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Structure–function analysis of a novel member of the LIV-1 subfamily
of zinc transporters, ZIP14
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Abstract Here, we report the first investigation of a novel mem-
ber of the LZT (LIV-1 subfamily of ZIP zinc Transporters) sub-
family of zinc influx transporters. LZT subfamily sequences all
contain a unique and highly conserved metalloprotease motif
(HEXPHEXGD) in transmembrane domain V with both histi-
dine residues essential for zinc transport by ZIP (Zrt-, Irt-like
Proteins) transporters. We investigate here whether ZIP14
(SLC39A14), lacking the initial histidine in this motif, is still
able to transport zinc. We demonstrate that this plasma mem-
brane located glycosylated protein functions as a zinc influx
transporter in a temperature-dependant manner.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Zinc is essential to cells, a co-factor for more than 300 en-

zymes [1] and involved in many key aspects of normal cell

growth [2]. Intracellular zinc levels are tightly regulated as zinc

deficiency [3] and excess [4] can be detrimental to cells. Zinc

transporters control movement of zinc into, out of and within

cells, having a crucial role in maintaining the cellular balance

between apoptosis and cell growth and disease prevention.

ZIP (Zrt-, Irt-like Proteins) transporters are an important

group of proteins responsible for the control of zinc transport

into the cell cytosol. They can be divided into 4 subfamilies, I,

II, Gufa and LIV-1 [5,6]. The members of the LIV-1 subfamily,

termed LZT (LIV-1 subfamily of ZIP zinc Transporters), are

distinguished by their consensus sequence HEXPHEXGD in

transmembrane (TM) domain V [6]. These LZT sequences,

currently 53 from 12 species [7], now form part of the new sol-

ute carrier family 39 (SLC39A), which includes all the known

ZIP transporters. There are currently 9 human LZT family

members, few of which have been investigated to date. Oestro-

gen-regulated LIV-1 (SLC39A6), implicated in breast cancer,

transports zinc into cells from its position on the plasma mem-
Abbreviations: LZT, LIV-1 subfamily of ZIP zinc Transporters; CHO,
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brane [8]. HKE4 (SLC39A7) belongs to the LZT sub group

containing KE4 sequences, is ubiquitously expressed, resides

on internal membranes, particularly the endoplasmic reticu-

lum, and transports zinc into the cytosol from intracellular

stores [7]. BigM103 (SLC39A8, ZIP8) has been shown to reside

in vesicular structures resembling lysosomes and endosomes

and be capable of increasing intracellular zinc [9]. Defects in

the hZIP4 gene (SLC39A4), another LZT family sequence,

have been shown to lead to the zinc deficiency disease, acroder-

matitis enteropathica, suggesting that this protein, which is ex-

pressed predominantly in the intestine, is responsible for the

zinc uptake from that tissue [10,11]. Clearly, the LZT proteins

have a comparable function to other ZIP transporters, such as

hZIP1 and hZIP2 [12,13], and are similarly able to control

intracellular zinc levels by transport of zinc into the cytosol.

LIV-1 subfamily of ZIP zinc Transporters sequences contain

similarities to ZIP transporters, including the consensus se-

quence in TM IV which has been shown to be essential for zinc

transport [14], as well as a histidine residue in TM V. This lat-

ter histidine is the initial residue in the HEXPHEXGD motif

of LZT sequences and aligns with the quintessential histidine

in TM V of ZIP transporters [6]. This motif fits the consensus

sequence of the zincin and peptide deformylase groups of

metalloproteases [15–17], where both histidines and the first

glutamic acid residue are known to be essential [18].

Therefore a sequence, such as ZIP14 (SLC39A14), with an

EEXPHEXGD motif and lacking the histidine-repeats com-

mon in LZT sequences [19] would be unlikely to transport zinc

if the previous results with ZIP transporters hold fast. Here, we

report the first investigation of recombinant human ZIP14

protein and test its ability to transport zinc into cells. We have

engineered recombinant protein to examine location, glycosyl-

ation, abundance and zinc transport ability.
2. Materials and methods

2.1. Engineering ZIP14 cDNA
A PCR construct of ZIP14 (gene KIAA0062, clone HA1020, Acces-

sion No. XM_046677) was generated using Biotaq DNA polymerase
from Bioline in conjunction with the following oligonucleotide prim-
ers, where ZIP14 overlap is underlined: 5 0-CCCCACACCA
TGAAGCTGCT GCTGCTGCAC CC-3 0 and 5 0-CCCAATCTGG
ATCTGTCC-3 0. This sequence differs from Q96BB3 [6] with 36 C-ter-
minal residues replaced by 48, which align well with other LZT se-
quences and the mouse homolog (AAH21530) of ZIP14, LZT-Mm4
[6]. The PCR product was ligated with pcDNA3.1/V5-His-TOPO as
described previously [8]. TM deletion mutants were constructed using
3 0 oligonucleotide primers. 5 0-CCCATCCTTC CTTTCATCCTC-3 0

producing a TM7 domain protein (1–458 residues) and
blished by Elsevier B.V. All rights reserved.
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5 0-CCCATCCTTCTCGTCCTCCATGGG-3 0 producing a TM3 do-
main protein (1–304 residues). The production of the LIV-1 and
HKE4 constructs has already been described [7,8].

2.2. Western blotting and deglycosylation
Chinese hamster ovary (CHO) cells (Invitrogen) transfected with

ZIP14 constructs were prepared for Western blot analysis as described
previously [8]. Samples were reduced by addition of 5% b-mercap-
toethanol. To investigate deglycosylation, CHO cell lysates were
incubated with 2 units of endoglycosidase PNGaseF (peptide N-glyco-
sidase F (Boehringer Ingelheim, Bracknell, UK) overnight at 37 �C
prior to Western blot in non-reducing conditions.

2.3. FACS analysis and fluorescent microscopy
Chinese hamster ovary cells expressing recombinant proteins were

loaded with Newport Green as described previously [8] and mean fluo-
rescence measured by FACS analysis. The intracellular zinc concentra-
tion was calculated using [Zn2+]i = Kd(F � Fmin)/(Fmax � F), where F,
Fmin and Fmax are the mean fluorescence obtained from the sample, 50
lM zinc chelator TPEN (N,N,N 0,N 0-tetrakis-(2-pyridylmethyl) ethy-
lenediamine) and 100 lM zinc with 10 lM zinc ionophore sodium pyri-
thione, respectively. Cells for fluorescent microscopy were fixed with
4% formaldehyde for 15 min, blocked with 10% normal goat serum,
incubated with anti-V5 antibody (1/2000) for 1 h and Alexa Fluor
488-conjugated anti-mouse antibody (1/1000, Molecular Probes) for
1 h and assembled onto slides using Vectorshield with propidium io-
dide (Vector Laboratories).

2.4. ZIP14 expression in human tissues
A commercially produced Multiple Tissue Expression array

(MTE�, Clontech), containing poly A+ RNA from 68 normal human
tissues and 8 cancer cell lines, was hybridised with a ZIP14-specific
cDNA probe according to the manufacturer�s instructions.
Fig. 1. cDNA sequence of ZIP14: cDNA and amino acid sequence of ZIP14
underlined, histidine-rich region is shaded, signal peptide is in bold italics, L
asterisk indicates the last residue of the mutants TM3 and TM7. Numbers o
cDNA sequence.
3. Results

3.1. Computer prediction of ZIP14 secondary structure

Secondary structure prediction of ZIP14 suggests 8 TM do-

mains, a core size of 54 kDa and a cleavable signal peptide be-

tween residues 30 and 31 (Fig. 1). This was achieved using the

combination of computer software described previously [8].

ZIP14 (SLC39A14) belongs to the LZT subgroup of ZIP trans-

porters [6], which have an HEXPHEXGD signature motif.

ZIP14 contains a glutamic acid replacement of the initial histi-

dine in this motif (Fig. 2B, residues 375–384) and, in contrast

to most other family members, contains few histidine residues

throughout the sequence (Fig. 2C). Interestingly, ZIP14 shares

differences in sequence with another molecule ZIP8, shown by

asterisks in Fig. 2A and B.

3.2. Expression of recombinant ZIP14 proteins

Western blotting of recombinant proteins with the anti-V5

antibody demonstrated a double band (60 kDa) compatible

with the predicted core size of 54 kDa for ZIP14 (WT) and

an additional 5 kDa due to the V5 tag (Fig. 3A, WT). How-

ever, we also observed a band consistent with a trimer and a

high molecular mass band, which increased in non-reducing

conditions (NR). The different mutants produced bands of ex-

pected size (Fig. 3A), 57 kDa for TM7 mutant and 42 kDa for

TM3 mutant (predicted 54 and 34 kDa, respectively), allowing

5 kDa for the V5 tag. We confirmed the presence of some or all

of the predicted N-linked glycan chains (residues 77, 87, and
(Accession No. XM_046677, SLC39A14). Potential TM domains are
ZT consensus motif (CEXPHEXGD, residues 375–384) is bold and an
n right refer to amino acid sequence and numbers on left refer to the



Fig. 2. Alignment of human LZT sequences across three TM domains: (A) Alignment across TM II with accession numbers in the left-hand column,
followed by LZT family name, gene name, SLC39 name, ZIP name and residue numbers. (B) Alignment across TM IV and V, indicating positions of
ZIP and LZT consensus sequence with dotted arrows. Residues coloured black and grey correspond to identical or complementary residues,
respectively. Asterisks highlight differences shared by ZIP14 and ZIP8 in otherwise well conserved residues. (C) Schematic of predicted secondary
structure of mutant ZIP14 proteins. TM domains are shaded barrels, numbers in hexagons are histidine residues and total residues are given on the
right side.
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102) by observing a reduced mass of all protein bands, includ-

ing the trimer bands, after treatment with PNGaseF (Fig. 3A).

3.3. Cellular location of ZIP14

In order for ZIP14 to act as a zinc influx transporter, it

would have to reside on the plasma membrane. This was dem-

onstrated (Fig. 3B) on coverslips containing non-permeabilised

ZIP14-transfected CHO cells, with particular dense staining in

regions of cell–cell contact. The TM7 and TM3 deletion mu-

tants exhibited the same cellular location (results not shown),

indicating that the loss of TM regions did not alter the cellular

processing.

3.4. Zinc transport analysis

Transfected CHO cells in suspension were loaded with the

cell permeant zinc-specific fluorescent indicator Newport

Green diacetate [20] and tested for their ability to uptake zinc.

We compared the ZIP14 expressing cells with those expressing

LIV-1, another LZT family member previously shown to

transport zinc [8]. The intracellular zinc concentration

([Zn2+]i) of cells transiently expressing either LIV-1 or ZIP14

increased in response to increasing extracellular zinc concen-
tration (Fig. 4A) and was abolished by addition of the zinc

chelator, TPEN (results not shown), confirming the zinc-spec-

ificity of the Newport Green. However, without addition of

extracellular zinc only LIV-1 expressing cells had an [Zn2+]i
greater than the control. The expression level of ZIP14 is con-

siderably greater than that of LIV-1 (Fig. 3B), therefore no

quantitative comparison can be drawn between ZIP14 and

LIV-1 zinc uptake ability. Interestingly, the ZIP14 mutants

lacking 1 or 5 TM domains (TM7 and TM3) were similar to

control cells, suggesting a requirement for all TM domains

for zinc transport. This ability of ZIP14 expressing cells to in-

crease intracellular zinc was temperature-dependant as there

was no evidence of cellular zinc accumulation when these

experiments were repeated at 4 �C (results not shown).

3.5. Tissue distribution of ZIP14 expression

The multiple tissue expression array (Fig. 4B) shows ubiqui-

tous expression of ZIP14 with increased expression in Liver

(A9), Pancreas (B9), Foetal liver (D11), Thyroid gland (D9),

Left ventricle (E4), Right atrium (D4), Right ventricle (F4)

and Foetal heart (B11). Of particular interest is the general

expression of ZIP14 in the heart (Lanes 4A–H), intestine



Fig. 3. Western blot and fluorescent microscopy of recombinant ZIP14: (A) Western blot with V5 antibody of CHO cells transiently expressing ZIP14
wild type (WT) and mutant (TM7 and TM3) proteins compared to control CHO cells (CHO) in non-reducing (NR) or reducing (R) conditions.
Treatment with PNGaseF (+) or not (�) is indicated (PNG). (B) Comparison of fluorescent microscopy of CHO cells stained with propidium iodide
(red) and transfected with LIV-1 or ZIP14 probed with anti-V5 antibody (green).
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(Lanes 5A–H and 6A–C) and liver (Lane A9) which were neg-

ative for LIV-1 [8] and general low expression in the brain

(Lanes 1–3) which was positive for LIV-1 [8].
4. Discussion

Expression of human ZIP14 protein in mammalian cells has

enabled us to show that, firstly, ZIP14 is closely related to the

previously described ZIP transporters [5,6], known as zinc in-

flux transporters. Secondly, ZIP14 expression in cells increases

the zinc uptake ability in a temperature-dependant manner

from its location on the plasma membrane. These results are

compatible with ZIP14 transporting zinc into cells via a car-

rier-mediated transport process.

This is the first demonstration of zinc influx ability of a hu-

man LZT protein containing an altered signature motif,

namely EEXPHEXGD, in place of HEXPHEXGD. This re-

sult agrees with BIGM103, another human LZT family mem-

ber, ZIP8 [9], containing the same motif as ZIP14 in TM V

(Fig. 2B) located on intracellular membranes and transporting

zinc into the cytosol. This result suggests that the histidine res-

idue in TM V, thought to be quintessential for other zinc trans-

porters [14], may not be necessary for zinc transport function

in LZT proteins, although a definite conclusion is not possible

without now mutating individual residues. Interestingly, the

glutamic acid residue replacing the histidine in TM V (Fig.

2B, residue 382) is a residue capable of co-ordinating zinc
[18]. This result confirms the inclusion of ZIP14 in the LZT

subfamily of ZIP transporters by its ability to transport zinc

into cells and justifies the inclusion of other proteins with the

signature motif EEXPHEXGD, such as ZIP8 [9]. These results

show increased intracellular zinc-dependant fluorescence in

cells transfected with ZIP14, which is not present in the

CHO controls. Although this suggests the ability to uptake

zinc across the plasma membrane, especially in the presence

of increased extracellular zinc, we are unable to rule out other

effects such as an ability of these proteins to reorganise the

pool of intracellular zinc available to the Newport Green

dye. The previous judgement by us that ZIP14 did not have

the ability to transport zinc [6] is also consistent with the result

reported here. These previous experiments did not investigate

the effect of increasing extracellular zinc and, as demonstrated

in Fig. 4A, in the absence of extracellular zinc, the ZIP14

expressing cells do not show any increased fluorescence above

controls.

The observed intracellular zinc concentrations were calcu-

lated to be 90 and 350 nM for control and LIV-1 or ZIP14

transfected cells, respectively. The Newport Green dye that

was used for these experiments has a Kd of 1 lM. Therefore,

further detailed investigations of zinc concentrations may be

enhanced by the use of new zinc dyes with lower Kd for zinc.

It is noteworthy that both ZIP14 and ZIP8, apart from the

above variation in TM V, also have a glutamine in place of

a conserved histidine in TM II, and a serine and cysteine in

place of two otherwise conserved glycine residues in TM II



Fig. 4. Zinc transport ability and tissue distribution of recombinant
ZIP14: (A) The variation of intracellular zinc concentration with
extracellular zinc concentration in CHO cells transiently transfected
with no DNA (CHO, hollow squares), LIV-1 (solid squares), or ZIP14
(solid triangles) and mutants (hollow triangles with full line (TM7) and
dotted line (TM3)). Cells were loaded with Newport Green and mean
fluorescence was read by FACS. (B) Autoradiograph of a human
multi-tissue expression array hybridised with a ZIP14 specific cDNA
probe. Highest levels of expression are observed in Liver (A9),
Pancreas (B9), Foetal liver (D11), Thyroid gland (D9), Left ventricle
(E4), Right atrium (D4), Right ventricle (F4) and Foetal heart (B11),
though it is observed that ZIP14 is ubiquitously expressed. Tissues
represented on the human multi-tissue expression array have been
described previously [8].
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and IV (Fig. 2, asterisks). This is consistent with our previous

suggestion that the conserved histidine in TM II may act in

concert with the conserved histidine in TM V in transporting

zinc [6].

Interestingly, the ability of ZIP14 to transport zinc suggests

minimal involvement of histidine-rich repeats. Unlike other

human LZT sequences, ZIP14 only contains (HX)4 and

BIGM103 only contains 2(HX)2 [6] in the loop between TM

III and TM IV. This is in keeping with ZIP transporters other

than LZT sequences that only require 3 histidines in a (HX) re-

peat to transport zinc [5,14]. The failure of ZIP14 mutant lack-

ing only TM8 to transport zinc suggests an important role for

all TM domains in this process. Although these mutated pro-

teins located to the plasma membrane, we cannot rule out

alterations in protein processing caused by the absent residues.

The observed plasma membrane location and presence of

glycan chains on ZIP14 are consistent with an extracellular

topology for the N-terminus. The remaining presence of dou-

ble bands after PNGaseF treatment (Fig. 3A) discounts glyco-

sylation variation as the cause. There are no alternative

methionine translation start sites in the N-terminus of

ZIP14, however, translation can rarely initiate at leucine resi-
dues of which there are 12 in the initial 200 residues of this se-

quence [21].

The observed tissue expression of ZIP14, in combination

with observations of other LZT proteins [6–11], is consistent

with the tissue specific expression of these family members.

Recently, LIV-1 has been shown to be essential for the

epithelial–mesenchymal transition (EMT) required in zebrafish

development [22]. Particularly, LIV-1 was the downstream tar-

get of STAT3 and also essential for the nuclear localisation of

Snail, a prerequisite of EMT. The other human LIV-1 family

members, such as ZIP14, should now be investigated to

determine if they also have such a role.

In conclusion, we demonstrate the zinc influx ability of a no-

vel human LZT family member, ZIP14, which lacks a histidine

residue, previously thought to be quintessential, raising the

question of which residues are actually essential for zinc trans-

port. Given the increasing evidence of an important role for

dysregulation of zinc and involvement of LZT family members

in disease states (notably, LIV-1 in breast cancer and hZIP4 in

acrodermatitis enteropathica), it is essential that any relation-

ship of their expression to aberrant cell biology is now

addressed.
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