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Mesenchymal stem cells attenuate ischemic acute
kidney injury by inducing regulatory T cells through
splenocyte interactions
Jie Hu1,2, Li Zhang1,2, Nan Wang1, Rui Ding1, Shaoyuan Cui1, Fei Zhu1, Yuansheng Xie1, Xuefeng Sun1,
Di Wu1, Quan Hong1, Qinggang Li1, Suozhu Shi1, Xiaoluan Liu1 and Xiangmei Chen1

1State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate
College, Beijing, China

The mechanism of mesenchymal stem cell therapy in acute

kidney injury remains uncertain. Previous studies indicated

that mesenchymal stem cells could attenuate inflammation-

related organ injury by induction of regulatory T cells.

Whether regulatory T-cell induction is a potential mechanism

of mesenchymal stem cell therapy in ischemic acute kidney

injury and how these induced regulatory T cells orchestrate

local inflammation are unknown. Here we found that

mesenchymal stem cells decrease serum creatinine and urea

nitrogen levels, improve tubular injury, and downregulate

IFN-c production of T cells in the ischemic kidney. In addition

to the lung, mesenchymal stem cells persisted mostly in the

spleen. Mesenchymal stem cells increased the percentage

of regulatory T cells in the spleen and the ischemic kidney.

Antibody-dependent depletion of regulatory T cells blunted

the therapeutic effect of mesenchymal stem cells, while

coculture of splenocytes with mesenchymal stem cells caused

an increase in the percentage of regulatory T cells.

Splenectomy abrogated attenuation of ischemic injury,

and downregulated IFN-c production and the induction

of regulatory T cells by mesenchymal stem cells. Thus,

mesenchymal stem cells ameliorate ischemic acute kidney

injury by inducing regulatory T cells through interactions

with splenocytes. Accumulated regulatory T cells in ischemic

kidney might be involved in the downregulation of IFN-c
production.
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Ischemia/reperfusion injury (IRI) is a major cause of clinical
acute kidney injury (AKI). Although vigorous research has
been conducted, the mortality rate remains high.1 Stem cell
therapy for AKI is now becoming viable. Several studies
have shown that administration of mesenchymal stem cells
(MSCs) leads to the amelioration of ischemic AKI.2–4

However, the mechanism remains uncertain, thus limiting
the therapeutic application in clinical practice.

Inflammation is a major factor in ischemic AKI.5

Indirect6–8 and direct9 evidence from several studies have
implicated T cells,9–11 especially IFN-g-positive CD4þ

T cells,10 as mediators in renal IRI. These data suggest that
modulating T cells may yield novel therapies for renal disease.
Regulatory T cells (Tregs) are lymphocytes with immuno-
suppressive properties that inhibit effector T cells both
in vitro12 and in vivo.13 Tregs are commonly identified by
their expression of CD4 and CD25 on the cell surface and
upregulation of the transcription factor FoxP3. More
recently, Tregs were identified in normal mouse kidneys by
flow cytometry.14 It was demonstrated that Tregs directly
inhibit innate immune responses in ischemic kidneys but had
no role in the number of CD4þ T cells that infiltrated into
the kidney. However, proinflammatory cytokines, such as
IFN-g production of CD4þ T cells, were not detected.15

Another study indicated that Tregs infiltrated ischemic
kidneys during the healing process and promoted tissue
repair, probably through the modulation of proinflammatory
cytokines from effector T cells.16 Thus, infusion of Tregs15,17

or pharmacological recruitment of Tregs18 protected against
ischemic AKI. Furthermore, MSCs could induce naı̈ve T cells
into Tregs in vitro,19–22 and Treg induction was the key
mechanism of MSC therapy in many disease contexts.23–29

However, whether Treg induction is a potential mechanism of
MSC therapy in AKI and how these induced Tregs orchestrate
local inflammation were unknown.

The aim of this study was to explore the potential
mechanism of MSC therapy in ischemic AKI. We found that
MSCs attenuated IRI in a differentiation-independent
manner, as infused MSCs persisted mostly in the lung and
spleen and no signals were detected in the kidney. We then
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tested the hypothesis that Treg induction was involved in
MSC therapy. MSCs increased the frequency of Tregs in the
spleen and the ischemic kidney, and partial depletion of Tregs
by PC61 blunted the therapeutic effect of MSCs. Further-
more, we found that the spleen was the crucial organ in
MSC therapy, as coculture of splenocytes with MSCs showed
increased Tregs, and splenectomy could abrogate the
attenuation of ischemic injury, downregulation of IFN-g
production, and induction of Tregs by MSCs.

RESULTS
Infused MSCs attenuated ischemic AKI

To determine whether MSCs could attenuate ischemic AKI,
we subjected mice to bilateral IRI for 35 min. We adminis-
tered MSCs (106 per mouse) 6 h after reperfusion. MSC
infusion markedly reduced serum creatinine (SCr, Figure 1a)
and blood urea nitrogen (BUN, Figure 1b) levels after 24 and
72 h of reperfusion, compared with mice given saline. As
spontaneous restoration began at 72 h in our study, we chose
72 h as the end point in the following assays. Renal IRI caused
tubular necrosis, tubular dilatation, and cast formation

(Figure 1e). Infused MSCs markedly improved tubular injury
(Figure 1f) and lowered the AKI score (Figure 1c) after 72 h
of reperfusion.

MSCs suppress IRI-induced upregulation of IFN-c of T cells
infiltrating in ischemic kidney

It is well known that CD4þ T-cell subsets, especially those
secreting IFN-g, have an important role in various IRI
models.10 Recent studies indicated that CD8þ T cells might
also be involved in ischemic AKI.9,16,30 To determine whether
MSC-mediated renoprotection was associated with a
reduction of T-cell subsets and IFN-g production, the
number and IFN-g production of T-cell subsets in ischemic
kidney was determined by flow cytometry. Although no
increased presence of CD4þ T lymphocytes in the ischemic
kidney was evident (Figure 2a) at both 24 h and 72 h of
reperfusion, and the number of CD8þ T lymphocytes
increased slightly at only 72 h (Figure 2b) after reperfusion,
IFN-g production by CD4þ (Figure 2c) and CD8þ

(Figure 2d) T cells was significantly greater than that in the
sham group at both time points. Despite the fact that MSC
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Figure 1 | Mesenchymal stem cells (MSCs) ameliorate renal ischemia/reperfusion injury (IRI). In comparison with animals treated with
saline, infused MSCs significantly reduced serum creatinine (SCr (a)) and blood urea nitrogen (BUN (b)) 24 h and 72 h after IRI. IRI could induce
severe tubular injury (e). Moreover, MSC therapy markedly improved tubular injury (f) and reduced acute tubular necrosis (ATN) scores (c) 72 h
after IRI. Sham-operated control (sham, d) had no effect on renal histopathological parameters (c and d). For SCr (a) and BUN (b), values are
mean±s.e., n¼ 8–10 in each group. *Po0.05 vs. sham, #Po0.05 vs. IRI treated with saline. For ATN scores (c), values are mean±s.e.
Approximately 80 high-power fields (HPFs, �400) per individual mouse (20 HPFs per slide, four slides per animal) were evaluated. n¼ 6 in each
group. #Po0.05 vs. IRI treated with saline.
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therapy did not influence the number of CD4þ (Figure 2a)
and CD8þ (Figure 2b) T cells in the ischemic kidney, it
reduced IFN-g production, as the percentage of IFN-g-
positive CD4þ (Figure 2c) and CD8þ (Figure 2d) T cells was
less than that in saline-treated animals.

Distribution of intravenously infused MSCs

The location of MSCs was related to their functional
mechanism. To evaluate the engraftment of RFP-labeled
MSCs after injection into mice with AKI, MSCs were detected
in frozen samples by a laser confocal microscope. Imaging
was performed at 24, 72, and 120 h after cell injection.
No signal was found in the kidney (Figure 3a) or heart
(Supplementary Figure S1c online) throughout this period.
However, signals were detected in the spleen (Figure 3b) and
lung (Supplementary Figure S1a online) 24 h after injection
and persisted for at least 120 h. Moreover, at 8 h after
injection, signals were detected in the liver and persisted for
72 h (Supplementary Figure S1b online). The in vivo imaging
results confirmed the presence of MSCs in the spleen and
lung. MSCs were labeled with DiR, a near-infrared dye,31 and
injected intravenously into mice. Imaging was performed at
4, 8, 12, 24, 48 72, and 120 h post cell injection by IVIS.
Signals were detected in the spleen and lung after injection
and persisted for at least 120 h (Figure 3c).

Infused MSCs increase the percentage of CD25þFoxp3þ

T cells in ischemic kidney and spleen

Tregs inhibited effector T cells both in vitro12 and in vivo.13

MSCs have been shown to induce Tregs both in vitro19–22 and
in vivo,23–27 and this evidence led us to count Tregs in
ischemic AKI mice after 72 h of reperfusion. First, we

confirmed the presence of Tregs in the ischemic kidney
(Supplementary Figure S2b online) via immunofluorescence
staining of Foxp3. Spleen samples were used as a positive
control (Supplementary Figure S2a online). Flow cytometry
assays showed that IRI alone increased the percentage of
CD25þ Foxp3þ cells in CD4þ T cells in the kidney (Figure 4a,
and b), but not in the spleen (Figure 4c and d). When infused
with 106 MSCs, the percentage of CD25þFoxp3þ Tregs in the
total CD4þ T-cell compartment in the ischemic kidney
(Figure 4a and b) and spleen (Figure 4c and d) increased
significantly compared with saline-treated animals.

Depletion of CD25þ T cells partially inhibits the therapeutic
effect of MSCs

To further delineate their role in MSC-induced renoprotec-
tion, we determined whether depletion of Tregs would have
an effect on this phenotype. CD25 (interleukin-2 receptor-a)
is essential for the functional development and homeostasis
of Tregs.32,33 Recently, anti-CD25 mAb (i.e., PC61) was used
to achieve partial depletion of Tregs34 without any significant
effect on non-Tregs in the ischemic kidney, including B cells,
activated effector T cells, and natural killer cells, indicating
that PC61 treatment is specific for Tregs.17 Therefore, PC61
was used to partially deplete Tregs in our study. Rat IgG was
used as an isotype control. We performed assays to detect the
therapeutic effect of MSCs after PC61 or Rat IgG injection.
In mice with IgG injection, MSCs significantly improved
SCr (Figure 5a), BUN (Figure 5b), and tubular injury
(Figure 5c–e) 72 h after IRI compared with saline-treated
mice. In mice injected with PC61, MSCs slightly improved
SCr (Figure 5a), BUN (Figure 5b), and tubular injury
(Figure 5c, f and g) 72 h after IRI compared with saline-
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Figure 2 | Mesenchymal stem cells (MSCs) suppress ischemia/reperfusion injury (IRI)–induced upregulation of proinflammatory
cytokine IFN-c. IRI per se could only slightly increase the number of CD8þ (B)T cells infiltrating in ischemic kidney after 72 h of reperfusion.
MSCs had no roles in the number of CD4þ (a) and CD8þ (b) T cells infiltrating in ischemic kidney both after 24 and 72 h of reperfusion.
In comparison with animals treated with saline, MSCs could reduce IFN-g production of CD4þ (c) and CD8þ (d) T cells infiltating in
ischemic kidney after both 24 and 72 h of reperfusion. The number and IFN-g production of CD4þ and CD8þ T cells were measured by
flow cytometry. For the percentage of IFN-g-positive cells in CD4þ and CD8þ T cells, values are mean±s.e., n¼ 5 in each group.
*Po0.05 vs. sham, #Po0.05 vs. IRI treated with saline.
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treated mice. However, in MSC-treated mice, PC61-injected
animals exhibited higher levels of SCr (Figure 5a) and BUN
(Figure 5b) and aggravation of tubular injury (Figure 5c,
e and g) 72 h after IRI compared with IgG-injected mice.
These results further indicated that the attenuation of
MSC therapy was inhibited by Treg depletion.

Coculture of splenocytes with MSCs increases the number of
Tregs in vitro

We hypothesized that MSCs could directly induce Treg
expansion in the spleen, which would explain the increase of
Tregs observed in vivo after MSC transplantation. As IL-2
is the best studied cytokine in terms of its impact on
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Figure 3 | Infused mesenchymal stem cells (MSCs) persist in spleen after ischemia/reperfusion injury (IRI). Intravenously delivered
RFP-labeled MSCs were not detected in ischemic kidney at any time point (a), but persisted in spleen during the whole process, at least
for 120 h after reperfusion (b). RFP-labeled MSCs (red) were detected by laser confocal microscopy. Nuclei were stained with DAPI (blue).
Original magnification, �600, n¼ 3. (c) Intravenously delivered DiR-labeled MSCs (yellow and red) persisted in the spleen at least for 120 h after
reperfusion. Signals were detected by IVIS in vivo imaging, n¼ 3.

524 Kidney International (2013) 84, 521–531

b a s i c r e s e a r c h J Hu et al.: Stem cell therapy in ischemic acute kidney injury



the development, homeostasis, and function of Tregs,35

we cocultured splenocytes with MSCs in low-dose IL-2-
supplemented medium (10 U/ml) and analyzed the
percentage of Tregs. After 72 h of MSC coculture, there was
a marked increase in CD25þ Foxp3þ cells in the CD4þ

T-cell population (Figure 6a and b) of unfractionated
splenocytes compared with the control (i.e., splenocytes
cultured alone in RPMI 1640 medium).

To further define the function of those MSC-induced
Tregs, we performed functional assays in terms of IFN-g
secretion of CD4þ and CD8þ T cells and splenocyte
proliferation. Early in the IRI process, the activation of
T cells is antigen independent.36 Therefore, we subjected
splenocytes to PMA/Ionomycin and ConA stimulation. As
mentioned above, as CD4þ and CD8þ T cells that secrete
IFN-g had vital roles in ischemic AKI, we performed an
IFN-g intracellular staining assay via PMA/Ionomycin
stimulation. As PMA can downregulate CD4 expression,
but has no effect on CD3 and CD8 expression,37 we labeled
splenocytes with FITC-conjugated CD3 and PE-conjugated
CD8 to define CD4þ and CD8þ T cells. Data suggested that
splenocytes removed from the coculture system exhibited
decreased IFN-g secretion of either CD4þ (Figure 6c and d)
or CD8þ T cells (Figure 6d and e) compared with the control
(i.e., splenocytes cultured alone). The proliferation assay
showed that splenocytes removed from coculture displayed a
significantly lower proliferation rate (Figure 6f) after ConA

(10 mg/ml) stimulation compared with that of the control
(splenocytes cultured alone).

Surgical removal of the spleen abolishes MSC-induced
renoprotection

To further confirm whether Tregs were induced via an
MSC–splenocyte interaction in the spleen, we performed
splenectomy in mice before IRI. After splenectomy, we found
no improvement in SCr (Figure 7a), BUN (Figure 7b), and
tubular injury (Figure 7e–g). Meanwhile, we found no
reduction in IFN-g production by CD4þ and CD8þ
T cells (Figure 7c), or increases in the percentage of Tregs
(Figure 7d) in the ischemic kidney of MSC-treated
mice. These results indicated that splenectomy completely
abolished the effects of MSC therapy, which further
confirmed that the induction of Tregs was dependent on
MSC localization in the spleen, as well as interaction with
splenocytes.

DISCUSSION

Our study highlighted several findings in the mechanism of
MSC therapy in ischemic AKI: (1) intravenously infused
MSCs persisted in the spleen for at least 120 h after reper-
fusion; (2) MSCs increased the percentage of Tregs in the
spleen and the ischemic kidney; (3) MSC-mediated reno-
protection was blunted by depletion of Tregs; (4) coculture
splenocytes obtained from AKI mice with MSCs could
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not only increase the percentage of Tregs in splenocytes
but could also inhibit the proliferation of splenocytes and
IFN-g production of T cells; (5) splenectomy could abrogate
MSCs’ therapeutic effect on AKI, downregualtion of IFN-g,
and induction of Tregs. Our data for the first time
demonstrated that MSCs could attenuate ischemic AKI by
inducing Tregs via interaction with splenocytes, which might
be one of the potential mechanisms underlying MSC therapy
in ischemic AKI.

It is well known that MSCs attenuate experimental
ischemic AKI,38 and they lower ischemic AKI incidence in
patients with cardiac surgery. However, the mechanisms
remain unclear. The pathogenesis of IRI represents a complex
interplay between biochemical, cellular, vascular endothelial,
and tissue-specific factors, with inflammation being a
common feature. T lymphocytes are important mediators
of IRI in the kidney and other organs.36 We found that MSC

therapy, despite showing no effects on the number of CD4þ

and CD8þ T cells, significantly downregulated IFN-g
production both 24 and 72 h after reperfusion, compared
with saline-treated mice. These data suggest that immuno-
modulation, especially inhibition of effector T cells, might
have an important role in MSC therapy in AKI.

The distribution of MSCs in ischemic AKI mice is related
to the mechanism of MSC therapy. Here, intravenously
infused MSCs appeared in the lung and persisted for up to
120 h after injection, which was similar to another study.39

However, unlike former studies that showed only o5% of
MSCs appearing in organs besides the lung,40 or evidence
that suggested a transient fate of MSCs in spleen,26 our study
showed that intravenously infused MSCs dispersed in the
spleen and persisted at least up to 120 h. MSCs prefer to
migrate into inflammatory sites.41 Severe ischemic AKI
always leads to severe systemic inflammation and elevated
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IFN-g production of splenic T cells during severe renal IRI,42

which may explain the quantity of MSCs persisting in the
spleen in our study. Moreover, no signal was detected in the
ischemic kidney throughout the study, which eliminated
the possibility that the effect of MSCs was due to escape of a
small number of MSCs from being trapped in the lung
homed to the injured tissues and differentiated into kidney
cell lineage.

How can these intravenously infused MSCs repair
ischemic kidney injury and modulate systemic or local
inflammation? MSCs might embed in the lung, and
secrete soluble factors into the bloodstream that ameliorate
renal injury and enhance repair of the ischemic kidney by
suppressing inflammatory and immune reactions.3 However,
it was suspected by Prockop et al., that there might be

alternative possibilites in MSC therapy since soluble factors
would have to be secreted in a transient burst, and probably
at high concentrations and most soluble factors produce
toxic effects if exogenously infused in high concentrations.39

In our study, MSCs persisted in the spleen, the most
important peripheral lymphoid organ. Moreover, IFN-g
production in T cells was inhibited in the ischemic kidney.
We hypothesize that an endogenous T-cell immunoregula-
tory system (e.g., Tregs) might be activated via an
MSC–splenocyte interaction.

Is Treg induction important in MSC therapy? Treg infiltra-
tion into the ischemic kidney has been reported previously
and was replicated in our study.16,17 The involvement of
Treg induction in MSC therapy was supported by the high
frequencies of Tregs in the spleen and ischemic kidney. PC61
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percentage of CD25þFoxp3þ cells in CD4þ T cells (a and b), values are mean±s.e. n¼ 5 in each group. *Po0.05 vs. splenocytes culture alone.
For the percentage of IFN-g-positive cells in CD4þ and CD8þ T cells, values are mean±s.e. n¼ 5 in each group. *Po0.05 vs. splenocyte culture
alone. For the proliferation of splenocytes, values are mean±s.e., n¼ 5 in each group. *Po0.05 vs. splenocyte culture alone; #Po0.05 vs.
splenocytes stimulated by ConA.
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partially inhibited attenuation of MSCs in renal injury,
further indicating a critical role for Treg induction in
MSC therapy in ischemic AKI. Unlike natural Tregs
originating in the thymus, CD25 expression on the surface
of induced Tregs is variable,43 and depends on the disease
setting and the site of regulatory activity.44 Therefore,
induced Tregs were not completely depleted in the spleen
or in the ischemic kidney in our study. In addition, MSCs
might serve as guardians against excessive inflammatory
responses in various modes such as converting macro-
phages to the phenotype that secretes IL-10,45,46 which could
explain why the MSC therapeutic effects were not completely
abolished by PC61 injection. Collectively, these data sug-
gested that Treg induction was one of the underlying mech-
anisms in the MSC-mediated protection against renal IRI.

Do MSCs induce Tregs in the spleen? Previous studies
have demonstrated that MSCs could expand CD4þ

CD25highFoxp3þ regulatory T cells in peripheral blood
lymphocytes via HLA-G5 secretion.21 We found the
presence of an interaction between MSCs and splenocytes
from AKI mice, i.e. splenocytes removed from coculture with
MSCs showed a significant increase in the percentage of Tregs
among the CD4þ T-cell population, less proliferation in
response to ConA stimulation, and reduced IFN-g produc-

tion by CD4þ and CD8þ T cells after PMA/Ionomycin acti-
vation. These data would suggest that short-range secreted
signals that locally increase the concentration of a paracrine
mediator might also be involved in the reprogramming of
non-Tregs. Furthermore, we discovered MSC therapy to be
ineffective in splenectomized hosts. These results are similar
to the phenomenon that splenectomy abolished MSC therapy
in experimental enteritis.26 These data suggested that the
spleen is a critical tissue in which MSCs interact with
splenocytes in a therapeutic manner, which may have direct
relevance to clinical settings as exclusionary criteria for
human trials.26 In addition, splenectomy also abrogated MSC
therapy in the downregulation of local IFN-gproduction and
induction of Tregs. Considering that the downregulation of
IFN-gproduction was accompanied with an increase of Tregs
in ischemic kidney, and that this phenomenon no longer
existed when increase of Tregs was abrogated after
splenectomy, it was indicated that those induced regulatory
T cells might be involved in the downregulation of
IFN-gproduction of local T cells.

In conclusion, we explored mechanisms of MSC therapy
in murine ischemic AKI. We found that MSC therapeutic
effects, such as attenuation of IRI and downregulation of
proinflammatory cytokines in T cells, appear to be mediated
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by the presence of MSCs in the spleen and consequent
induction of Tregs via an MSC–splenocyte interaction. This
mechanism may be common to MSC therapy for other
inflammatory-related diseases.

MATERIALS AND METHODS
Animals and procedures
C57/BL6 mice (20–25 g) were purchased from the animal center at
the Chinese PLA General Hospital. All animal procedures were
approved by the Institutional Animal Care and Use Committee at
the Chinese PLA General Hospital and Military Medical College.
Renal ischemia (35 min) (ref. 10) and splenectomy26 were per-
formed as described previously. At various time points after reper-
fusion, blood, kidney, spleen, and other organ samples were
harvested for further processing. In vivo depletion of Tregs34 was
achieved by intravenous injection of 100 mg of monoclonal anti-
CD25 antibody (Clone PC61, Biolegend, San Diego, CA). Control
mice were injected with Rat IgG (Biolegend).

Histopathological examination for acute tubular necrosis
scores
Histological examinations for acute tubular necrosis scores were
performed in a blinded manner, as described previously.47 Acute
tubular necrosis severity was semiquantified using the following
scoring system: 0¼ none, 1¼o10%; 2¼ 11–25%, 3¼ 26–45%,
4¼ 46–75%, and 5¼476%.48 Approximately 80 high-power fields
(HPFs, �400) per individual mouse (20 HPFs per slide, four slides
per animal) were evaluated (n¼ 6 in each group).

Immunofluorescence staining
For immunofluorescence, sections were fixed in acetone at � 20 1C
for 10 min. This was followed by blocking with 1� casein for 30 min
at room temperature. Sections were incubated with anti-Foxp3 mAb
(1/75, FJK-16s, eBiosciences, San Diego, CA) overnight at 4 1C in
PBS–1% BSA.49 After washing the sections in PBS three times, they
were incubated with FITC-conjugated AffiniPure donkey anti-rat
IgG (Hþ L) (1/50; Jackson ImmunoResearch Laboratories,
West Grove, PA) for 1 h at room temperature. Rat IgG was used
as an isotype-matched control. Sections were mounted with
mounting medium containing DAPI (Zhongshan Goldenbridge
Biotechnology, Beijing, China). Each tissue section was observed
under a confocal laser scanning microscope (Olympus FluoView
1000, Tokyo, Japan) at magnifications of �600 and �2400, if
necessary.

In vivo tracking of MSCs
In vivo fluorescence tracking of MSCs was performed as follows.
RFP-labeled MSCs (106) were injected into mice 6 h after
reperfusion via the tail vein (n¼ 3). Heart, liver, spleen, lung, and
kidney samples were harvested and snap-frozen with OCT (Sakura
Finetek USA, Torrance, CA) compound (frozen sections), to follow
the redistribution of MSCs over time up to 120 h. Slides were fixed
in acetone at � 20 1C for 10 min. After three washes with PBS, slides
were stained with mounting medium containing DAPI (Zhongshan
Goldenbridge Biotechnology). Slides were then observed under a
confocal laser scanning microscope (Olympus FluoView 1000) at
a magnification of �600.

In vivo fluorescent dye tracking of MSCs was performed as
follows. MSCs were labeled with near-infrared fluorescence
lipophilic DiR (Molecular Probes, USA) before injection. IVIS

Lumina II in vivo imaging system (Caliper Life Sciences, Hopkinton,
MA) was used to follow the redistribution of MSCs over time
in vivo. The excitation and emission filter set in the IVIS was 745 and
780 nm, respectively. DiR-labeled MSCs (106) were injected into
mice 6 h after reperfusion via the tail vein (n¼ 3) and assayed for up
to 120 h thereafter (4, 8, 12, 24, 72, and 120 h).

Cell preparation
RFP-labeled mouse bone marrow–derived MSCs were obtained from
Cyagen Biosciences (Cyagen Biosciences, Sunnyvale, CA). The
culture process was performed according to the manufacturer’s
instructions.

Single-cell preparations from spleen and kidney were performed
as described previously.11 Blood was flushed out with ice-cold PBS
and then kidneys and spleens were harvested. Spleen tissue was
removed, minced in PBS with 1% BSA, and lysed with RBC lysis
buffer (TBD science, China) for 1–2 min, according to the
manufacturer’s protocols. Kidney was decapsulated, diced, and
incubated (at 37 1C for 30 min) with collagense I (0.5 mg/ml; Sigma-
Aldrich, Shanghai, China) and DNaseI (100 U/ml; Sigma-Aldrich)
in HBSS. To remove debris, sample were filtered via a filter mesh
(40 mm). Single cells were washed in PBS for supplementary
application.

MSCs and splenocyte coculture
Splenocytes were isolated from mice by performing bilateral renal
ischemia 6 h after reperfusion. Whole splenocytes (1�106 cells) were
cultured alone or in coculture with MSCs at a 10:1 ratio of
splenocyte to MSCs in RPMI 1640 medium with 10% fetal calf
serum (Gibco BRL, Grand Island, NY), 100 kU/l penicillin (Gibco
BRL), 100 mg/l streptomycin (Gibco BRL), 10 mmol/l N-2-hydro-
xyethylpiperazine-N’-2-ethanesulfonic acid (HEPES, Gibco BRL),
50 mmol/L 2-mercaptoethanol (-ME, Gibco BRL), and low-dose
recombinant human IL-2 (10 U/ml; PeproTech China, Suzhou,
Jiangsu Province, PR China). After 72 h of coculture, CD4,
CD25, and Foxp3 expression by splenocytes was analyzed by flow
cytometry.

Splencoyte proliferation assay
Briefly, after a 72-h coculture of splenocytes and MSCs, splenocytes
were removed by aspiration. Splenocytes (5�105) in 200 ml of
medium were placed on a 96-well microplate. After activation with
ConA (10 mg/ml) for 72 h, cell proliferation was assessed using a
WST-8 cell proliferation kit (Cell Counting Kit-8, Beyotime Institute
of Biotechnology, Haimen, China), according to the manufacturer’s
protocols. Proliferation results are expressed as the absorbance of
the culture medium at 450 nm.

Flow cytometric analysis
We performed surface staining with antibodies to CD45 (30-F11),
CD3 (145-2C11), CD8 (53-6.7), CD4 (GK1.5), and CD25 (PC61)
(eBiosciences), according to the manufacturer’s instructions.
We also performed intracellular staining for Foxp3 (FJK-16S;
eBioscience), again according to the manufacturer’s instructions.
We performed intracellular staining for IFN-g (XMG1.2;
eBioscience) after stimulation with a cell stimulation cocktail (plus
protein transport inhibitors) (eBiosciences) for 16 h, according to
the manufacturer’s protocol. Cells were detected using a flow
cytometer (FC500 MPL, Beckman Coulter, Brea, CA) and analyzed
with the corresponding CXP software.
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Statistical analysis
Analysis was performed using the IBM SPSS Statistics 17.0.2
software (IBM Corporation, Armonk, NY). Results were presented
as mean values±s.d. Multiple comparisons of parametric data were
performed using one-way analysis of variance (ANOVA), followed
by Student–Newman–Keuls post-hoc tests. Student’s t-test was used
to compare differences in means. Nonparametric data were
compared with the Mann–Whitney U-test to identify differences
between groups, and a was corrected by the number of comparisons
(a/comparisons) to ensure a¼ 0.05. Po0.05 was considered
statistically significant for all analysis.
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