference on belief networks, Tech. Report,
Dept. of Engineering Economic Systems, Stanford Univ., 1991.

21. Srinivas, S., and Breese, J., Ideal: Inference diagram evaluation and analysis in
Lisp, Tech. Report, Rockwell Palo Alto Lab., May 1989.

22. Zhang, L., and Poole, D., Sidestepping the triangulation problem in bayesian
net computations, in Proceedings of the Eighth Annual Conference on Uncer-
tainty in Artificial Intelligence, Palo Alto, July 1992, Morgan Kaufmann.

