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ABSTRACT 

A number of exact algorithms have been developed in recent years to perform 
probabilistic inference in Bayesian belief networks. The techniques used in these 
algorithms are closely related to network structures, and some of them are not easy to 
understand and implement. We consider the problem from the combinatorial optimiza- 
tion point of view and state that efficient probabilistic inference in a belief network is a 
problem of finding an optimal factoring given a set of probability distributions. From 
this viewpoint, previously developed algorithms can be seen as alternative factoring 
strategies. In this paper, we define a combinatorial optimization problem, the optimal 
factoring problem, and discuss application of this problem in belief networks. We show 
that optimal factoring provMes insight into the key elements of efficient probabilistic 
inference, and demonstrate simple, easily implemented algorithms with excellent perfor- 
mance. 

KEYWORDS: belief network, probabilistic inference, combinatorial optimiza- 
tion, optimal factoring, set-factoring, heuristic algorithm 

1. PROBABILISTIC INFERENCE IN BELIEF NETWORKS 

Bayesian belief networks provide an intuitive knowledge representation 
for probabilistic models. A belief network is a directed acyclic graph 
containing a set of nodes, a set of arcs, and a set of numeric probability 
distributions. A node represents a domain variable with mutually exclusive 
and exhaustive values. 1 Arcs and numeric probability distributions describe 
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probabilistic relationship between the nodes. A belief network is called 
singly connected if there is at most one undirected path between any two 
nodes; otherwise it is called multiply connected. Figure 1 shows a simple 
multiply connected belief network. 

Probabilistic inference in a belief network is the task of computing the 
probability of a set of variables in the network, given evidence on some 
subset of the remaining variables. The most common questions we ask in a 
belief network are: the marginal probability of a node x, the conditional 
probability of x given y, and the joint probability of a set of variables. 

A belief network is a compact representation of a full joint probability 
distribution over the n domain variables in the network. In particular, the 
full joint probability distribution can be calculated as follows [14, 16]: 

n 

p ( x  1 . . . . .  X n) = I - I p ( x i  l "B'i) , (1) 
i=1 

where x 1 . . . . .  x n are the n variables in the belief network; ~'i is the set of 
direct predecessors of x i and p(x i [  7r i) is the conditional probability for 
the variable x i if 71 i is not the empty set, and otherwise is the marginal 
probability of x r The product of any two terms of the formula is called a 
conformal product, the number of variables appearing in a conformal 
product is called its dimension, and the maximum number of variables in 
any of the conformal products for a query is called the maximum dimen- 
sionality of the conformal products (or the query), or the "dimensionality" 
for short. The time complexity of computing the full joint probability 
distribution of a belief network is exponential in the number of nodes of 
the network. 

p(a): p(a=l)=0.2 
p(b): p(b=l)=0.3 
p(cla): p(c=l[a=l)=0.8 
p(c=lla=0)=0.3 
p(d[a,b): 
p(d=lla=l,b=l)=0.7 
p(d=lla--1,b=0)=0.5 
p(d=l la=0,b=l)=0.5 
p(d=l la=0,b=0)=0.2 
p(elc,d): 
p(e=l[c=l,d=l)=0.5 
p(e=ltc=l,d=O)=O.8 
p(e=l [c=0,d=l)=0.6 
p(e=l [c=0,d=0)=0.3 
p(fld): 
p(r=lld=l)=0.2 
p(f=l Id---0)=0.7 

Figure 1. A simple multiply connected belief network. 
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A number of exact algorithms have been developed in recent years to 
perform probabilistic inference in belief networks [13, 16, 8, 14, 17, 1, 18, 
19, 6, 15, 22]. These algorithms rely either on the original directed graph, 
on a related directed graph, or on a related undirected graph. For 
example, the polytree propagation algorithm [14] relies on the original 
polytree, and the algorithm developed in [8] relies on the related undi- 
rected graph. While the graph topology contains all available information 
for performing inference, much of that information is nonlocal and diffi- 
cult to extract. We believe that a graph-theoretic perspective from local 
properties of a network may not be the most effective one from which to 
develop algorithms for inference in belief networks. Shachter et al. have 
shown that many of those methods or algorithms derived from those 
methods are equivalent to a clustering algorithm [20]. This algorithm was 
proposed not as a computational improvement over the different methods, 
but rather as a unifying framework in which they can be collectively viewed 
and combined. 

An important characteristic of a belief network is that any conditional, 
marginal, or conjunctive query in it can be calculated from the full joint 
probability, and that this is uniquely defined given any network (and a 
corresponding set of distributions). This can be done by instantiating 
observed variables in the formula and summing over the variables that are 
not in the q u e r y .  2 

Some variables may not be relevant to every query in a belief network. 
In this case, we can save some computation time if we just consider the 
variables relevant to the query instead of computing the conformal prod- 
ucts for the full joint probability distribution. Theoretical research in [4, 
14] provides a way of finding relevant variables to a query in a belief 
network in polynomial time in the total number of variables. 

The variables related to the query correspond to a new belief network (a 
subgraph of the original network) in which the answer can be obtained by 
first computing the full joint probability of the new belief network and 
then summing over the nonqueried variables. The computational cost of 
inference in belief networks, then, is mainly the cost of computing the full 
joint probabilities of some subnetwork of the original belief network. This 
cost can be reduced if variables can be summed over early in the computa- 
tion, rather than performing all marginalization after computing the full 
joint probability. The efficiency of probabilistic inference in a belief 
network, then, depends on finding a factoring of the expression for the 
joint probability over the relevant set of variables, which permits early 

2A conditional probability p (X  L Y) can be computed by computing p(X, Y) and p(Y), then 
using p( X I Y) = p( X, Y ) /p( Y ). 
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marginalization of variables not in the query. In Section 2, we will formally 
define an optimal factoring problem and discuss its role in efficient 
probabilistic inference in belief networks. 

2. THE OPTIMAL FACTORING PROBLEM 

2.1. An Example 

Consider the task of computing the full joint probability of a belief 
network with n nodes. That task takes at least 2 n+l - 4 multiplications if 
the number of values of each node is 2 and the graph formed by the n 
nodes is fully connected. The number of multiplications in the worst 
factoring case is (n - 1)/2 times higher than for the best factoring. 

For the case of querying subsets of nodes in belief networks, the 
variation of the computational cost of different factorings is higher, be- 
cause the time complexity can vary widely with different factorings. There- 
fore, the computational cost of probabilistic inference in a belief network 
depends on the factoring of the conformal product of the distributions for 
the relevant variables. 

We give a simple example to show the effect of different factoring 
strategies. Given the simple belief network in Figure 2, we want to query 
the joint probability of nodes d and e, namely p(d, e). One factoring is 
given in the formula 

P(d,e)=[~a [~b [~c [p(elc)p(dlb, c)]p(cla)]p(bla)]p(a) ], 
which needs 72 multiplications. Another factoring needs only 28 multipli- 
cations: 

P(d,e)=[~[p(elc)[~bP(dlb, c)[~aP(Cla)[p(bla'p(a)]]]]]" 

Figure 2. A simple belief network. 
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From this example we can see that different factoring can result in 
significantly different computational costs. 

In this section, we will formally define a combinatorial optimization 
problem, the optimal-factoring problem. The purpose of proposing the 
optimal-factoring problem is to apply some mature techniques developed 
for solving combinatorial optimization problems to the factoring problem 
and to utilize the results obtained from the optimal-factoring problem for 
probabilistic inference. 

2.2. The Optimal-Factoring Problem 

An optimal-factoring problem (OFP) with n expressions can be consid- 
ered as a combinatorial optimization problem. Without loss of generality 
we assume that the domain size of each variable is 2. The problem can be 
described as follows. 3 

DEFINITION 2.1 (FP) Given 
1. a set of  variables V, 
2. a set of  n subsets of  V: S = {Stn, St2 / . . . . .  S t J ,  and 
3. Q c_ V, a set of  target variables, 

define: 
1. the combination of  two subsets S t and S]: 

Stu j = S I u Sj - {v: v ~ S r for K f11 = ¢,  K n J  = ~b, and v ~ Q}, 

I , J ~  {1,2 . . . . .  n}, I n J = ~ b ;  

2. the cost function for combining the two subsets: 

/ ~ (S tn )=0  for 1 < i _ < n ,  

t z (S lu] )  = P~(SI) + tz(S]) + 2 ts'us~l. 

~ (S  I) is not unique if III > 2. In general, it depends on how we combine 
the subsets. We indicate these alternative combinations by subscripting /z. 
Thus tz,~(S 1) = / z  shows the cost of computing S I with respect to a specific 
tree-structured combination of I, labeled a. We call this combination a 
factoring. The cost of a factoring is the number of multiplications it 
requires. 

DEFINITION 2.2 (OFP) The optimal-factoring problem is to find a factor- 
ing ot such that ll~(Stl,2 ...... }) is minimal. 

In above definitions, Q is a set of target (query) variables; the set {v} in 
the formula S 1 u ] is the set of variables which do not appear in the 

3The mapping between OFP and probabilistic inference in belief networks will be discussed 
in the next subsection. 
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remaining subsets of S after removing S 1 and Sj and which do not appear 
in the set Q. The function /z,,(S t u j) is the total cost of combining all sets 
S i (i ~ I, J )  in a given factoring order, and is determined by the dimen- 
sionality or the size of sets to be combined and affected by the size of {v} 
in previous combinations. If the domain size of each variable is not limited 
to 2, the quantity 2 ts' u sjl in the above formula should be replaced with 
the product of the domain sizes of the variables in S t u Sj. All possible 
factorings can be generated by permuting the n subsets Si and then 
putting parentheses in all valid ways in the permutation to form all 
5{1,2 ..... n} "4 

The OFP generally seems to be a difficult problem. We guess that it is 
an NP-hard problem, although we have not yet proved this. We can see the 
similarity between the OFP and the problem of finding the shortest path 
among n nodes that passes each node exactly once (SPP) [9], which is 
NP-hard. In the SPP, the problem is to find a permutation of n nodes 
which results in the shortest path, while in the OFP the problem is to find 
a proper permutation of n nodes and then put parentheses in so that it 
results in a minimal computation. If we ignore the parentheses in the 
result of the OFP, then since the time complexity of putting parentheses in 
a given permutation of the n nodes to get an optimal result is polynomial 
in the number of the nodes [5], the OFP--like the SPP--is the problem of 
finding a proper permutation of n nodes. The difference between the two 
problems is that in the SPP edge distances between nodes are static, while 
in the OFP they are dynamic, that is, they depend on the path taken to the 
edge. 5 

2.3. Mapping between OFP and Probabilistic Inference 

Our interest is in the application of the OFP to probabilistic inference. 
We can map the problem of finding an optimal evaluation tree for 
computing the answer to a query in a belief network into an OFP. Given a 
belief network with m nodes and a set of observations, computing the 
answer to a query involves identification of a subset of n nodes relevant to 
the query and computation of the conformal product [19] of marginal and 
conditional probabilities of the n nodes. The n nodes with their relations 
can be mapped to the symbols in the definition of the OFP: the n nodes 

4Strictly speaking, there are many apparent duplicates generated in this way. For example, 
((ab)c) is the same factoring as (c(ab)). 
5An anonymous referee points out that the OFP is very similar to, but not identical to, the 
"secondary optimization problem" of nonserial dynamic programming (NSDP), which is 
known to be NP-hard. 
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with their immediate antecedent nodes are mapped to the n initial subsets; 
the queried nodes correspond to the variables in the subset Q; St u J 
denotes the intermediate result for the conformal product of the distribu- 
tions I and J; and ~ gives the number of multiplications needed for this 
computation. Finding an optimal factoring corresponds to finding an 
evaluation tree which minimizes the number of multiplications needed for 
this computation. 

We give a simple example to show the mapping between the OFP and 
probabilistic inference. In Figure 2, we want to compute the joint probabil- 
ity p(d, e). The mapping is as follows: S 1 = {a}, S 2 = {a, b}, S 3 = {a, c}, 
S 4 : {b, c, d}, S 5 = {c, e}, Ql = {d, e}. If c~ = ( ( ( ( 5 1 5 2 ) 5 3 ) 5 4 ) S 5 )  , then 
/3~a(5{1,2,3,4,5}) : 28 (see the example in Section 2.1). 

From the OFP point of view, we can view previously developed exact 
probabilistic inference algorithms as different factoring strategies. How- 
ever, since these factoring strategies are constrained by the structure of 
the original graph or a derived graph, it may be hard for them to find 
optimal factorings. 

2.4. Some Results for the OFP 

Although the OFP generally is a hard problem, some restricted in- 
stances of it have polynomial-time algorithms. For example, given a do- 
main of variables, if each pair of sets S i and Sj is disjoint and the set Q is 
the union of all the sets Si, then the optimal ordering of a(S~, ..... i.~) can 
be obtained in linear time. In this subsection, we will explore factoring 
methods for particular instances of the OFP. These factoring methods help 
us to find efficient probabilistic inference algorithms. We will also present 
an optimal factoring algorithm for an arbitrary belief network. 

LEMMA 1 Given a factoring problem with n variables {1, 2 . . . . .  n}: S 1 = 
{1}, S 2 = {2} . . . . .  Sn_ 1 = {n - 1}, Sn = {n}, andQ = {1, 2 , . . . ,n} ,  oneof 
the optimal factorings is to combine any int((n + 1)/2) single-variable 
factors, called marginals, first, then to combine the rest of the single-varia- 
ble factors together, and finally to combine the two results. 

Proof We prove the lemma by induction. Given n = 2, there is only 
one possible combination. If n = 3, any two marginals can be combined 
first; then the result will be combined with the other marginal. The order 
of combination meets the order described in the lemma and is optimal. 
Assume that the combination order in the lemma is optimal for n less than 
or equal to k marginals. In the case n = k + 1, the result of combining 
k + 1 marginals must result from the combination of combining k com- 
bined marginals with one marginal, or combining k -  1 combined 
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marginals with two combined marginals, and so on. Remember that the 
cost function defined in the definition of the OFP is 

l.~(S1u J) -~- fft~(Sl) Jr [d.,(Sj) Jr 2 Is'Us'l, (2) 

that is, the cost for the final step is 2 k+ ~, which is independent of the 
distributions of the two factors to be combined. We must prove that the 
combination order in the lemma minimizes /.t(S l) + /z(Sj ) .  If we use a 
number to denote the size of a set, then we need to prove that given 
k <m, 

/z(m + 1) + ~ ( k )  > / z ( m )  + / x ( k  + 1). (3) 

According to the cost function (2), there exist mt, m2, kl, and k 2 which 
satisfy ml >_ mE, k a >_ k2, ma Jr m 2 = m + 1, and k 1 + k 2 = k such that 
/z(m Jr 1) and /z(k) are both optimal in the left side of (3). If we choose 
the decomposition for the right side of (3) relevant to ml, mE, kl,  and k2, 
then to prove (3), we need to prove 

/ z (ml )  Jr /z(m2)  Jr 2 "+  1 + /z(kl) + / z ( k 2 )  Jr 2 k 

is greater than 

(4) 

/z(m 1 - 1) + /~(m 2) Jr 2"  Jr /z(k 1) +/. t , (k 2 Jr 1) + 2 k+l. (5) 

From (4) and (5) we get 

/ z (ml )  + 2m+ 1 Jr /z(k2) + 2 k > /z(m 1 _ 1) + 2"  + p,(k 2 + 1) + 2 k+ 1 

(6) 

Since 2 m+l >__ 2"  + 2 k+l, it is sufficient to prove the following inequality 
instead of (6): 

/z(m 1) Jr //,(k 2) Jr 2 k > / z ( r n  1 - 1) + / z ( k  2 -t- 1). 

If we decompose k 2 Jr 1 into two factors with sizes k and 1, then the 
inequality is 

~ ( m  1) Jr p.(k 2) Jr 2 k > /z(m 1 - 1) J r /~ (k  2) Jr p.(1) Jr 2 k2+l, 

that is, 

/x(m 1) Jr 2 k > / x ( m  1 - 1) + 2 k2+1. 

Thus we should prove the following, since k >_ k 2 Jr 1: 

/z(m 1) > /~(m 1 - 1). (7) 
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The correctness of  (7) is obvious for marginals. Thus we have proven (3). 
From (3) we know that if m + k + 1 is even, the minimal value results 
from the decomposit ion into two sets with equal size; and if m + k + 1 is 
odd, the minimal value results from the decomposition in which one set 
has one more  factor than the other set. This meets the combination order 
in the lemma. For the two decomposed sets, they both have fewer than k 
marginals and can be combined optimally according to the induction 
assumption. • 

LEMMA 2 Given a factoring problem with n variables {1, 2 , . . . ,  n}: 
S 1 = {1}, S 2 = {2} . . . . .  S,_1 = {n - 1}, Sn = {1, 2 , . . . , n }  and Q = {n}, 
the optimal factoring is to combine any int((n + 1)/2)  single-variable 
factors according to Lemma 1, then to combine the result with the factor S,. 
The original factoring problem then becomes a new factoring problem with 
factors Ski, Skz . . . . .  Sk,  Sk,+l = {k 1 . . . . .  ki, n} and Q = {n}, where i = n 
- int((n + 1)/2),  which has the same form as the original problem. The 

same strategy can then be used for the problem until a final result is 
obtained. 

Proof  We prove the lemma by induction. For n = 2, the combination 
is unique. For n = 3, according to the lemma, we combine two marginals 
first and then combine the result with the conditional factor. The cost is 
2 2 + 2 3 and is minimum. Assume that the combination order in the lemma 
is optimal for n less than or equal to k. Then we will prove the combina- 
tion order is also optimal in the case n = k + 1. 

Some notation must be introduced first. I f  the number  of multiplications 
for combining m marginals, in accordance with Lemma 1, is denoted as 
M(m) ,  then M(1) = 0, and M(m) ,  for m > 0, can be recursively computed 
as 

M ( m )  = 2 m + M ( i n t ( m / 2 ) )  + M ( m  - i n t ( m / 2 ) ) .  (8) 

There  is a combination order for $1, S 2 . . . . .  S n and m = in t (n /2 )  such 
that the number  of multiplications for combining 

is 

(Sn(. . .  (SlS2 ) . . , S m ) ) ( . . .  (Sm+lSm+ 2 ) . . . S  n_l ) 

2" + (2 2 + -.. + 2  m) + 2 n-m + (2 2 + .-- + 2 n - m - I ) .  (9) 

We know that the total number  of combinations needed for computing $1, 
S 2 . . . .  , S, is n - 1 and the number  of  multiplications needed for combin- 
ing all factors in the worst case is 

2 2 + 2 3 + .-- + 2  "-1 = 2" - 4. (10) 
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If  we denote  by F(n)  the number  of  multiplications needed  for  combin-  
ing $1, S 2 . . . . .  S, ,  then F(n)  can be represented as follows if m marginals 
are combined  first: 

F ( n )  = 2 ~ + M ( m )  + F ( n  - m) .  (11) 

Then,  proving the combinat ion  order  for combining S 1 . . . . .  Sn is equiva- 
lent to proving the following inequality: Given s and t, with s ~ t and t 
the number  chosen as in the lemma, then 

2" + M ( s )  + F ( n  - s) > 2 n + M ( t )  + F ( n  - t ) .  (12) 

First we consider  the case n = 2t  and s < t, and assume s = t - j  for 
1 < j < t; then we prove the following inequality in s and t: 

M ( t - j )  + F ( n - t  + j )  > M ( t )  + F ( n - t ) .  (13) 

F rom (8) and (9) we know that  the dominan t  terms in the left side o f  (13) 
are 2 '÷j + 2 t - j  + . . . .  The rest of  the terms are much smaller. The  
dominan t  terms in the right side of  the formula  are 2 t + 2 t + . .- ,  and the 
rest of  the terms are again much  smaller. According to (10), we know that 
(13) is true f o r s = t - j ,  f o r l  < j < t .  

Next we prove the case n = 2t  and s > t. We  consider the case 
s = t + j  for  1 < j  < t. Given s and t, we should prove 

M ( t +  1 ) + F ( n - t -  1) > M ( t )  + F ( n - t ) .  (14) 

F rom (8) and (9) we know that the dominan t  terms in the left side of  (14) 
are 2 t+j + 2 t - j  d- .- . ,  and the rest o f  the terms are much smaller. Simi- 
larly, the dominan t  terms on the right side are 2 '  + 2 t + . . . ,  and the rest 
of  the terms can be ignored in comparison.  This tells us that  (14) is correct  
f o r s = t + j f o r l  < j < t .  

Similarly we can prove (12) in the case n = 2t  - 1 for s < t or  s > t. 
For  s > t the p roof  is similar to the above proof.  For  s < t, if we substitute 
s in (12) with s = t - 1, the two sides are equal. Thus  if we use s < t - 1 
instead of  s --- t - 1, (12) is true. This means  the optimal combinat ion is 
not  unique in this case. For  example, if n = 5 in the factoring problem, the 
combinat ions  ((S5(51S2))(S354)) and ((S5((5152)S3))54) have the same 
result. 

Accord ing  to (12), we combine  t marginals first, t is de termined as 
above. Then  we combine  the result with the factor  S n. After  the combina-  
tions, the number  of  marginals left is less than k, and they can be 
combined  optimally according to the induction assumption. Thus  the 
combinat ion order  for S 1, $ 2 , . . . ,  S n is proved. • 
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LEMMA 3 Given a factoring problem with n variables {1, 2 , . . . ,  n}: S 1 = 
{1}, S 2 = {2}, . . . ,S  n = {n}, Sn+ 1 = {1, 2 . . . . .  n}, a n d Q  = {n}, theoptimal 
factoring is to combine S 1 . . . . .  Sn_ 1 with S,+ 1 first, then combine the 
result with S,.  The order o f  combining $1 , . . . ,  S,  _ l with S, + 1 is given in 
Lemma 2. 

Proof  We can see that to combine S 1 . . . .  , Sn_ 1 with S,+1 is the same 
factoring problem described in Lemma 2, so the factoring, according to the 
iemma, is optimal. The result of the combination is a set with one variable 
in it: {n}. Combining the result with Sn, the dimensionality of the combina- 
tion is just 1. So the combination is minimal for any combination of two 
factors. On the other hand, if we exchange the combination of any S i 
(1 _< i < n) with S,, the result of combining n - 1 marginals with S~+1 
has a dimensionality of 2, and the dimensionality of combining the result 
with S, is 2 also. Then the cost of this combination order is bigger than 
the cost of the given combination in the lemma. Therefore,  the combina- 
tion given in Lemma 3 is optimal. • 

LEMMA 4 Given a factoring problem with n + k - 1 sets on n variables 
{1,2 . . . . .  n}:S z={2}  . . . . .  S, l = { n -  1},S~ = { 1 , 2  . . . . .  n} ,k{1} ' s (we 
may denote them as $1. l = {1} . . . .  , $1, k = {1}), and Q = {n}, one of  the 
optimal factorings is to combine the k {1}'s first, then optimally combine the 
result with the remaining factors according to Lemma 3. 

Proof It is obvious that combining the k SLi = {1}'s (1 < i < k) to- 
gether first is optimal. Combining the result with the remaining factors is 
optimal according to Lemma 3. Therefore,  the factoring in the lemma is 
optimal. • 

LEMMA 5 Given a factoring problem with n variables {1, 2 . . . . .  n}: S l = 
{1}, S 2 = {1, 2}, S 3 = {2, 3} . . . . .  Sn = {n - 1, n}, and Q = {n}, then the 
optimal factoring is to combine these factors in the ascending order o f  their 
subscripts. That is, combine the S t with S 2 first, then combine the result 
with S 3, and so on. 

Proof  From the definition of FP we can see that the dimensionality of 
each combination, as specified by the lemma, is 2 and that one variable is 
removed from the result after each combination. Since the size of each Si 
for i > 1 is equal to 2, every combination step must have a dimensionality 
of at least 2. Therefore the given combination is minimal. Therefore,  the 
factoring is optimal. • 

For the arbitrary factoring problem, we have developed an optimal 
dynamic factoring algorithm. Dynamic programming is one of the few 
general techniques for solving optimization problems [11, 12, 5]. It is 
related to branch-and-bound techniques in the sense that it performs an 
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intelligent enumeration of all feasible points of a problem. The idea is to 
work backwards from the last decisions to the earlier ones. Using the 
dynamic programming approach to the OFP, we start backwards from an 
assumed optimal result. According to the "principle of optimality," any 
subcombination of n factors must be an optimum itself, and all possible 
subcombinations may be used in the final optimal result. We keep all 
computed optimal subcombinations, and use tables to save all intermediate 
results. Thus the dynamic-programming approach for OFP can be de- 
scribed as: 

1. Generate all combination tables from 1 to n. The ith combination 
table can be generated from all pairs of combination tables (j,  k) 
such that j + k = i. The elements (combined factors) chosen from 
the j th  and kth  tables must be exclusive. For the combinations 
having the same elements, only that one which has the minimal 
number of multiplications is saved in the table for subsequent use. 

2. An optimal combination is any entry in the nth combination table 
with the lowest total number of multiplications needed. 

The dynamic approach will find an optimal result, but depends on 
comparing all possible factoring results in each factoring step to get the 
best one. It can be seen that if a kind of best-first search is applied to find 
a best result, the time complexity of the algorithm for computing the 
(n + 1)th table will be O ( n  2 x 2 n) in the number of factors. In the ith 
combination table there are n ! / [ i ! ( n  - i)!] elements, since only one com- 
bination of any i elements is a candidate for the (i + 1)th combination. 
The number of elements in the ith table is the number of combinations of 
choosing i elements from n, so there are a total of 2 n elements in all n 
tables. Since there are n! distinct factoring results for n factors, the 
dynamic-programming approach results in substantial savings. Even though 
the dynamic strategy is useless in practice, it is useful in research as an 
analytical tool to check how close an approximation algorithm is to an 
optimal result. 

Since the general OFP appears to be a hard problem, we must search 
for approximation methods and heuristics, or identify special cases for 
which efficient algorithms exist. Two criteria for a heuristic strategy are 
quality, i.e., the closeness of the result of a heuristic to an optimal result, 
and the time complexity of the heuristic algorithm itself. There is a 
tradeoff between the quality and time complexity in a heuristic algorithm. 
The following are some possible heuristic greedy strategies: 

1. In each step of choosing a pair of factors to combine, we may 
consider the pair of factors which gives the minimum /x value as a 
candidate for combination. 

2. In each step, we may consider the pair which has the smallest-dimen- 
sional result as a candidate for combination. 
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We will see later that the strategy of taking the pair with the smallest-di- 
mensional result as a candidate shows good results in the application of 
probabilistic inference in belief networks. Considering the similarity be- 
tween SPP and OFP, we may explore extending the heuristic methods used 
for SPP to OFP; for example, we may use the "nearest neighbor" strategy 
in OFP. We will not further explore that possibility in this paper. 

3. OPTIMAL FACTORING FOR SINGLY CONNECTED BELIEF 
NETWORKS 

From Section 2 we know that finding optimal factoring in general is a 
hard problem. That is, we don't expect to find an efficient optimal 
factoring algorithm for an arbitrary belief network in probabilistic infer- 
ence. However, there exists a polynomial-time algorithm for generating 
optimal factoring for tree-structured (including polytree) belief networks. 
In this section, we will present the algorithm. The optimal factoring 
algorithm is based on the lemmas in Section 2. 

The meaning of Lemma 2 to Lemma 5 of Section 2 for networks can be 
shown with the help of very simple belief networks. Lemma 2 can be 
explained from Figure 3(a), in which the nth variable is queried and the 
rest of the variables are marginals. The lemma tells us an optimal factoring 
strategy for computing the marginal probability of the nth variable. Lemma 
3 refers to a similar graph, where the query is for the conditional 
probability of p(n In + 1) and node n + 1 is a child of node n and is 
observed. Lemma 4 describes a more general case shown in Figure 3(c). A 
ample query for the graph is p(1 12, 3 , . . . ,  n), where node i (i > 1) is 
observed. Lemma 5 refers to a belief network with chain structure [see 
Figure 3(b)] in which the marginal probability of node n or the marginal 
probability of node 1, given observation of node n, is queried. The lemma 
tells us that the cost of combining two nonmarginal nodes which are not 
directly connected is always greater than the cost of combining two nodes 

(~) (b) (¢) 

Figure 3. Different cases of query is polytrees. 
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which are directly connected. The networks in Figure 3 represent the basic 
structures for decomposing a singly connected belief network. 

We introduce some new names for the purpose of easy description in 
the rest of the section. We call a node with its parents a group and the 
node itself the group head; a marginal node is the only node in a group 
and is the group head. 

THEOREM i There exists a linear-time algorithm to generate an optimal 
factoring for querying the marginal probability of  a node in a polytree. 

Proof Based on the factoring strategies in Lemma 2 to Lemma 5, we 
can construct an optimal factoring strategy for a polytree. Given some 
observed nodes and a queried node in a polytree, the nodes relevant to the 
query still form a polytree. The nodes that are the antecedents of the 
queried node in the original polytree are in the reduced polytree, and the 
descendants of those antecedents must be observed nodes or antecedents 
of some observed nodes. A queried node divides all nodes of the reduced 
polytree into two parts, successor nodes and antecedent nodes. The opti- 
mal factoring strategy starts factoring from the queried node and spreads 
out to the whole tree. 

Two operations used in the factoring strategy are defined as follows: 
1. Bottom-up. In computing the marginal probability of a group head, 

if some other nodes in the group have unknown marginal probabili- 
ties, those groups with an unknown marginal probability node for the 
group head should be computed first. 

2. Top-down. In computing the marginal probability of a group head, 
if the head has any children, then the groups with each child as the 
head should be computed first with the head of the first group as the 
target variable. 

The factoring strategy is the following. Compute the probability of the 
queried node from the group in which the queried node is a head. If any 
node in the group has unknown marginal probability, then apply the 
bottom-up operation. If the queried node has any child node, then apply 
the top-down operation. The top-down and bottom-up operations are 
repeatedly used for any group wherever they are applicable, but not to one 
node repeatedly, in order to avoid an infinite loop. If no more bottom-up 
and top-down operations are needed in a group, use Lemma 2 or 3 to 
compute the target variable of the group. If some computed group has the 
form in Figure 3(c), then apply Lemma 4 to combine the nodes. 

Since there is one node to be combined each time, using the top-down 
or bottom-up operation, the factoring is linear in the number of nodes 
relevant to the query. 

The optimality of the factoring strategy can be illustrated as follows. 
First we see that the factoring within any group is optimal, i.e., all groups 
in the factoring strategy have forms given in Lemma 2 or can be converted 
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to one of those forms. If the group with the queried node as a head cannot 
be computed in one of those forms, we use top-down and/or  bottom-up 
operations to generate new groups. By repeatedly using the bottom-up 
operation we will meet some groups in form 1, since each root node is 
either a marginal node, an observed node, or the queried node in the 
formed polytree. After these groups have been computed, those groups 
which contain the head of the just-computed groups as member have 
known marginal probabilities of all nonhead nodes, and they either take 
on form 1 or need top-down operation. If some of them are in form 1, they 
can be computed again, and so on for the other groups. 

The groups generated from top-down operation either are in form 2 or 
need more bottom-up and/or  top-down operations to generate new groups. 
The groups generated by the bottom-up operation have form 1 as de- 
scribed above. Those groups generated by repeatedly using top-down 
operation must be in form 2, because a leaf in the reduced polytree is an 
observed node. By applying Lemma 4 to these groups, we can compute the 
values needed to return to the group head that generated the computed 
groups using top-down operation. A node may have more than one 
returned value, depending on the number of its children. All values 
returned to one node can be multiplied together as a new value to return 
to the node according to Lemma 4. The group having a returned value 
then takes on form 2. Notice that we take the group in form 1 here 
because the group with a returned value can be computed in Lemma 3. 
This process can be repeated until a value returns to the queried node. 

Second, we see that each group generated by using top-down and/or  
bottom-up operations can be computed optimally according to Lemma 5. 
This can easily be shown by induction on the number of groups in the 
polytree. Therefore, the optimality of the factoring strategy is ensured. • 

In probability computation, any computation result within a group or 
among groups can be cached for subsequent use. The top-down and/or  
bottom-up operations will be avoided if there are cached intermediate 
results available. 

From the combinatorial-optimization point of view the polytree propa- 
gation algorithm [7, 14] and the revised polytree algorithm [15], provide an 
optimal factoring among groups for computing probabilities; but their 
propagation strategies do not provide any factoring strategy within a 
group. 

4. FACTORING IN MULTIPLY-CONNECTED BELIEF NETWORKS 

We doubt if there exists a polynomial-time optimal-factoring algorithm 
for an arbitrary belief network, because we believe that the OFP is an 
NP-hard problem. In this section we will present an efficient heuristic 
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factoring algorithm. After presenting the algorithm, we will discuss some 
considerations in designing a factoring strategy for multiply connected 
belief networks. 

4.1. A Heuristic Factoring Algorithm for Arbitrary Belief Networks 

There are three points for reducing the computational cost of proba- 
bilistic inference in belief networks: minimizing the maximum dimensional- 
ity of a query, avoiding unnecessary computation, and reducing repeated 
computation. 

The problem of minimizing the maximum dimensionality for a query is 
not exactly the OFP. A factoring with minimized dimensionality for a 
query may be suboptimal in total number of multiplications, while an 
optimal-factoring result will usually have minimal dimensionality. 
Nonetheless, minimization of dimensionality is a good approximation of 
the OFP for most queries, and is the intuition behind the heuristic 
algorithm we present in the following. 

4.1.1. THE SET-FACTORING ALGORITHM We now present an efficient 
heuristic algorithm, called set factoring, we have developed for finding 
good factorings for probability computation. In a belief network with 
nodes {x 1, x 2 . . . . .  x n} connected by arcs, the general form of a query is 
P(Xj IX K, XE), where Xj is a set of nodes being queried, X K is a set of 
conditioning nodes, and X E is a set of observed nodes. P(XjIXK,  X E) 
can be computed from P(Xj,  XKIXe). For simplicity, we will only 
consider the case P(Xj IX E) in the algorithm. This ignores several poten- 
tial simplifications noted in [19], but simplifies the presentation. 

Given a query P(Xj I Xe) in a belief network, often only a subset of the 
nodes is involved in the probability computation. The involved nodes can 
be chosen from the original belief network by an algorithm which runs in 
linear time in the number of nodes and arcs in the belief network [4]. Once 
we have obtained the nodes needed for the query, we have all the factors 
to be combined. In accordance with Definition 2.1, we have n subsets of n 
nodes and the set Q. We use the following algorithm to combine these 
factors. 

1. Construct a factor set A which contains all factors to be chosen for 
the next combination (initially all the relevant network distributions). 
Each factor in A is represented as a set of variables. Initialize a 
combination candidate set B empty. 

2. Add all pairwise combinations of factors of the factor set A to B 
which are not already in B, except those combinations in which each 
factor is a marginal factor and they have no common child; and 
compute u = x  u y  and sum(u) of each pair, where x and y are 
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factors in the set A, and sum(u) is the number of variables in u 
which can be summed over when the conformal product correspond- 
ing to combining the two factors is carried out. 

3. Choose elements from the set B such that C = {u I minR( lu l -  
sum(u))}, here lul is the size of u excluding observed nodes. If 
ICI--1, then x and y are the factors for the next combination; 
otherwise, choose elements from C such that D = {u I maxc(Ixl + 
[yl), x, y ~ u } .  If IDL= 1, x and y are the terms for the next 
multiplication; otherwise, choose any member of D. 

4. Generate a new factor by combining the pair chosen in the above 
steps. Modify the factor set A by deleting the two factors of the 
chosen pair from the factor set and adding the new factor in the set. 

5. Delete any pair in the set B which has nonempty intersections with 
the candidate pair. 

6. Repeat  steps 2 to 5 until only one element is left in the factor set A, 
which is the final result. 

Following is an example to illustrate the algorithm by using the network 
shown in Figure 4. Suppose that we want to compute the query p(4) for the 
belief network, and assume that there are two possible values of each 
variable. The nodes relevant to the query are {1, 2, 3, 4}. We use the 
set-factoring algorithm to combine the distributions: 

Loop 1. The factor set A is {1, 2, 3, 4}; the set B is {(1, 2), (1, 3), (1, 4), 
(2, 3), (2, 4), (3, 4)} after step 2; the current combination is (1, 2), i.e. 
p(21 1) x p(1), after step 3 (there was more than one candidate in 
this step; we chose one arbitrarily); the set A is {(1, 2), 3, 4} after step 
4; and the set B is {(3, 4)} after step 5. 

Loop 2. The factor set A is {(1, 2), 3, 4}; the set B is {((1, 2), 3), ((1, 2), 
4), (3, 4)} after step 2; the current combination is ((1, 2), 3) after step 
3; the set A is {(1, 2, 3), 4} after step 4; and the set B is empty after 
step 5. 

Figure 4. A simple belief network. 
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Loop 3. The factor set A is {(1, 2, 3), 4}; the set B is {((1, 2, 3), 4)} after 
step 2; the current combination is ((1, 2, 3), 4) after step 3; the set A 
is {(1, 2, 3, 4)} after step 4; and the set B is empty after step 5. The 
factoring result is 

p(4) = ~ ( p(412, 3)( ~_, ( p(311)( p(211)p(1)))) ). 
2,3 1 

There are several things that should be noticed in the algorithm. First, 
queried nodes should not be deleted from any terms in the expression, 
and if a node is a queried node and it has no parents, then the node will 
be combined after all other nodes are combined. Second, we assume 
that the number of values of all nodes is the same. If the numbers of 
values of the nodes in a belief network are different, we can consider the 
product of the numbers of values of all nodes related in each step 
instead of the number of nodes. Third, a caching strategy can be used in 
the algorithm. A caching table is generated before any query. Before 
combining any two factors, we check the caching table to see if there is a 
cached result for the combination. If there is, we can use it at a cost of 0 
instead of doing the real probability computation. If there is no such 
cached result, then the real computation will be carried out. This 
caching strategy will save some computation time for multiple queries, 
and in fact makes this approach as efficient as clique-tree approaches in 
computing all marginals. 

The heuristic strategy in the algorithm can be explained as follows. In 
step 2, x W y shows the number of multiplications needed for combining 
the pair x and y.6 The elements in the set B are the candidates for the 
next combination. We don't consider pairs consisting of two unrelated 
marginal nodes if they don't have common children, since a combination 
of the two marginal nodes will usually increase the dimensionality. In 
step 3, we choose the pairs which have the lowest resulting dimensional- 
ity as candidates, since the best result of the current combination may 
need fewer multiplications than those of the other combinations for 
subsequent combinations. The effect of summation is considered here; it 
always decreases the dimensionality of the result. If more than one 
candidate is generated here, we choose the maximum Ixl + lyl in step 4 
as a criterion, because this choice maximizes the number of variables 
being summed over. Usually, it is better to sum over variables as early as 
possible. Steps 4 and 5 are just preparations for the next loop. 

The time complexity of the algorithm is primarily a function of the 
number of nodes related to the current query. Step 1 is linear in the 

6The number of multiplications should be 2 Ix u yl. 
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number of nodes. In step 2, there are n (n  - 1) /2  pairs to be computed 
for the set B at the first loop, and n - k new pairs are added in the set 
at the end of the kth loop. There are a total of [n(n  - 1)/2] + Ek(n - 
k )  = 17 2 -  3n + 3 pairs to be computed. For each pair, the union 
operation is O ( m ) ,  here m is the maximum size of x; and sum(u) can be 
computed at the same time as computing x u y. So the time complexity 
in step 2 is O(n 3) at most. The time cost of step 3 is linear in the 
numbers of pairs left in the sets B and C respectively; it is at most 
O(n2) ,  including n - 1 loops needed for the two steps. The modification 
of the factor set in step 4 is linear in the number of factors; it has at 
most n elements. Deleting some elements from the set B in step 5 is 
linear in the number of elements in the set. The time complexity is 
O ( n  2) in step 4 and O(n 3) in step 5, including n - 1 loops for the 
algorithm. Therefore,  the time complexity of the algorithm is O ( n  3) in 
the number of nodes. 

4.1.2. EXPERIMENTAL TESTS The time complexity of some exact proba- 
bilistic inference algorithms (conditioning, clustering, reduction, and sPI) 
has been analyzed, and their efficiency has been experimentally tested [10] 
with the implementation of the IDEAL system [21] for conditioning, cluster- 
ing, and reduction algorithms and with the implementation of spI [1]. Since 
seI had equal or better performance in every case in that study, in this 
section we experimentally examine set factoring with Sr'l only. 

Three sets of test cases were generated for time-complexity experiments. 
We used J. Suermondt's random network generator to generate all test 
cases. This generator starts with a fully connected belief network of size n, 
and removes arcs selected at random until the number of the remaining 
arcs is equal to a selected value. In each test case, we randomly 7 (ranging 
from 1 to the number of nodes in the belief network) determined the 
number of observations to be inserted in that test case; then we randomly 
chose each observation from all unobserved variables in the belief net- 
work, and finally we chose at random a set of variables as queries from the 
remaining variables after each observation. The number of multiplications 
needed for each test case was recorded. 

The first set of test cases is randomly generated with from 1.0 to 3.0 arcs 
per node and 8 to 13 nodes. The reason for choosing a set of small belief 
networks for testing is that we want to compare the results of set factoring 
with those of an optimal algorithm, which is limited to running small belief 
networks because of time complexity. 8 Table 1 shows the characteristics of 

7Unless noted otherwise, all random selections are from uniform distributions over the 
indicated range. 
8The optimal algorithm is a dynamic-programming algorithm with exponential cost. 
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T a b l e  1. Ten Small Test Cases and the Test Results by Algorithms a 

net node arc / n obs qry G.SPI set-f opt-aig 

1 12 2 3 7 287 52 52 
2 11 2.5 3 7 328 196 196 
3 9 2.5 4 12 301 252 252 
4 11 2 4 4 58 26 26 
5 9 2.2 1 3 140 102 102 
6 8 2.6 2 4 200 194 186 
7 13 1 3 7 109 38 38 
8 13 2.5 3 8 2760 1818 1716 
9 13 2.4 3 8 144 94 94 

10 10 1.7 3 7 237 174 174 

aThe generalized sPI, the set-factoring, and the optimal algorithm. 

the 10 test cases and the computational  results of  different algorithms 
measured in the number  of multiplications. The data collected in this table 
are the following: 

• net, the index of test cases; 
• node, the number  of nodes in each belief network; 
• arc / n, the average number  of  arcs per  node; 
• obs, the number  of  observations inserted in the belief network; 
• qry, the number  of queries; 
• G.SPI, the test results of  the generalized sPI [19]; 
• set-f, the test results of  the set-factoring algorithm; 
• opt-aig, the test results of an optimal-factoring algorithm. 

From the table we see that set factoring has a bet ter  factoring result than 
the generalized sPI but is not optimal in two test cases. 

The second set of test cases is tree-structured belief networks. They are 
randomly generated with from 10 to 30 nodes. Table 2 shows the 10 belief 
networks and the test results. Columns 2 to 4 show the number  of  nodes, 
the number  of  observations, and the number  of queries for each test case. 
Columns 5 to 7 show the test results for each algorithm as in Table 1. 
From the table we see that set factoring has an optimal result for each 
tree-structured belief network. The generalized sPI did not give optimal 
results for some test cases. 

The third set of test cases is that used in testing sPI and generalized sPI 
[1, 2, 19]. They are randomly generated from 1.0 to 5.0 arcs per  node and 
10 to 30 nodes. In Table 3, n is the number  of nodes and a the number  of  
arcs in each belief network; o and q are the numbers  of observations and 
total queries in each test case respectively; and the rest of the columns 
show the number  of multiplications for each test case. A new version of sPI 
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T a b l e  2. T ree  S t ruc tu red  Tes t  Cases  and Tes t  Resu l t s  by A lgo r i t hms  a 

net node obs qry G.SPI  set- f  opt-alg 

1 23 6 68 728 646 646 
2 19 19 89 1881 630 630 
3 28 1 4 36 36 36 
4 22 16 104 2959 1246 1246 
5 17 7 34 809 404 404 
6 12 9 27 335 148 148 
7 24 17 128 1469 68 68 
8 25 1 10 222 178 178 
9 24 5 58 1478 1010 1010 

10 22 5 46 1427 642 642 

aThe generalized seI, the set-factoring, and the optimal algorithm. 

Tab le  3. The  E x p e r i m e n t a l  Resu l t s  of  21 Test  Cases  be tween  sPi 
and  Set  Fac to r ing  

No.  n a o q SPI set-f  SPl -cach  set-cach 

1 23 28 10 13 164 98 140 60 
2 13 62 7 6 832 718 368 310 
3 13 61 10 4 62 44 32 28 
4 18 85 10 8 624 558 422 418 
5 16 54 8 9 2,370 1,512 866 898 
6 17 34 8 9 2,616 890 1,176 502 
7 23 60 10 12 37,514 5,272 10,078 2,978 
8 10 15 5 5 286 182 222 92 
9 27 35 13 14 1,122 644 800 244 

10 12 26 5 7 780 386 452 194 
11 23 87 10 12 183,296 73,804 65,216 26,540 
12 11 36 5 6 1,896 1,126 668 598 
13 14 15 7 6 454 228 264 92 
14 16 40 8 8 8,416 3,112 2,204 1,940 
15 19 76 9 10 81,696 23,590 13,380 10,462 
16 29 131 1 28 * 6,569,756 16,146,192 3,196,900 
17 29 90 14 14 1,489,040 143,334 254,292 73,146 
18 16 35 9 6 2,480 898 816 450 
19 15 53 7 8 15,986 4,168 3,068 1,896 
20 26 101 13 13 717,552 124,734 113,248 63,834 
21 28 34 14 13 2,052 847 1,384 330 
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is used for comparison. SPI-cach and set-cache show the results with 
intermediate-result caching for both algorithms. 9 

From the above experimental results we see that the factoring strategy 
of set factoring gives better factoring results than those of sPI in every 
case, particularly when the belief network is large. The number of multipli- 
cations in set factoring is about half of that in sPI on average. Set factoring 
is more consistent with respect to tasks and different kinds of belief 
networks. As shown in Table 3, set factoring is better than sPI with caching 
for a large belief network: take network 16 as an example. Since the 
dimension in a factor will become large after some combinations, any bad 
combination order will cause many more multiplications than a good one 
does. 

The time complexity of factoring for set factoring and the time complex- 
ity of symbolic reasoning for seI are only slightly different. In set factoring, 
the time complexity is at m o s t  O ( n  3) in the number of nodes concerned in 
the current query; in sPI it is at most O(n 3) in the number of nodes of the 
belief network. The actual time cost for symbolic reasoning in both 
algorithms is trivial compared to probability computation. 

4.2. Discussion 

While these results are preliminary, they seem a strong indication that 
the set-factoring algorithm is able to find better factoring for many 
problems, particularly in finding optimal factoring for all the tree test 
cases. Also, the set-factoring algorithm can be used as a suitable analytical 
tool for evaluating other probabilistic inference algorithms. The most 
important conclusion from the experimental results is that the OFP is a 
useful way of efficiently solving probabilistic inference problems in a belief 
network. From the OFP point of view, not only can we get a better 
algorithm than those previously developed, but also the algorithm is easy 
to understand and implement. 

The main idea behind the set-factoring algorithm is, at each step, to find 
a pair with the best combination result. We tried the strategy of finding the 
pair with minimum multiplication as a candidate for combination; the 
results are not as good as those obtained by set factoring. The set-factoring 
algorithm only considers information one step in advance for choosing 
each pair, so it can be implemented efficiently. It is this characteristic that 
prevents the algorithm from guaranteeing an optimal result for some 
multiply connected belief networks, because optimal results are related to 
all nodes concerned. It also tells us why the algorithm is good in tree-struc- 

9The asterisk denotes that the algorithm is too slow to run the test case. 
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tured belief networks: the factoring information for a tree is locally 
determined. Due to the locality of its heuristic strategy, set factoring can 
work as a local factoring strategy in other probabilistic inference algo- 
rithms. A simple extension would be to look further ahead, for example to 
choose triplets or quadruplets. We have not tried this idea. 

Since the last several combinations in set factoring usually have large 
dimensionality, combinations of them are critical in getting nearly optimal 
results. Considering this, we combined the set-factoring and the optimal 
algorithm to get a new algorithm in which we used set factoring to 
generate a partial result first and then used the optimal algorithm to 
complete the last several combinations. Since the optimal algorithm can 
run efficiently for about eight factors, the combined algorithm should run 
efficiently as well. The results of the combined algorithm are better than 
those of the set-factoring algorithm, particularly for large belief networks. 1° 
This led us to think of another factoring strategy using the optimal 
algorithm. That is, if a belief network can be divided into several con- 
nected parts, we might use the optimal algorithm within each part and 
then among all parts. We have not tested this idea yet. 

The test result on network 3 in Table 3 for set factoring (without 
caching) is optimal for each query, but both algorithms with caching give 
better results for the same queries. This indicates that a best probabilistic 
inference algorithm may depend not only on an optimal factoring strategy, 
but also on a good caching method for some tasks and some belief 
networks. There is a tradeoff between using a good factoring strategy and 
using an effective caching method in an inference algorithm, since a good 
factoring strategy, flexible across many belief networks and tasks, may be 
hard to combine with any caching method. 

We have also studied the opportunities for parallelism in belief-network 
inference. Set factoring has shown good factoring results for parallelizing 
probabilistic inference [3]. 

4.3. Features for Efficient Probabilistic Inference in Belief Networks 

In this subsection we discuss some influences on the efficiency of 
algorithms for probabilistic inference. 

4.3.1. F A C T O R I N G  VS. N U M E R I C  C O M P U T A T I O N  W e  refer to the com- 
putation of conformal products as numeric computation. We find that the 
numeric computation in probabilistic inference is exponential in the num- 
ber of variables relevant to the computation, while factoring heuristics are 

1°Take network 16 in Table 3 as an example: the number of multiplications needed by the 
combined algorithm is about 75% of that by set factoring. 
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typically polynomial with respect to the number of variables related to the 
query [10]. The factoring computation can be very small if we simply 
randomly combine the distributions for a query and sum over those 
variables not queried. However, the total computational cost (factoring 
plus conformal products) could be quite high in that case. The factoring 
computation can be very expensive if we want to minimize the numeric 
computation. It is important to realize that the critical task for factoring 
computation is to use its polynomial-time cost effectively to reduce the 
exponential-time cost of numeric computation. Therefore, when designing 
a probabilistic inference algorithm, one should spend a lot of time search- 
ing for low maximum dimensionality if the maximum dimensionality is 
large, since the payoff from such a search is potentially very high. In the 
case where the number of nodes relevant to a query is large but the 
maximum dimensionality is relatively low, the cost of factoring should be 
limited to a low-degree polynomial. It should be clear that the maximum 
dimensionality of a query given an algorithm reflects the real computa- 
tional complexity of the query in a belief network for the particular 
algorithm. The maximum dimensionality will, in general, vary according to 
the algorithm used, for the same query in the same belief network. We are 
very much interested in finding an algorithm which performs probabilistic 
inference in a belief network with the minimal maximum dimensionality. 

4.3.2. STATIC FACTORING VS. DYNAMIC FACTORING Factoring strate- 
gies can be static (used before any query) or dynamic (used just after each 
query but before real probability computation). In this sub-subsection, we 
will discuss the advantages and disadvantages in static and dynamic factor- 
ing strategies for probabilistic inference in a belief network. 

In static factoring, the order of combining factors comes from the 
original belief network before any querying and observation. An example 
of a static strategy is the partition strategy in sPI [1], which creates a 
partition tree before any probability computation. One of the advantages 
of static factoring is that it is performed only once, before any querying 
and observation, and can be performed off line. A disadvantage is that it 
imposes some constraints on the ordering of combining some distributions 
without considering the effect of observations and querying tasks. Since 
the graphs corresponding to different queries with different observations 
are very different for a given belief network, the constraints may exclude 
optimal factorings for some queries. 

Dynamic factoring is performed at query time, and only the factors 
relevant to the current query, not to the original belief network, are 
considered. The local ordering heuristic in sPI is an example of dynamic 
factoring. The merit of dynamic factoring is that it may find a better 
factoring result than a static factoring strategy does because it has more 
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information available, namely the specific query to be answered. The 
drawbacks of dynamic factoring are as follows. First, it runs every time 
after each query; and second, caching may be less effective. 

One possible difference between static factoring and dynamic factoring 
is the reusability of previous factoring structure or intermediate results in 
a multiple-query situation. This problem is closely related to the caching 
strategy used in a factoring algorithm. Caching may reduce probabilistic 
computation, depending on the structure of the belief network and the 
tasks to be carried out, as the test results indicated in [1, 19]. Some tasks 
favor caching: for example, a set of observations in a belief network and a 
set of queries on more than one variable. Some belief networks provide 
good caching structures: for example, a belief network having a long chain 
will provide many opportunities for caching when the queried nodes are all 
in the chain. 

An experimental test has been performed for examining the effects of 
caching between the sPI algorithm [1], with a static factoring strategy for a 
partition tree, and the set-factoring algorithm with a dynamic factoring 
strategy for creating an evaluation tree (see Section 4.1). The experiment 
showed that the effect of caching for the set-factoring algorithm is signifi- 
cant and is comparable to that for the static factoring algorithm (sPD. 
These results indicate caching is useful in dynamic factoring algorithms. 

5. CONCLUSIONS 

In this paper we have presented a combinatorial optimization problem, 
optimal factoring. We have proposed that efficient probabilistic inference 
in a belief network can be considered as an optimal factoring problem. We 
believe that it is a proper way to study the problem. From this point of 
view, finding an efficient exact probabilistic inference algorithm means 
finding an optimal factoring algorithm. Unfortunately, finding an optimal 
factoring in general is a hard problem. Currently developed algorithms rely 
on structural properties of the graph to guide factoring. However, it is not 
clear this is the most direct way to find efficient factorings. We presented a 
heuristic factoring algorithm for multiply connected networks which makes 
no reference to graphical structure and yet outperforms current graph- 
based algorithms. 
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