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a b s t r a c t

The aim of this paper is convergence study of homotopy perturbation method for systems
of nonlinear partial differential equations. The sufficient condition for convergence of the
method is addressed. Sincemathematicalmodeling of numerous scientific and engineering
experiments lead to Brusselator and Burgers’ system of equations, it is worth trying
new methods to solve these systems. We construct a new efficient recurrent relation to
solve nonlinear Burgers’ and Brusselator systems of equations. Comparison of the results
obtained by homotopy perturbation method with those of Adomian’s decomposition
method and dual-reciprocity boundary element method leads to significant consequences.
Two standard problems are used to validate the method.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Reaction–diffusion Brusselator prepares a useful model for studying the cooperative processes in chemical kinetics. Such
a trimolecular reaction step arises in the formation of ozone by atomic oxygen via a triple collision. This system governs
also in enzymatic reactions, in plasma and laser physics, and in multiple couplings between certain modes [1,2]. Burgers’
equation is used to describe various kinds of phenomena such as turbulence and the approximation theory of flow through
a shock wave traveling in a viscous fluid [3,4]. Numerical methods which are commonly used such as finite difference, finite
element or characteristics method need large size of computational works and usually the effect of round-off error causes
loss of accuracy in the results. Analytical methods commonly used for solving these equations are very restricted and can
be used in very special cases, so they cannot be used to solve equations of numerous realistic scenarios.
The homotopy perturbation method was introduced by He [5–10] in the year 1998. In this method the solution is

considered as the summation of an infinite series which converges rapidly to the exact solutions. This technique has been
employed to solve a large variety of linear and nonlinear equations. This scheme is used for solving nonlinear boundary
value problems [11], nonlinear fractional partial differential equations [12], and nonlinear Hirota–Satsuma coupled KdV
partial differential equations [13]. Thismethod is also adopted for solving the pure strongnonlinear second-order differential
equations [14]. Also this author employed the homotopy-perturbation method for solving the complex-valued differential
equations with strong cubic nonlinearity [15]. Some other applications of this method are as follows: application of He’s
homotopy perturbation method is described to solve nonlinear integro-differential equations [16], for traveling wave
solutions of nonlinear wave equations [17], nonlinear convective–radioactive cooling equation, nonlinear heat equations
(porous media equation) and nonlinear heat equations with cubic nonlinearity [18]. The authors of [19] employed He’s
homotopy perturbationmethod to compute an approximation to the solution of the systemof nonlinear ordinary differential
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equations governing the problem of the spread of a nonfatal disease in a population which is assumed to have constant size
over the period of the epidemic. In general, this method has been successfully applied to solve many types of linear and
nonlinear problems in science and engineering by many authors [20–30].
The rest of this paper is organized as follows:
Section 2 is assigned to a brief introduction and convergence of the homotopy perturbation method. In Section 3,

Brusselator and Burgers’ equations have been solved by the proposed method. To illustrate and show the efficiency of the
method two examples are presented in Section 4. And conclusions will appear in Section 5.

2. Homotopy perturbation method and convergence of the method

The essential idea of this method is to introduce a homotopy parameter, say p, which takes the values from 0 to 1. When
p = 0., the system of equations is in sufficiently simplified form, which normally admits a rather simple solution. As p
gradually increases to 1, the system goes through a sequence of ‘‘deformation’’, the solution of each of which is ‘‘close’’ to
that at the previous stage of ‘‘deformation’’. Eventually at p = 1, the system takes the original form of equation and the final
stage of ‘‘deformation’’ gives the desired solution.
To illustrate the basic concept of homotopy perturbationmethod, consider the following nonlinear system of differential

equations

A(U) = f (r), r ∈ Ω, (1)

with boundary conditions

B
(
U,
∂U
∂n

)
= 0, r ∈ Γ ,

where A is a differential operator, B is a boundary operator, f (r) is a known analytic function, and Γ is the boundary of the
domainΩ . Generally speaking the operator A can be divided into two parts L and N , where L is a linear, and N is a nonlinear
operator. Eq. (1), therefore, can be rewritten as follows:

L(U)+ N(U)− f (r) = 0.

We construct a homotopy V(r, p) : Ω × [0, 1] → Rn, which satisfies

H(V, p) = (1− p) [L(V)− L(U0)]+ p [A(V)− f (r)] = 0, p ∈ [0, 1], r ∈ Ω,

or equivalently,

H(V, p) = L(V)− L(U0)+ pL(U0)+ p[N(V)− f (r)] = 0, (2)

where U0 is an initial approximation of Eq. (1). In this method, using the homotopy parameter p, we have the following
power series presentation for V,

V = V0 + pV1 + p2V2 + · · · .

The approximate solution can be obtained by setting p = 1, i.e.

U = lim
p→1

V = U0 + U1 + U2 + · · · .

Convergence
Let us write Eq. (2) in the following form

L(V) = L(U0)+ p [f (r)− N(V)− L(U0)]. (3)

Applying the inverse operator, L−1 to both sides of Eq. (3), we obtain

V = U0 + p
[
L−1f (r)− L−1N(V)− U0

]
. (4)

Suppose that

V =
∞∑
i=0

pivi, (5)

substituting (5) into the right-hand side of Eq. (4), we have Eq. (4) in the following form

V = U0 + p

[
L−1f (r)−

(
L−1N

) [ ∞∑
i=0

pivi

]
− U0

]
.
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If p→ 1, the exact solution may be obtained by using

U = lim
p→1

V

= L−1 (f (r))−
(
L−1N

) [ ∞∑
i=0

vi

]

= L−1 (f (r))−
∞∑
i=0

(
L−1N

)
(vi).

To study the convergence of the method let us state the following Theorem.

Theorem (Sufficient Condition of Convergence). Suppose that X and Y are Banach spaces and N : X → Y is a contractive
nonlinear mapping, that is

∀w, w∗ ∈ X; ‖N(w)− N(w∗)‖ ≤ γ ‖w−w∗‖, 0 < γ < 1.

Then according to Banach’s fixed point theorem N has a unique fixed point u, that is N(u) = u.
Assume that the sequence generated by homotopy perturbation method can be written as

Wn = N(Wn−1), Wn−1 =

n−1∑
i=0

wi, n = 1, 2, 3, . . . ,

and suppose that W0 = w0 ∈ Br(w) where Br(w) = {w∗ ∈ X |‖ w∗ −w‖ < r}, then we have

(i)Wn ∈ Br(w),
(ii) lim

n→∞
Wn = w.

Proof. (i) By inductive approach, for n = 1 we have

‖W1 −w‖ = ‖N(W0)− N(w)‖ ≤ γ ‖w0 −w‖.

Assume that ‖Wn−1 −w‖ ≤ γ n−1‖w0 −w‖, as induction hypothesis, then

‖Wn −w‖ = ‖N(Wn−1)− N(w)‖ ≤ γ ‖Wn−1 −w‖ ≤ γ n‖w0 −w‖.

Using (i), we have

‖Wn −w‖ ≤ γ n‖w0 −w‖ ≤ γ nr < r ⇒ Wn ∈ Br(w).

(ii) Because of ‖Wn −w‖ ≤ γ n ‖w0 −w‖ and limn→∞ γ n = 0, limn→∞ ‖Wn −w‖ = 0, that is,

lim
n→∞

Wn = w. �

3. Method of solution

3.1. Two-dimensional Burgers’ equation

Consider the following system of two-dimensional Burgers’ equations [4].

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
=
1
R

(
∂2u
∂x2
+
∂2u
∂y2

)
,

∂u
∂t
+ u

∂v

∂x
+ v

∂v

∂y
=
1
R

(
∂2v

∂x2
+
∂2v

∂y2

)
,

(6)

subject to the initial conditions:

u(x, y, 0) = f (x, y), (x, y) ∈ Ω,
v(x, y, 0) = g(x, y), (x, y) ∈ Ω, (7)

and the boundary conditions

u(x, y, t) = f1(x, y, t), x, y ∈ Γ , t > 0,
v(x, y, t) = f2(x, y, t), x, y ∈ Γ , t > 0, (8)

whereΩ = {(x, y) | a ≤ x ≤ b, a ≤ y ≤ b} and Γ is its boundary, u(x, y, t) and v(x, y, t) are the velocity components to be
determined, f , g, f1 and f2 are known functions and R is the Reynolds number.
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To solve Eq. (6)with initial conditions (7), according to the homotopyperturbation,we construct the followinghomotopy:

(1− p)
(
∂U∗

∂t
−
∂u0
∂t

)
+ p

(
∂U∗

∂t
+ U∗

∂U∗

∂x
+ V ∗

∂U∗

∂y
−
1
R

(
∂2U∗

∂x2
+
∂2U∗

∂y2

))
= 0,

(1− p)
(
∂V ∗

∂t
−
∂v0

∂t

)
+ p

(
∂V ∗

∂t
+ U∗

∂V ∗

∂x
+ V ∗

∂V ∗

∂y
−
1
R

(
∂2V ∗

∂x2
+
∂2V ∗

∂y2

))
= 0.

(9)

Suppose the solution of Eq. (9) has the form

U∗ = U∗0 + pU
∗

1 + p
2U∗2 + · · · ,

V ∗ = V ∗0 + pV
∗

1 + p
2V ∗2 + · · · .

(10)

Substituting (10) into (9), and comparing coefficients of the terms with the identical powers of p, lead to

p0 :


∂U∗0
∂t
−
∂u0
∂t
= 0,

∂V ∗0
∂t
−
∂v0

∂t
= 0,

p1 :


∂U∗1
∂t
+
∂u0
∂t
+ U∗0

∂U∗0
∂x
+ V ∗0

∂U∗0
∂y
−
1
R

(
∂2U∗0
∂x2
+
∂2U∗0
∂y2

)
= 0, U∗1 (x, y, 0) = 0,

∂V ∗1
∂t
+
∂v0

∂t
+ U∗0

∂V ∗0
∂x
+ V ∗0

∂V ∗0
∂y
−
1
R

(
∂2V ∗0
∂x2
+
∂2V ∗0
∂y2

)
= 0, V ∗1 (x, y, 0) = 0,

...

pj :


∂U∗j
∂t
+

j−1∑
k=0

(
U∗k
∂U∗j−k−1
∂x

+ V ∗k
∂U∗j−k−1
∂y

)
−
1
R

(
∂2U∗j−1
∂x2

+
∂2U∗j−1
∂y2

)
= 0, U∗j (x, y, 0) = 0,

∂V ∗j
∂t
+

j−1∑
k=0

(
U∗k
∂V ∗j−k−1
∂x

+ V ∗k
∂V ∗j−k−1
∂y

)
−
1
R

(
∂2V ∗j−1
∂x2

+
∂2V ∗j−1
∂y2

)
= 0, V ∗j (x, y, 0) = 0.

For the sake of simplicity we take

U∗0 = u0 = f (x, y), V ∗0 = v0 = g(x, y). (11)

And we derive the following recurrent equations

U∗j =
1
R

∫ t

0

(
∂2U∗j−1
∂x2

+
∂2U∗j−1
∂y2

)
dt −

∫ t

0

j−1∑
k=0

(
U∗k
∂U∗j−k−1
∂x

+ V ∗k
∂U∗j−k−1
∂y

)
dt, j = 1, 2, . . .

V ∗j =
1
R

∫ t

0

(
∂2V ∗j−1
∂x2

+
∂2V ∗j−1
∂y2

)
dt −

∫ t

0

j−1∑
k=0

(
U∗k
∂V ∗j−k−1
∂x

+ V ∗k
∂V ∗j−k−1
∂y

)
dt, j = 1, 2, . . . .

(12)

The approximate solution of (6) can be obtained by setting p = 1,

u = lim
p→1
U∗ = U∗0 + U

∗

1 + U
∗

2 + · · · ,

v = lim
p→1
V ∗ = V ∗0 + V

∗

1 + V
∗

2 + · · · .
(13)

3.2. The reaction–diffusion Brusselator system

Consider the following system of two-dimensional Brusselator system [2].
∂u
∂t
= B+ u2v − (A+ 1)u+ α

(
∂2u
∂x2
+
∂2u
∂y2

)
∂v

∂t
= Au− u2v + α

(
∂2v

∂x2
+
∂2v

∂y2

)
.

(14)

For u(x, y, t) and v(x, y, t) in a two-dimensional region Ω bounded by a simple closed curve Γ subject to the initial
conditions:

(u(x, y, t), v(x, y, t)) = (f (x, y), g(x, y)) for (x, y) ∈ Ω, (15)

and the boundary conditions:
(u(x, y, t), v(x, y, t)) = (w(x, y, t), z(x, y, t)) for (x, y) ∈ Γ1 and t > 0, (16)(
∂u
∂n
,
∂v

∂n

)
= (p(x, y, t), q(x, y, t)) for (x, y) ∈ Γ2 and t > 0, (17)



J. Biazar, H. Aminikhah / Computers and Mathematics with Applications 58 (2009) 2221–2230 2225

where A, B and α are suitable given constants, f , g, w, z, p and q are suitably prescribed functions, Γ1 and Γ2 are
nonintersecting curves such thatΓ1∪Γ2 = C, ∂u

∂n = En.∇v and En is the unit normal outward vector R at the point (x, y) onΓ .
To solve Eq. (14) with initial condition (15), according to the homotopy perturbation, we construct the following

homotopy
(1− p)

(
∂U∗

∂t
−
∂u0
∂t

)
+ p

(
∂U∗

∂t
− B− U∗2V ∗ + (A+ 1)U∗ − α

(
∂2U∗

∂x2
+
∂2U∗

∂y2

))
= 0,

(1− p)
(
∂V ∗

∂t
−
∂v0

∂t

)
+ p

(
∂V ∗

∂t
− AU∗ + U∗2V ∗ − α

(
∂2U∗

∂x2
+
∂2U∗

∂y2

))
= 0

(18)

or equivalently
∂U∗

∂t
−
∂u0
∂t
+ p

(
−B− U∗2V ∗ + (A+ 1)U∗ − α

(
∂2U∗

∂x2
+
∂2U∗

∂y2

)
+
∂u0
∂t

)
= 0,

∂V ∗

∂t
−
∂v0

∂t
+ p

(
−AU∗ + U∗2V ∗ − α

(
∂2U∗

∂x2
+
∂2U∗

∂y2

)
+
∂v0

∂t

)
= 0.

(19)

Suppose that the solution of Eq. (19) has the form (10), substituting (10) into (19), and comparing coefficients of the terms
with the identical powers of p, lead to

p0 :


∂U∗0
∂t
−
∂u0
∂t
= 0,

∂V ∗0
∂t
−
∂v0

∂t
= 0,

p1 :


∂U∗1
∂t
−
∂u0
∂t
− B− U∗20 V

∗

0 + (A+ 1)U
∗

0 − α

(
∂2U∗0
∂x2
+
∂2U∗0
∂y2

)
= 0, U∗1 (x, y, 0) = 0,

∂V ∗1
∂t
−
∂v0

∂t
− AU∗0 + U

∗2
0 V
∗

0 − α

(
∂2U∗0
∂x2
+
∂2U∗0
∂y2

)
= 0, V ∗1 (x, y, 0) = 0,

p2 :


∂U∗2
∂t
− 2U∗0U

∗

1V
∗

0 − U
2
0V1 + (A+ 1)U

∗

1 − α

(
∂2U∗1
∂x2
+
∂2U∗1
∂y2

)
= 0, U∗2 (x, y, 0) = 0,

∂V ∗2
∂t
− AU∗1 + 2U

∗

0U
∗

1V
∗

0 + U
∗2
0 V
∗

1 − α

(
∂2U∗1
∂x2
+
∂2U∗1
∂y2

)
= 0, V ∗2 (x, y, 0) = 0,

...

pj :


∂U∗j
∂t
−

j∑
i=0

j−1∑
k=0

U∗i U
∗

k V
∗

j−k−i−1
+ (A+ 1)U∗j−1 − α

(
∂2U∗j−1
∂x2

+
∂2U∗j−1
∂y2

)
= 0, U∗j (x, y, 0) = 0,

∂V ∗j
∂t
− AU∗j−1 +

j∑
i=0

j−1∑
k=0

U∗i U
∗

k V
∗

j−k−i−1 − α

(
∂2U∗j−1
∂x2

+
∂2U∗j−1
∂y2

)
= 0, V ∗j (x, y, 0) = 0.

For simplicity we take

u0 = U∗0 = f (x, y)+ Bt, v0 = V ∗0 = g(x, y). (20)

And we have the following recurrent equations

U∗j =
∫ t

0

[
−(A+ 1)U∗j−1 + α

(
∂2U∗j−1
∂x2

+
∂2U∗j−1
∂y2

)
+

j∑
i=0

j−1∑
k=0

U∗i U
∗

k V
∗

j−k−i−1

]
dt, j = 1, 2, 3, . . . ,

V ∗j =
∫ t

0

[
−AU∗j−1 + α

(
∂2U∗j−1
∂x2

+
∂2U∗j−1
∂y2

)
−

j∑
i=0

j−1∑
k=0

U∗i U
∗

k V
∗

j−k−i−1

]
dt, j = 1, 2, 3, . . . .

(21)

The approximate solution of (14) can be obtained by setting p = 1,

u = lim
p→1
U∗ = U∗0 + U

∗

1 + U
∗

2 + · · · ,

v = lim
p→1
V ∗ = V ∗0 + V

∗

1 + V
∗

2 + · · · .
(22)



2226 J. Biazar, H. Aminikhah / Computers and Mathematics with Applications 58 (2009) 2221–2230

4. Test problems

To illustrate the method and to show the ability of the method two examples are presented here.

Example 1. Consider the two-dimensional Burgers’ equations (6), (R = 1)with the following initial conditions:

u(x, y, 0) = x+ y, v(x, y, 0) = x− y and (x, y, t) ∈ R2 ×
[
0,
1
√
2

)
.

By using He’s homotopy perturbation method, we have

∂U∗

∂t
−
∂u0
∂t
= p

((
∂2U∗

∂x2
+
∂2U∗

∂y2

)
− U∗

∂U∗

∂x
− V ∗

∂U∗

∂y
−
∂u0
∂t

)
,

∂V ∗

∂t
−
∂v0

∂t
= p

((
∂2V ∗

∂x2
+
∂2V ∗

∂y2

)
− U∗

∂V ∗

∂x
− V ∗

∂V ∗

∂y
−
∂v0

∂t

)
.

Starting with

u0 = U∗0 = x+ y,
v0 = V ∗0 = x− y,

from (12), we obtain the following recurrent relations:

U∗j =
∫ t

0

(
∂2U∗j−1
∂x2

+
∂2U∗j−1
∂y2

−

j−1∑
k=0

(
U∗k
∂U∗j−k−1
∂x

+ V ∗k
∂U∗j−k−1
∂y

))
dt, j = 1, 2, 3, . . .

V ∗j =
∫ t

0

(
∂2V ∗j−1
∂x2

+
∂2V ∗j−1
∂y2

−

j−1∑
k=0

(
U∗k
∂V ∗j−k−1
∂x

+ V ∗k
∂V ∗j−k−1
∂y

))
dt, j = 1, 2, 3, . . . .

Then we derive the following results

U∗1 (x, t) = −2xt, V ∗1 (x, t) = −2yt,
U∗2 (x, t) = 2xt

2
+ 2yt2, V ∗2 (x, t) = 2xt

2
− 2yt2,

U∗3 (x, t) = −4xt
3, V ∗3 (x, t) = −2yt

3,

U∗4 (x, t) = 2xt
4
+ 2yt4, V ∗4 (x, t) = 2xt

4
− 2yt4,

U∗5 (x, t) = −8xt
5, V ∗5 (x, t) = −8xt

5,
...

...

Suppose that

Wn = N (Wn−1), Wn−1 = (W ∗n−1,W
∗∗

n−1),

W ∗0 = U
∗

0 + U
∗

1 , W ∗n =
2n+1∑
j=0

∫ t

0

(
∂2U∗j−1
∂x2

+
∂2U∗j−1
∂y2

−

j−1∑
k=0

(
U∗k
∂U∗j−k−1
∂x

+ V ∗k
∂U∗j−k−1
∂y

))
dt, n = 1, 2, . . . ,

W ∗∗0 = V
∗

0 + V
∗

1 , W ∗∗n =
2n+1∑
j=0

∫ t

0

(
∂2V ∗j−1
∂x2

+
∂2V ∗j−1
∂y2

−

j−1∑
k=0

(
U∗k
∂V ∗j−k−1
∂x

+ V ∗k
∂V ∗j−k−1
∂y

))
dt, n = 1, 2, . . .

and t ≤
√
γ

2 , 0 < γ < 1.
According to the Theorem for the nonlinear mapping N , a sufficient condition for convergence of the homotopy

perturbation method is the strict contraction ofN . Therefore we have

‖W ∗0 − u‖ =
∥∥∥∥ −2t21− 2t2

(x+ y− 2xt)
∥∥∥∥ ,

‖W ∗1 − u‖ =
∥∥∥∥ −4t21− 2t2

(x+ y− 2xt)
∥∥∥∥ ≤ 2(√γ2

)2 ∥∥∥∥ 2t2

1− 2t2
(x+ y− 2xt)

∥∥∥∥ = γ ‖W ∗0 − u‖,
‖W ∗2 − u‖ =

∥∥∥∥ −8t21− 2t2
(x+ y− 2xt)

∥∥∥∥ ≤ 4(√γ2
)4 ∥∥∥∥ 2t2

1− 2t2
(x+ y− 2xt)

∥∥∥∥ = γ 2‖W ∗0 − u‖,
...

‖W ∗n − u‖ =
∥∥∥∥−2n+1t2n+21− 2t2

(x+ y− 2xt)
∥∥∥∥ ≤ 2n (√γ2

)2n ∥∥∥∥ 2t2

1− 2t2
(x+ y− 2xt)

∥∥∥∥ = γ n‖W ∗0 − u‖.
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Therefore, limn→∞ ‖W ∗n − u‖ ≤ limn→∞ γ
n
‖W0 − u‖ = 0, that is u(x, y, t) = limn→∞W ∗n =

x+y−2xt
1−2t2

, which is an exact
solution.
Similarly,

‖W ∗∗n − v‖ =
∥∥∥∥−2n+1t2n+21− 2t2

(x+ y− 2yt)
∥∥∥∥ ≤ 2n (√γ2

)2n ∥∥∥∥ 2t2

1− 2t2
(x+ y− 2yt)

∥∥∥∥ = γ n‖W ∗∗0 − v‖.
Therefore, v(x, y, t) = limn→∞W ∗∗n =

x+y−2yt
1−2t2

, which is an exact solution.

Example 2. Consider the two-dimensional Brusselator system [2]:

∂u
∂t
= u2v − 2u+

1
4

(
∂2u
∂x2
+
∂2u
∂y2

)
,

∂v

∂t
= u− u2v +

1
4

(
∂2v

∂x2
+
∂2v

∂y2

)
,

(23)

subject to the initial conditions

u(x, y, 0) = exp[−x− y], v(x, y, 0) = exp[x+ y] and (x, y, t) ∈ R2 × [0, 2].

The exact solution is u(x, y, t) = exp
[
−x− y− t

2

]
, v(x, y, t) = exp

[
x+ y+ t

2

]
.

By using the homotopy perturbation method, we have

(1− p)
(
∂U∗

∂t
−
∂u0
∂t

)
+ p

(
∂U∗

∂t
− U∗2V ∗ + 2U∗ −

1
4

(
∂2U∗

∂x2
+
∂2U∗

∂y2

))
= 0,

(1− p)
(
∂V ∗

∂t
−
∂v0

∂t

)
+ p

(
∂V ∗

∂t
− U∗ + U∗2V ∗ −

1
4

(
∂2V ∗

∂x2
+
∂2V ∗

∂y2

))
= 0.

Starting with u0 = U∗0 = exp[−x− y] and v0 = V
∗

0 = exp[x+ y], from (21), we obtain the recurrence relation

U∗j =
∫ t

0

[
−2U∗j−1 +

1
4

(
∂2U∗j−1
∂x2

+
∂2U∗j−1
∂y2

)
+

j∑
i=0

j−1∑
k=0

U∗i U
∗

k V
∗

j−k−i−1

]
dt, j = 1, 2, 3, . . . ,

V ∗j =
∫ t

0

[
U∗j−1 +

1
4

(
∂2V ∗j−1
∂x2

+
∂2V ∗j−1
∂y2

)
−

j∑
i=0

j−1∑
k=0

U∗i U
∗

k V
∗

j−k−i−1

]
dt, j = 1, 2, 3, . . . .

Then we drive the following results

U∗1 (x, t) =
1
2
t exp[−x− y] =

1
211!

t exp[−x− y], V ∗1 (x, t) =
1
2
t exp[x+ y] =

1
211!

t exp[x+ y],

U∗2 (x, t) =
1
8
t2 exp[−x− y] =

1
222!

t2 exp[−x− y], V ∗2 (x, t) =
1
8
t2 exp[x+ y] =

1
222!

t2 exp[x+ y],

U∗3 (x, t) =
1
48
t3 exp[−x− y] =

1
233!

t3 exp[−x− y], V ∗3 (x, t) =
1
48
t3 exp[x+ y] =

1
233!

t3 exp[x+ y],

U∗4 (x, t) =
1
384
t4 exp[−x− y] =

1
244!

t4 exp[−x− y], V ∗4 (x, t) =
1
384
t4 exp[x+ y] =

1
244!

t4 exp[x+ y],
...

Suppose that

Wn = N(Wn−1), Wn−1 = (Un−1, Vn−1),

U0 = U∗0 = u0, Un =
n∑
j=0

∫ t

0

[
−2U∗j +

1
4

(
∂2U∗j
∂x2
+
∂2U∗j
∂y2

)
+

j∑
i=0

j∑
k=0

U∗i U
∗

k V
∗

j−k−i

]
dt, n = 1, 2, . . . ,

V0 = V ∗0 = v0, Vn =
n∑
j=0

∫ t

0

[
U∗j +

1
4

(
∂2V ∗j
∂x2
+
∂2V ∗j
∂y2

)
−

j∑
i=0

j∑
k=0

U∗i U
∗

k V
∗

j−k−i

]
dt, n = 1, 2, . . . .

According to the Theorem for the nonlinearmappingN , a sufficient condition for convergence of the homotopy perturbation
method is the strict contraction ofN . Therefore we have

‖u0 − u‖ =
∥∥∥∥exp[−x− y](1− exp [− t2

])∥∥∥∥ ,
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‖U1 − u‖ =
∥∥∥∥exp[−x− y](1− t2 − exp

[
−
t
2

])∥∥∥∥
≤

∥∥∥∥exp[−x− y](1− exp [− t2
])∥∥∥∥

∥∥∥∥∥1− t
2
(
1− exp

[
−
t
2

])∥∥∥∥∥ .
Because, for all t ∈ [0, 2]we have,

∥∥∥1− t
2(1−exp[− t2 ])

∥∥∥ ≤ γ = 0.582 < 1, it follows that,
‖U1 − u‖ ≤ γ

∥∥∥∥exp[−x− y](1− exp [− t2
])∥∥∥∥ = γ ‖v0 − u‖,

‖U2 − u‖ =
∥∥∥∥exp[−x− y](1− t2 + t28 − exp

[
−
t
2

])∥∥∥∥
≤

∥∥∥∥exp[−x− y](1− t2 − exp
[
−
t
2

])∥∥∥∥
∥∥∥∥∥
(
1+

t2

8
(
1− t

2 − exp
[
−
t
2

]))∥∥∥∥∥ .
∀t ∈ [0, 2],

∥∥∥(1+ t2

8(1− t2−exp[− t2 ])

)∥∥∥ ≤ 0.359 < γ , thus, ‖U2 − u‖ ≤ γ 2‖u0 − u‖.

‖U3 − u‖ =
∥∥∥∥exp[−x− y](1− t2 + t28 − t348 − exp

[
−
t
2

])∥∥∥∥
≤

∥∥∥∥exp[−x− y](1− t2 + t28 − exp
[
−
t
2

])∥∥∥∥
∥∥∥∥∥∥
1− t3

48
(
1− t

2 +
t2
8 − exp

[
−
t
2

])
∥∥∥∥∥∥ .

∀t ∈ [0, 2],

∥∥∥∥∥
(
1− t3

48
(
1− t2+

t2
8 −exp[− t2 ]

)
)∥∥∥∥∥ ≤ 0.261 < γ , thus,

‖U3 − u‖ ≤ γ 3‖u0 − u‖
...

‖Un − u‖ ≤ γ n‖u0 − u‖.

Therefore, limn→∞ ‖Un − u‖ ≤ limn→∞ γ n‖u0 − u‖ = 0, that is

u(x, y, z, t) = lim
n→∞

Un = exp
[
−x− y−

t
2

]
.

Also,

‖v0 − v‖ =

∥∥∥∥exp[x+ y](1− exp [ t2
])∥∥∥∥ ,

‖V1 − v‖ =
∥∥∥∥exp[x+ y](1+ t2 − exp

[
t
2

])∥∥∥∥
≤

∥∥∥∥exp[x+ y](1− exp [ t2
])∥∥∥∥

∥∥∥∥∥1+ t
2
(
1− exp

[ t
2

])∥∥∥∥∥ .
For all t ∈ [0, 2]we have

∥∥∥1+ t
2(1−exp[ t2 ])

∥∥∥ ≤ γ = 0.418 < 1, therefore,
‖V1 − v‖ ≤ γ

∥∥∥∥exp[x+ y](1− exp [ t2
])∥∥∥∥ = γ ‖v0 − v‖,

‖V2 − v‖ =
∥∥∥∥exp[x+ y](1+ t2 + t28 − exp

[
t
2

])∥∥∥∥
≤

∥∥∥∥exp[x+ y](1+ t2 − exp
[
t
2

])∥∥∥∥
∥∥∥∥∥
(
1+

t2

8
(
1+ t

2 − exp
[ t
2

]))∥∥∥∥∥ .
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Also ∀t ∈ [0, 2],
∥∥∥(1+ t2

8(1+ t2−exp[ t2 ])

)∥∥∥ ≤ 0.304 < γ , thus, ‖V2 − v‖ ≤ γ 2‖v0 − v‖.

‖V3 − v‖ =
∥∥∥∥exp[x+ y](1+ t2 + t28 + t348 − exp

[
t
2

])∥∥∥∥
≤

∥∥∥∥exp[x+ y](1+ t2 + t28 − exp
[
t
2

])∥∥∥∥
∥∥∥∥∥∥
1+ t3

48
(
1+ t

2 +
t2
8 − exp

[ t
2

])
∥∥∥∥∥∥ .

Also ∀t ∈ [0, 2],

∥∥∥∥∥
(
1+ t3

48
(
1+ t2+

t2
8 −exp[ t2 ]

)
)∥∥∥∥∥ ≤ 0.236 < γ , thus,

‖V3 − v‖ ≤ γ 3‖v0 − v‖
...
‖Vn − v‖ ≤ γ n‖v0 − v‖.

Therefore, limn→∞ ‖Vn − v‖ ≤ limn→∞ γ n‖v0 − v‖ = 0, that is

v(x, y, t) = lim
n→∞

Vn = exp
[
x+ y+

t
2

]
.

5. Conclusion

In this work, we use homotopy perturbation method for solving Brusselator and Burgers’ equations. He’s homotopy
perturbation method is a powerful straightforward method. One important objective of our research is the examination
of the convergence of homotopy perturbation method. By using this method we obtain a new efficient recurrent relation
to solve nonlinear Brusselator and Burgers’ equations. The results show that homotopy perturbation method is a powerful
mathematical tool for solving systems of nonlinear partial differential equations having wide applications in science and
engineering. In comparison with Adomian decomposition method [1,4], in the present method there is no need to calculate
Adomian polynomials. In comparison with boundary element method [2], the size of computational work has been reduced
and rapid convergence has been guaranteed. Authors are working on the convergence of HPM, when applying for solving
other functional equations. The computations are done using Maple 10.
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