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Abstract

The TM-LPSAT planner can construct plans in domains containing atomic actions and durative
actions; events and processes; discrete, real-valued, and interval-valued fluents; reusable resources,
both numeric and interval-valued; and continuous linear change to quantities. It works in three stages.
In the first stage, a representation of the domain and problem in an extended version of PDDL+ is
compiled into a system of Boolean combinations of propositional atoms and linear constraints over
numeric variables. In the second stage, a SAT-based arithmetic constraint solver, such as LPSAT or
MathSAT, is used to find a solution to the system of constraints. In the third stage, a correct plan is
extracted from this solution. We discuss the structure of the planner and show how planning with
time and metric quantities is compiled into a system of constraints. The proofs of soundness and
completeness over a substantial subset of our extended version of PDDL+ are presented.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Numeric and geometric entities that change continuously in time are central features of
many domains, especially physical domains: the position of an object in space, the amount
of gasoline in a tank, the temperature of water in a pot, and so on. Early generations of
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domain-independent planners did not deal with numeric quantities at all, and even now
few planners deal with continuous change. The TM-LPSAT system described in this paper
is the first planner that uses the SAT-based planning methodology to deal with continuous
change, as well as many other aspects of numeric quantities.

Over the past decade, dozens of new powerful engines for propositional satisfiability
have become available [55] and are now being used in a broad range of applications. One
very successful application has been the development of SAT-based propositional planning,
in which a planning problem is compiled into a set of propositional constraints in such a
way that a solution to the constraints demarcates a valid plan [32,34,35]. Recently, a new
class of inference engines1 based on propositional satisfiability solvers has been developed
for systems of Boolean combinations of propositional atoms and linear constraints over
real-valued quantities [3,5,53].

In this paper, we show how the SAT-based planning framework can be extended, using
SAT-based arithmetic constraint solvers, to deal with domains that involve continuous time,
resources, and real-valued quantities.

The TM-LPSAT planner constructs plans in domains with the following features:

• The effects and preconditions of actions can involve discrete, real-valued, and interval-
valued fluents.

• An action can change the value of a real-valued fluent either continuously, as a linear
function of time, or discretely.

• An action may be either atomic or durative (taking place over an extended time inter-
val).

• An action may take real- or interval-valued parameters.
• Actions may be concurrent.
• Exogenous events may occur.
• Autonomous processes can be defined in the language.
• Processes that make a continuous change on the same fluent may be concurrent.
• Reusable resources, both numeric and interval-valued, can be defined in the language.

Fig. 1 shows the architecture of TM-LPSAT. The input to TM-LPSAT consists of a
domain description and a problem specification represented in PDDL+ [24,25] (more pre-
cisely, in a version of PDDL+ with certain restrictions and extensions as described in
Section 3). The compiler compiles the planning problem into a set of constraints, each
of which is a disjunction of propositional atoms and linear (in)equalities over numeric
variables. The set of constraints is passed to the SAT-based arithmetic constraint solver
which finds a solution if one exists. From the solution, the decoder extracts a valid plan.
The overall system is thus a powerful and elegant planner for a wide range of prob-
lems.

Our main contribution in TM-LPSAT has been the development of the compiler. From
our point of view, the constraint solver can be viewed a black box, that takes as input a set of

1 We will call these “SAT-based Arithmetic Constraint Solver” in this paper. They are also called “SAT-based
Decision Procedure” or “Theorem Prover” in the literature.
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Fig. 1. Architecture of TM-LPSAT.

constraints of the form described above and outputs a solution if one exists and a flag if no
solution exists. A number of different architectures for such a constraint solver are possible,
at least in principle; it could be complete or heuristic, deterministic or probabilistic. In
developing and testing TM-LPSAT, we have used two pre-existing SAT-based constraint
solvers, LPSAT [53] and MathSAT [3,9]. In Section 2.2 we discuss their architecture. In
Section 8 we will sketch a branch-and-bound architecture that would enable the solver to
solve optimization problems.

Two sample problems will illustrate the power of the TM-LPSAT planner, and will help
introduce the sample domains that we will discuss in Section 5:

Problem 1.1. An agent must deliver 5 gallons of water to a location LD. Currently the
agent is at a location LS 100 feet away, with two four-gallon buckets. At LS there is also a
tap that pours water at the rate of 0.1 gallons per second. The agent can move at 5 feet per
second.

The following plan will enable the agent to achieve his goal in a total of 70 seconds:
He turns on the tap and let it pours into bucket 1 for 10 seconds. Bucket 1 now holds 1
gallon. The agent turns off the tap, puts bucket 2 under the tap, and turns on the tap. Then,
he carries bucket 1 to LD, empties bucket 1 at LD, and returns to LS. The round trip takes
him 40 seconds, so bucket 2 now holds 4 gallons. He picks up bucket 2, carries it to LD,
and empties it.

If the agent can carry two buckets at once, then a simpler solution is possible: He pours
3 gallons into bucket 1, 2 gallons into bucket 2, carries them both to LD, and empties them,
again completing the task in 70 seconds.

Problem 1.2. A computer architecture uses variable-length partitions as its memory model;
that is, each job occupies a consecutive segment of RAM, which is fixed throughout the
lifetime of the job. The machine has 128M of RAM. The operating system needs to sched-
ule jobs with the following characteristics:
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Job Time Space
----------------------

A 100 80M
B 50 15M
C 120 20M
D 40 65M
E 100 20M
F 40 40M

Assume that the jobs are I/O bound, so that the time requirement is independent of how
many jobs are currently active.

The following plan completes all the jobs by time 160:

Job Start End Segment
-----------------------------

A 0 100 0-80
C 0 120 80-100
B 0 50 100-115
E 50 150 108-128
F 100 140 0-40
D 120 160 40-105

This paper is organized as follows. Section 2 reviews previous and related work, in-
cluding the work on SAT-based planning, SAT-based arithmetic constraint solvers, and
PDDL+, which we draw on in the construction of TM-LPSAT. Section 3 discusses the
extensions and restrictions we have made to PDDL+. Section 4 discusses the temporal on-
tology. Section 5 presents a few sample domains and planning problems that TM-LPSAT
can handle. Section 6, the core of our research, enumerates the rules for translating a prob-
lem in PDDL+ into a system of constraints. (Table 1 on page 210 contains a summary of
the constraints.) Section 7 discusses the soundness and completeness of our system. Sec-
tion 8 presents our conclusions and discusses future work. Appendix A gives a complete
listing of the PDDL+ definition of the “Bucket” domain and the problem described in
Problem 1.1. Appendix B gives the proof that TM-LPSAT is sound and complete over a
substantial subset of our extended version of PDDL+ Level 5.

2. Previous and related work

The TM-LPSAT planner builds on three foundations:

• SAT-based planning: In this planning paradigm, a planning problem represented in
a high-level planning language is compiled into a corresponding set of propositional
formulas. Solving the planning problem thus corresponds to solving the propositional
satisfiability problem (SAT) over these formulas.

• SAT-based arithmetic constraint solvers, constraint satisfaction engines that find solu-
tions to Boolean combinations of propositional atoms and linear (in)equalities.

• The PDDL+ specification language for planning domains and problems.
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Also related, though not directly used in TM-LPSAT, are

• Other planning paradigms for dealing with metric time and numeric quantities.
• Other automated reasoning applications that deal with continuous change.

We will discuss in turn each of these categories of previous work and their relation to
TM-LPSAT.

2.1. Planning as propositional satisfiability

The architecture of a SAT-based propositional planner is shown in Fig. 2. The idea of
SAT-based propositional planning [32,34,35] is to convert a planning problem in a domain
with discrete actions and fluents2 with discrete values into a set of propositional constraints.
This is done as follows:

• An upper bound N is guessed3 for the number of steps needed in the plan. Time points
are labeled 0 . . .N.

• The following propositional atoms are defined at each time point I:
A. For each fluent F, for each possible value V of F, the statement that the value of F
at time I is V.
B. For each action A, the statement that A is executed at time I.

Fig. 2. Architecture of a SAT-based propositional planner.

2 Throughout this paper, we will use the word “fluent” in the temporal logic sense of “entity that takes on
different values at different times” rather than meaning the particular PDDL+ construct of that name. Temporal
logic “fluents” include PDDL+ “predicates”.

3 Rather than “guess” here, one can systematically search for the smallest possible value of N in either of two
ways: (1) Begin with a random guess on the length of plan. If a plan is found, do binary search over the length of
the plan. If no plan is found, then guess a plan length higher than the current one, and iterate. (2) Use a Graphplan-
like search [7] to find a lower bound on the length of the shortest possible plan; initialize N to that value; and then
iteratively increase N until a solution is found.
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• The laws governing the domain are imposed by asserting every instance of every law
at every moment of time. In classical planning domains the major categories of laws
are: causal laws, domain constraints, and frame axioms.
The paradigm, indeed, will support essentially any computable constraint; e.g., that
the number of times action A is executed must be a prime number; a fluent will change
five time units after some particular action, etc. The main limiting factor on incorpo-
rating such constraints is finding systematic ways to express them in a general domain
definition language such as PDDL+.

• The problem instance is asserted by stating that the starting conditions hold at time 0
and that the goal conditions hold at time N.

• The constraints are then fed to a propositional satisfiability solver. If a solution of the
constraints can be found, then the set of actions that are marked as occurring in the
solution constitutes a valid plan.

SAT-based propositional planners can be implemented easily and, with the current gen-
eration of satisfiability solvers [55], quite effectively. The planners also have no additional
difficulty in dealing with ADL features such as conditional effects or quantifications. The
major drawback of SAT-based planning is that large domains can lead to enormously large
systems of constraints. Particularly dangerous are functions with many arguments; a flu-
ent function or action function with k arguments generates a collection of atoms of size
exponential in k.

Since the introduction of SATPLAN [32,34], a number of other SAT-based planners
have been developed, including BLACKBOX [35] and MEDIC [21]. Building a SAT-based
planner involves two main types of choices. The first is the representational issue of choos-
ing an encoding: What propositional atoms should be used, and how domain constraints
should be encoded as axioms. The effectiveness of different encoding schemes has been
studied extensively [21,33]. The second choice is the technique used to solve the satisfia-
bility problem; both probabilistic methods like GSAT [32] and deterministic methods like
extensions [55] of DPLL algorithm [14] have been studied.

Temporal planning over integer time, involving constraints such as, “Action A requires
3 units of time to complete”, can easily be handed in this framework, as long as the inte-
gers involved are small. One defines a time point at each integer, and then encodes such
constraints in the formulas “If A starts at T0 then it ends at T3”, “If A starts at T1 then it
ends at T4”, and so on [40].

The LPSAT planner [53,54] developed the LPSAT engine to extend the approach further
to solve problems in metric planning; that is, planning with real-valued quantities, such as
the quantity of gasoline in a tank. However, the LPSAT planner could not handle problems
involving durative actions or continuous change.

Indeed, the claims were made that the SAT-based planning paradigm could not be ex-
tended to deal with continuous time, because there would be an infinite number of ground
actions, corresponding to the infinite set of choices as to when to execute an action and
how long to continue it [37,49]. The construction of TM-LPSAT has disproved the claims.
The way this issue is resolved in TM-LPSAT is to encode a history in terms of a finite set
of interesting time points at which something changes, rather than trying to encode all time
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points on the time line. The clock time of an interesting time point is a numeric variable
that is assigned a value by the constraint solver.

Many of the rules in TM-LPSAT for generating constraints come directly out of these
previous systems. The rules that deal with effects and preconditions connecting atomic
actions with discrete fluents are the same as in the SAT-based propositional planners. The
rules that deal with discrete (discontinuous) effects of actions on a numerical fluent, and
with numerical preconditions of actions, are the same as in the LPSAT planner.

2.2. SAT-based arithmetic constraint solver

As shown in Fig. 1, a SAT-based arithmetic constraint solver consists primarily of two
coupled modules [1]: A DPLL-based systematic SAT solver [55], such as RelSAT [6] and
MiniSAT [20], and an incremental linear programming (LP) solver, such as Cassowary [8].

A DPLL-based SAT solver does a depth-first search with backtracking through the space
of partial truth assignments. At its deduction phase, unit resolution and propagation are ap-
plied. Modern, high-powered SAT solvers enhance the basic backtracking search using
such techniques as conflict-driven learning, random restarts, non-chronological backtrack-
ing, and branching heuristics.

The two modules are combined as follows: The input to the constraint solver is a set
of generalized clauses. Each clause is a disjunction; each disjunct is either a propositional
literal or a linear equality or inequality over numeric variables. The SAT solver first looks
for a propositional (partial) solution, treating each linear equation as a propositional atom
(called a trigger), then the LP solver tries to solve the set of inequalities that have been
marked as TRUE in the (partial) solution. If that set is inconsistent, then the SAT solver
utilizes information on inconsistency detected through back-jumping or learning (adding
a clause stating that these linear inequalities are not all TRUE), and it looks for a new
propositional solution. It continues going back and forth between propositional and nu-
meric mode until either finding a solution, establishing that no solution exists, or reaching
the given time limit.

Since the introduction of the LPSAT architecture by Wolfman and Weld [53], Math-
SAT [3,9] and more general theorem provers such as CVC Lite [5] have been developed in
verification community. These solvers vary in the SAT solving techniques that they incor-
porate; in their search heuristics; and in the special cases of “easy” LP categories that they
identify.

2.3. PDDL+

PDDL (Planning Domain Definition Language) is a declarative language for the defin-
ition of causal domains and planning problems. The basis of our work is PDDL+, which
was the most recent extension4 to PDDL when we began work on TM-LPSAT. PDDL+
comprises five levels. Level 1 contains discrete actions and fluents. Level 2 adds features

4 Since then, PDDL2.2 [19], extended for IPC4, was released. The features in PDDL+ remain intact; additional
features included in PDDL2.2 are derived predicates and timed initial literals (sort of deterministic events). These
features could be easily incorporated in TM-LPSAT.
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for numeric quantities. Level 3 allows durative actions that cause discrete changes occur-
ring at the beginning and at the end of the action. Level 4 allows durative actions that
cause continuous changes throughout the occurrence of the action. (Levels 1 through 4
collectively comprise PDDL2.1 [25].) Level 5 [24], proposed but not approved by the IPC
(International Planning Committee), is a deterministic real-time temporal model of ex-
ogenous events and autonomous processes. (McDermott [42] proposes an alternative for
incorporating processes and events.)

Thus in PDDL+ continuous time can be modeled in three ways: durative actions with
discrete effects, durative actions with discrete/continuous effects along with atomic ac-
tions, or processes and events along with atomic actions. These, however, cannot be mixed
together.

2.4. Planners dealing with time and metric quantities

The state-of-the-art domain independent planners that competed at IPC3 [39] and
IPC4,5 which are mostly heuristic-based, display impressive performance in handling
numeric and/or temporal domains. However, they are quite limited in the range of tem-
poral and metric constraints they can deal with; typically, they require that actions have
a fixed, constant duration and use a fixed quantity of resources. By contrast, dealing with
more expressive temporal metric constraints, such as unknown durations and uncertain
usages of resource, imposes no additional difficulties on the compilation phase of TM-
LPSAT, though presumably the solving phase takes longer to solve the numeric constraints.
None of those planners can deal with a real-time temporal model involving autonomous
processes, although LPG [27] and SAPA [17] claim to handle durative actions with contin-
uous change.

The Sekitei program [36] is a metric planner that uses a modified Graphplan search with
numeric resources to solve the problem of placing software components on a network. In
principle, the planning technique accommodates non-linear constraints; the current imple-
mentation, however, deals only with linear constraints. It does not deal with continuous
change.

The plan graph generated in Graphplan [7] is a representation of essentially the
same plan space as that used in SAT-based planners. It is therefore possible to use plan
graphs as the basis for the compilation phase of a SAT-based planner; this is done in
BLACKBOX [35]. Graphplan-based temporal planners include TGP [50], MILP [16] and
LPGP [38]. LPGP models and handles temporal constraints over durative actions in a way
similar to TM-LPSAT: rather than projecting time on the plan graph as done in TGP, tem-
poral constraints imposed among actions in a (partial) plan are checked for consistency by
a LP solver while extracting a plan. The difference is that in LPGP a plan is searched back-
ward, while in TM-LPSAT search for a satisfying solution is non-directional. Consequently
TM-LPSAT does not suffer from the difficulty caused by backward search, such as dealing
with a durative action whose ending action is not included in the plan, but whose starting
action needs to be included in the plan. MILP builds a plan graph for logical constraints

5 http://ls5-www.cs.uni-dortmund.de/~edelkamp/ipc4.
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in the same way as in LPGP, and converts the graph, together with temporal constraints
among actions, into an integer linear programming problem.

A number of partial-order planners have dealt, to greater or lesser extent, with prob-
lems involving continuous change, including Processes [29], DEVISER [51], SPIE [52],
GORDIUS [48], FORBIN [15], Excalibur [18], and ZENO [44,45]. Most of these ad-
dressed continuous change only in a substantially more restricted setting than TM-LPSAT.
ZENO, by contrast, permitted a very general plan specification language, though its mod-
els of concurrency and of processes were less general than TM-LPSAT—ZENO could not
handle concurrent continuous change of quantities. Like TM-LPSAT, ZENO was restricted
to the piecewise linear function and called a LP solver within plan refinement loop. It was
extremely slow; Wolfman and Weld [54] report that ZENO was unable to solve even the
simplest of the logistic problems that were used to test LPSAT.

McDermott [42,43] has extended his estimated-regression planner to deal with processes
and continuous change. Unlike TM-LPSAT, his planner is not complete (arguably an ad-
vantage, of course). It finds zero crossings using binary search, so presumably it could
easily be extended to non-linear functions; however, the current implementation has the
same restriction as TM-LPSAT to linear functions with constant coefficients.

2.5. Formalisms for modeling continuous change

The best known study of processes in the AI literature is QP theory [22], which initi-
ated a large body of research on physical reasoning with processes. This is at the extreme
opposite end in terms of the language of quantities used; effects of processes are charac-
terized purely in qualitative terms. A number of important ideas developed in this line of
research have yet to be incorporated into the planning literature, such as indirect influences.
Davis [13] gives a logical analysis of QP theory.

Another formalism closely related to our work is a theory of hybrid system [30]. A hy-
brid automaton combines a finite state machine undergoing a series of discrete change with
real-valued variables undergoing continuous change. A hybrid system is a collection of in-
teracting hybrid automata. Fox and Long [24] have defined a semantics for PDDL+ in
terms of hybrid systems. The planning problem corresponds to the “reachability” problem
in a theory of hybrid system. A bounded reachability problem of a linear hybrid system
was formulated as a satisfiability problem in [4]. Their encoding is based on state tran-
sitions with absolute time and clocks; on the other hand, our encoding was based on the
constraints imposed by the operators happening at the time points.

3. Extensions and restrictions to PDDL+

The input specification language for TM-LPSAT extends PDDL+ in four ways:
The first extension is that actions in TM-LPSAT may have numeric parameters. For

instance, there can be actions “pour(N,BS,BD)” of pouring N gallons from bucket BS
to bucket BD; “set-oven(T )” of setting the thermostat in an oven to temperature T ; or
“play_key(K,V )” of playing piano key K at volume V . PDDL2.1 [25] excludes this fea-
ture that existed in the original version [41], but their arguments do not strike us as cogent.
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Numeric parameters obviously greatly increase the expressive power of the language, and,
in the TM-LPSAT approach, impose no additional computational burden.

One restriction, however, does have to be imposed on actions with numeric and in-
terval parameters: There cannot be two or more concurrent actions6 with the identical
non-numeric parameters. For instance, the actions “pour(5,b1,b2)” and “pour(2,b1,b2)”
cannot be executed concurrently, though “pour(5,b1,b2)” and “pour(2,b3,b4)” can be
concurrent. The restriction is necessary because the entire SAT-based methodology rests
on the assumption that, once you have guessed the number of significant time points,
the number of possible entities, propositions, and numeric parameters can be bounded;
if an unbounded collection of simultaneous actions of the form “pour(N, c1,b1)” can be
generated, that would be a problem. The restriction is reasonable because such numeric
parameters are typically used in one of two ways. If the value of the parameter is assigned
to a fluent—e.g., “set-dial(N,D)” results in dial D being set to value N—then two actions
with different numeric parameters would be mutually exclusive. If the value of the parame-
ter is used to increment a fluent—e.g., “pour(N,BS,BD)” increases the quantity of liquid
in BD by N and increases the quantity in BS by N—concurrent actions pour(5,b1,b2)
and pour(2,b1,b2) can be combined into a single action pour(7,b1,b2). There are a few
exceptions; for instance, the action “sound(F, V)”, sounding a tone with frequency F and
volume V, executed by a robot with electronic speakers. It is possible for such a robot to
execute “sound(F1, V1)”, “sound(F2, V2)” . . . concurrently with different frequencies. Our
representation cannot handle this case.

By virtue of this restriction, an action type is identified by the name of the func-
tor and the non-numeric parameters. For example, we may speak of the action type
“pour(·,b1,b2)” (pouring some amount from b1 into b2) and be sure that at most one
of these occurs at one time.

The second extension of PDDL+ is that our specification language supports reusable
metric resources, including numeric and interval-valued; that is, resources that are held by
an action while the action lasts and released when the action is complete. We denote it by
a “use” statement of the form “(use ?resource ?amount)”.

The motivation behind this extension is as follows: PDDL+ has no explicit provision for
resources. It treats numeric resources like any other numeric quantities. Thus concurrent
(shared) uses of reusable resource among atomic actions cannot be modeled in PDDL+.
For example, suppose that an agent has K identical effectors, and that there is a collection
of atomic actions, such as flipping a switch, each of which requires the use of one effector.
Then, clearly, it should be possible for the agent to execute K such actions concurrently.
However, this can only be represented in PDDL+ by representing each effector separately.
The result would be that each different assignment of actions to individual effectors would
be considered separately, thus multiplying the branching factor by K factorial. The use
of interval resources among actions, atomic or durative, cannot be expressed in PDDL+,
because there are infinitely many choices for the lower and upper bounds of the interval to
be allocated to the action.

6 The axioms in [46] allow two such durative actions to continue concurrently, though not to start simultane-
ously. This requires a more complex representation, which identifies durative actions by their starting time.
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RAM memory in Problem 1.2 can be represented as a reusable interval resource, and
its concurrent uses are disjoint subintervals of the resource. Other kinds of domains where
interval resources are useful include the placing of books on a shelf; the assignment of
frequency ranges to broadcasters; and so on.

The third extension of PDDL+ is that our language supports interval-valued fluents and
quantities. We have incorporated in our language and includes Allen’s 13 binary interval
relations [2] and several other basic useful functions on intervals.

The fourth extension is that we distinguish between numeric functions whose values
are constant over time and given in the problem statement and numeric functions whose
values vary over time. The former are marked as being of type float; the latter are of type
fluent. For example, in the Bucket domain, “(capacity ?b - bucket)” is of sort float whereas
“(level ?b – bucket)” is of sort fluent. This distinction was made in the original PDDL [41],
but was removed in PDDL2.1. This feature is particularly important in TM-LPSAT for
two reasons. First, when an entity changes its value over time, it is necessary to create a
separate variable for the value of the entity at each time point. Thus, if there are N time
points, then each fluent F generates N numeric variables, whereas a float F generates no
numeric variables. Second, if X and Y are variables then the equation X = AY is a linear
equation if the value of A is known at compilation time, but it is a non-linear equation if the
value of A is not known. Since TM-LPSAT can only deal with linear equations, quantities
like the flow-rate of a tap must be floats, so that equations like “change-in-quantity =
flow-rate ∗ duration-of-flow” are linear equation in the variables “change-in-quantity” and
“duration-of-flow”.

A few features of PDDL+ cannot be handled in the current version of TM-LPSAT.
First, TM-LPSAT cannot optimize a specified plan metric, a limitation inherited from the
architecture of the arithmetic constraint solvers we use. Second, the language must be
restricted so that, in any multiplication, all but one of the terms can be statically evaluated;
and, in any division, the denominator can be statically evaluated. Otherwise, the result will
be a non-linear equation, which existing SAT-based arithmetic constraint solvers cannot
deal with, and which will certainly be much more difficult for any possible constraint
solver. All other features of PDDL+ are included.

4. Temporal ontology

We use a linear, real-valued time line. The representation used in the constraint lan-
guage output by TM-LPSAT characterizes the time line in terms of the states of the world
at a collection of significant time points. A significant time point is one where “some-
thing changes”; roughly speaking, some action, event, or process occurs, starts, or ends.
In the intervals between significant time points, fluents are either constant, or, if they are
numeric, they may undergo continuous change as a linear function of time. Every discon-
tinuous change, or change in the derivative of a numeric fluent, occurs at a significant time
point. Thus, there are two states associated with each time point T. The “state before T”
consists of the values of fluents and activity levels immediately before the changes that
take place at T; the “state after T” consists of their values after the changes that take place
at T.
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Each time point has a clock time, which is a non-negative real value. These clock times
become numeric variables in the system of constraints set up by the compiler.

One tricky point arises in any theory that includes both real-valued time and atomic
events and actions: How should one deal with atomic events/actions that, intuitively, should
occur one immediately after another? Suppose for instance, that action A has precondi-
tion P and effect Q and that event E has triggering condition Q and effects (not P) and
(not Q). It should be possible for A to be executed, and then E will be triggered. The
problem is, when do these occur? If there is a gap between A and E, then why doesn’t E

occur sooner? If A and E occur at the same time, then how can you be sure that A is
occurring before E (which is possible) and not the other way around (which is impossi-
ble)?

The semantics defined by Fox and Long [24] for PDDL+ Level 5 involves an unusual
model of the time line.7 An event that is triggered by an action or another event occurs
“immediately after”, with no time gap between. To deal with this, there need to be two
distinct time points with equal clock times. Thus, we represent the situation by saying
that A occurs at time point T5, say, and that E occurs at time point T6 and that these are
different time points even though clock(T5) = clock(T6) = 17.28 sec. We impose an order
on these two time points but there is no time gap between them.

Fox and Long’s semantics both for Level 4 and for Level 5 requires that a time point
when an action occurs be separated from the previous time point by a fixed positive con-
stant ε, corresponding to the reaction time of the agent or the precision of the agent’s clock.
This dependence of the theory on the arbitrary quantity ε is ugly, and in our implementa-
tion of TM-LPSAT we have eliminated it in Level 5. If we can idealize events as occurring
in immediate succession, why not actions as well? We have maintained the ε gap in our
implementation of Level 4, where it applies to all time points (there are no atomic events
in Level 4).8

Note that an event E must disable its own triggering condition; else there would have to
be additional occurrences of E at Ti+2, at Ti+3, etc.; the result would be that the system of
constraints would have no solution with finitely many time points.

An atomic action occurs instantaneously. An action is characterized by preconditions
that must hold before the action and effects that hold after the action. For example, the
action “turn on the faucet” has the precondition that the faucet is off and has the effect that
the faucet is on.

In PDDL+, a durative action is conceptualized as consisting of three epochs: initial-
ization, continuation, and termination. The initialization and termination resemble atomic
actions; they are instantaneous and are characterized by preconditions and discrete effects.

7 Actually, this paper by Fox and Long is not at all clear on this point. Our interpretation here is our best guess
as to what is intended. If this isn’t right, then it is easily changed; one of the advantages of the SAT-based planner
is that making that kind of change generally affects a only few specific axioms.

8 One problematic situation is if the invariant conditions of a durative action become FALSE at a time that is
less than ε after the previous time point. TM-LPSAT considers such a case to be impossible; the epsilon gap
axiom (6.1) in Section 6 requires that any two significant time points be separated by at least ε, whereas the
zero-crossing axiom (10.11) requires that there be a significant time point exactly when the invariant condition
ceases to hold. Hence, any plan that gives rise to such a situation is considered invalid.
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The continuation may take any length of time greater than ε. Its invariants must be satisfied
as long as it continues. Its effects may either take effect continuously for its entire duration,
like the effects of a process, or discretely at its end.

A durative action is feasible only if it can be carried through to termination; it cannot
be begun and then abandoned.

For example, one can define “filling bucket B from tap T” as a durative action with
the following properties. The initialization has the preconditions that tap T is off; that the
bucket and the agent are at the same location as the tap; and that the bucket is not full; and
it has the effect that tap T is on. The continuation has the precondition that the tap is turned
on, and that the tap and the bucket are at the same location. It has the continuous effect that
the level in the bucket rises at flow-rate(T). The termination has the precondition that the
tap is on it has the effect that the tap is off.

An event is like an atomic action, except that, whereas an atomic action may occur if its
preconditions hold (if the actor so chooses), an atomic event must occur if its precondition
hold. For example, suppose that some of the buckets are fragile, with a weight limit that
is less than their volumetric capacity. If the quantity of liquid inside exceeds the weight
limit, the bottom falls out. This can be characterized in terms of an atomic event “break-
Bucket(B)”. The preconditions are that B is unbroken and that level(B) � weightLimit(B).
The effects are that B is broken and that level(B) = 0.

A process is active over an extended interval. It is characterized by preconditions and
effects. The preconditions must hold through the interval; if the preconditions cease to
hold, the process stops. The effects of a process are, in the language of Forbus [22], direct
influences on numeric fluents. Specifically, each process has a fixed influence on some
collection of real-valued fluents; the derivative of the fluent at a given time is the sum of
its influences over all active processes and actions that influence it.

For example, the process “fillingBucket(B – bucket T – tap L – location)” has the pre-
condition that tap T is currently pouring into B and that the bucket is not yet full. (Of
course, the tap will continue to pour even when the bucket is full, but it will cease to fill
the bucket.) The process has the effect of increasing level(B) at the rate flow(T). (We allow
only taps that are fully on or off.) There can be several co-located taps pouring simultane-
ously into the same bucket; if so, the rate of increase of the level in the bucket is the sum
of the flow-rates of the individual taps.

PDDL+ permits concurrent actions under fairly restrictive conditions, designed to en-
sure (a) that the result of concurrent actions is meaningful; (b) that the actions do not
interact, either destructively or synergistically. However, two actions whose effect is to
increase or decrease a given numeric fluent can be executed concurrently, since the net
effect is well-defined as the sum of the separate effects. For example, one can pour into
bucket b1 both from bucket b2 and from bucket b3 simultaneously. Essentially, these con-
ditions amount to requiring that the actions be commutative; that is, that they can be
executed in any order and that the result of executing them is the same in all orderings.
The actual condition imposed is sufficient, though not necessary, to ensure commuta-
tivity; this is in order that the conditions for concurrency can be computed easily and
statically.
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5. Sample domains

Let us illustrate some of the PDDL+ constructs that TM-LPSAT can deal with:

Example 5.1. The atomic action of pouring quantity Q of water from one bucket to another
can be encoded as follows:

(:action pour
:parameters (?a - agent ?bs - bucket ?bd - bucket ?q - real ?l - location)
:precondition (and (at ?a ?l) (carrying ?a ?bs) (at ?bd ?l)

(> ?q 0)
(<= ?q (level ?bs))
(<= ?q (− (capacity ?bd) (level ?bd))))

:effect (and (increase (level ?bd) ?q)
(decrease (level ?bs) ?q))

)

Note the real-valued parameter ?q; the planner can choose to pour any positive amount
?q as long as ?q is not more than the amount of water in the source, and not more than the
amount of room in the destination.

Example 5.2 (PDDL+ Level 3). The action of filling a bucket can be characterized as a
durative action with a discrete effect as follows:

(:durative-action fillBucket1
:parameters (?a - agent ?b - bucket ?t - tap ?l - location)
:duration (at end (<= ?duration (/ (- (capacity ?b) (level ?b)) (flow-rate ?t))))
:condition (and (at start (not (on ?t)))

(at start (at ?a ?l)) (at start (at ?b ?l)) (at start (at ?t ?l))
(over all (on ?t)) (over all (at ?b ?l))
(at end (on ?t)))

:effect (and (at start (on ?t))
(at end (not (on ?t)))
(at end (increase (level ?b) (* ?duration (flow-rate ?t)))))

)

The value of the duration will be set by the planner; this determines the amount of water
to fill the bucket with. It is critical, here and in Examples 5.3 and 5.4, that the quantity
“(flow-rate ?t)” can be evaluated statically. If this quantity is a variable, then the equation
becomes non-linear, and the existing SAT-based arithmetic constraint solvers cannot deal
with it.

The PDDL+ semantics allow a fluent whose value changes as an effect of a durative
action to be referable and updatable by other actions during the course of the action. Thus it
is possible for one bucket to be filled by two different taps concurrently. For instance, “fill-
Bucket1(a1,b1,t1,sl1)” and “fillBucket1(a2,b1,t3,sl1)” can be concurrent. However, due to
the mutex rule called no moving target on “(level ?b)”, the two actions cannot finish at the
same time.



208 J. Shin, E. Davis / Artificial Intelligence 166 (2005) 194–253
In this model, when a durative action makes a change to a numeric fluent, the change
occurs instantaneously at the end points of the action. However, in most cases, the actual
change to a fluent occurs gradually during the course of the action. Therefore, in the middle
of the occurrence of the durative action, the value given by this model is not correct. The
model of durative actions given in Example 5.3 overcomes this limitations.

Example 5.3 (PDDL+ Level 4). The action of filling a bucket can be characterized as a
durative action causing continuous change as follows:

(:durative-action fillBucket2
:parameters (?a - agent ?b - bucket ?t - tap ?l - location)
:duration ()
:condition (and (at start (not (on ?t)))

(at start (at ?a ?l)) (at start (at ?b ?l)) (at start (at ?t ?l))
(over all (at ?b ?l)) (over all (on ?t))
(over all (<= (level ?b) (capacity ?b)))
(at end (on ?t)))

:effect (and (at start (on ?t))
(at end (not (on ?t)))
(increase (level ?b) (* #t (flow-rate ?t)))))

In the last line above, “#t” is a special variable which, at each instant during the exe-
cution of the durative action, denotes the length of time that has elapsed since the action
started.

Unlike the model in Example 5.2, this representation allows other actions to access the
correct value of a continuously changing fluent at any time point over the period of the
action.

Example 5.4 (PDDL+ Level 5). The action of filling a bucket can be characterized yet
again as an atomic action of turning on the tap, followed by a process of flow from the tap
into the bucket, followed by an atomic action of turning off the tap.

(:action turnOnTap
:parameters (?a - agent ?t - tap ?b - bucket ?l - location)
:precondition (and (at ?a ?l) (at ?b ?l) (at ?t ?l) (not (on ?t)))
:effect (and (on ?t) (filling ?t ?b))

)
(:process fillingBucket
:parameters (?b - bucket ?t - tap ?l - location)
:precondition (and (filling ?t ?b)

(<= (level ?b) (capacity ?b))
(at ?b ?l))

:effect (increase (level ?b) (* #t (flow-rate ?t)))
)
(:action turnOffTap
:parameters (?a - agent ?t - tap ?b - bucket ?l - location)
:precondition (and (at ?a ?l) (at ?t ?l) (on ?t) (filling ?t ?b))
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:effect (and (not (on ?t)) (not (filling ?t ?b)))
)

Example 5.5 (Reusable metric resources). We can model the domain of filling a bucket in
a different way: Assume that the taps are classified as of small capacity or of big capacity.
A number of taps, either of the same capacity or not, may be at each location. Let “(flow-
rate ?tot)” be the flow-rate of a tap of type ?tot; let “(no-of-taps ?tot ?l)” be the number of
taps of type ?tot in location ?l. Then “fillBucket2” shown in Example 5.3 can be represented
as follows:

(:durative-action Modified-fillBucket2
:parameters (?a - agent ?b - bucket ?tot - TypeOfTap ?l - location)
:duration ()
:condition (and (at start (at ?a ?l)) (at start (at ?b ?l))

(over all (at ?b ?l))
(over all (<= (level ?b) (capacity ?b))))

:effect (and (increase (level ?b) (* #t (flow-rate ?tot)))
(use (no-of-taps ?tot ?l) 1))

)

If there are a large number of taps of each type at a given location, then using this
representation very much reduces symmetry in the search space over the previous repre-
sentation in which taps are represented individually: In an individualistic representation,
the search space may include every possible set of taps; here, by representing the collec-
tion of a type of taps as a multiple-capacity resource, each such set is summarized by two
numeric fluents.

Also representing a resource as a numeric fluent suggests a way to deal with dynami-
cally creating and destroying objects.

Example 5.6 (Partitioned interval resource). As described in Problem 1.2, in an operating
system that uses variable-length partitions as a memory model, each job occupies a con-
secutive segment of RAM which is fixed until it finishes. “(RAM-space)” can be defined as
a resource of type interval in our extended PDDL+. The consecutive segments allocated
to jobs running concurrently are disjoint subintervals of the RAM space.

(:durative-action executeJob
:parameters (?j - job)
:duration (= ?duration (time-for ?j))
:condition (and (at start (not (active ?j)))

(over all (active ?j))
(at end (active ?j)))

:effect (and (at start (active ?j))
(at end (not (active ?j)))
(use (RAM-space) (memory-for ?j)))

)
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6. Compilation to constraints

In this section, we describe how domain definition and problem specification given in
PDDL+ is translated into a collection of constraints, where each constraint is the Boolean
combination of propositional atoms and linear (in)equalities over numeric variables.

The constraints9 presented in this section are summarized in Table 1. The examples
to be seen in this section are from the “Bucket” domain defined in Appendix A, unless
otherwise specified.

We define the following propositional atoms and numeric variables.

Definition (Propositional atoms).

• For each time Ti , for each Boolean fluent F , the assertion that F holds at Ti . We notate
this “F [Ti]”.

Table 1
Summary of constraints

Category Constraints Section Page

Atomic action Effects 6.1.1 212
Preconditions 6.1.2 214
Mutual exclusion 6.1.3 214

Event Effects 6.2.1 214
Preconditions 6.2.2 214
Immediate triggering by discrete change 6.2.3 215
Mutual exclusion 6.2.4 215

Process Effects 6.3.1 215
Preconditions 6.3.2 216

Zero crossings Triggering/terminating by continuous change 6.10.1 220
of events and processes

Durative action Precondition and effects 6.4.1 216
Constraint on duration 6.4.2 217
Coherence 6.4.3 217
Invariant conditions 6.4.4 218
Continuous effects 6.4.5 218

Frame axiom Propositional or interval fluents 6.5.1 218
Numeric fluents 6.5.2 218

Time points Gap between time points 6.6 218
Reusable metric resources Allocation and deallocation 6.7.1 219

Propagation 6.7.2 219
Constraint on capacity 6.7.3 219

Reusable interval resources Segment allocation 6.9.1 219
Frame axiom 6.9.2 220
Non-overlap 6.9.3 220

Intervals Interval fluents 6.8 219

9 The corresponding axioms are numbered based on the subsection number, as a prefix, where these constraints
are dealt with.
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• For each time Ti , for each non-Boolean discrete fluent F , for each value V , the asser-
tion that F has value V at Ti . We notate this “F [Ti] = V ”.

• For each time Ti , for each atomic action/event E, the assertion that E occurs at Ti . We
denote it “active(E)[Ti ]”.

• For each time Ti , for each process P , the assertion “active(P )[Ti ]” assert that P is
active over the open interval (Ti, Ti+1).

• For each time Ti , for each durative action A, the assertions that A starts at Ti ;
that A is continuing at Ti ; and that A ends at Ti . We denote these “starts(A)[Ti ]”,
“continues(A)[Ti ]” and “ends(A)[Ti ]”, respectively.

Definition (Numeric variables).

• The clock time of every significant time point Ti , denoted “c(Ti )”.
• For every time Ti , for every numeric fluent Q, the value of Q before and after Ti .

We notate these “Q[T −
i ]” and “Q[T +

i ]”, respectively. These are not equal if some
atomic action or event discretely changes the value of Q at time Ti . (Note that, in
domains where all change is discrete, Q[T −

i ] is always equal to Q[T +
i−1] whereas in

theories where all change is continuous, Q[T +
i ] is always equal to Q[T −

i ]. The need
for two values at a time point therefore only arises in theories that combine discrete
and continuous change, as in PDDL+ Levels 4 and 5.)

• For every time Ti , for every interval fluent Z, the lower and upper bound of Z at Ti , de-
noted “left(Z,Ti )” and “right(Z,Ti )”. Note that we do not have continuously changing
intervals.

• For each numeric fluent Q, for each action or event A that changes Q incrementally
(i.e., executes a discrete “increase” or “decrease”), the amount of increase or decrease
that an occurrence of A makes to Q at time Ti . This is denoted “�(A,Q,Ti)”. This
enables us to add these up over concurrent actions/events.

• For each numeric fluent Q, for each durative action or process A that changes Q

continuously, for each time Ti , the net change in Q due to A between Ti and Ti+1.
This is denoted “Γ (A,Q,Ti, Ti+1)”.

• For any durative action A, “Duration(A,Ti )” is a numeric variable for the duration of
the instance of A that starts in Ti .

• Let A(P1 . . . Pk,Q1 . . .Qm,Z1 . . .Zp) be an action where P1 . . . Pk are discrete pa-
rameters; Q1 . . .Qm are numeric parameters; and Z1 . . .Zp are interval parameters.
Then, by the restriction mentioned in Section 3.2.3, at any particular time Ti , for any
particular values V1 . . . Vk of the discrete parameters, there is at most one valuation on
the Qi and the Zi for which an action of the form A(P1 . . . Pk,Q1 . . .Qm,Z1 . . .Zp)

begins at time Ti . The value of each such Qj and the values of the lower and upper
bound of Zj are numeric variables; it may appear in a term on the right hand side of
an assignment statement or in a condition.
For example: “pour(?a,?bs,?bd,?q,?l)” is an action with the real-valued parameter ?q.
There is therefore a numeric variable “pour?q (a1,b3,b4,l3)[T5]” meaning the amount
that a1 should pour from b3 to b4 at l3 at time T5.

• For each resource R, durative action A, and time Ti , the amount of R that A uses at
time Ti . This is denoted “U(R,A,Ti )”.
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• For any durative action A that uses interval resource R, for any time Ti , numeric vari-
ables representing the lower and upper bounds of the segment of R allocated to A at
Ti . We denote these “lower(A,R,Ti )” and “upper(A,R,Ti )”.

Notational convention. We will use the following convention for labeling time-dependent
terms:

• If a complex term α over fluents is evaluated using the values before a discrete change
is made at time Ti , we will denote this evaluation as α[T −

i ]. That is, it is evaluated with
the values of propositional fluents at Ti−1 and the values of numeric fluents before Ti ,
Q[T −

i ].
• If a complex term α over fluents is evaluated after a discrete change is made at time

Ti , we will denote this evaluation as α[T +
i ]. That is, it is evaluated with the values of

propositional fluents at Ti , and the values of numeric fluents after Ti , Q[T +
i ].

We begin by guessing at an upper bound N on the number of significant time points
that will be needed to solve the problem. The significant time points are then T0 . . . TN .

As discussed in Section 4, we assume throughout that there cannot be two actions,
events or processes executing concurrently whose name is the same except for numerical
parameters.10 For example, the actions “pour(a1,b2,b3,2,l1)” and “pour(a1,b2,b3,5,l1)”
cannot be executed concurrently; there cannot be two concurrent processes of the form
“fillingBucket(b1,t2,l3)” and so on.

6.1. Atomic actions

6.1.1. Effects
A: If an effect of action A is to assign term α to discrete or interval fluent F , then add

the constraint:

(1.1) active(A)[Ti] ⇒ [F [Ti] = α[T −
i ]].

For example, one constraint generated by the action “turnOnTap” is

active(turnOnTap(a1,t1,b2,l3))[T5] ⇒ on(t1)[T5].

(Here the term α is just the implicit Boolean value TRUE.)
B: If an effect of action A is to assign term α to numeric fluent F , then add the con-

straint:

(1.2) active(A)[Ti] ⇒ [F [T +
i ] = α[T −

i ]].

10 This is slightly at variance with the PDDL+ semantics, which does allow this for durative actions. For exam-
ple, it is possible that in the bucket domain given in Example 5.5, “Modified-fillBucket2(a1,b1,ST,sl1)” starting
at T2 and “Modified-fillBucket2(a1,b1,ST,sl1)” starting at T4 can continue concurrently until T6, as long as the
bucket b1 is not full until T6.



J. Shin, E. Davis / Artificial Intelligence 166 (2005) 194–253 213
For example, walking between two locations can be represented as a “walking” process
triggered by “go” action and “arrive” event. The “go(?a,?sl,?dl)” action sets the distance
for the agent to walk as follows:

(assign (distance-to-walk ?a ?dl) (distance ?dl ?sl)).

The constraint associated with this would be:

active(go(a1,sl1,dl1))[T5] ⇒
distance-to-walk(a1,dl1)[T +

5 ] = distance(dl1,sl1).

C: If an effect of action A is to increase numeric fluent Q by the term α, then add the
constraints:

(1.3) active(A)[Ti] ⇒ [�[A,Q,Ti] = α[T −
i ]].

(1.4) ¬active(A)[Ti] ⇒ [�[A,Q,Ti] = 0].
For example, two constraints associated with the “pour” action are:

active(pour(a2,b2,b3,·,l1),T5) ⇒
�(pour(a2,b2,b3,·,l1),level(b3),T5) = pour?q(a2,b2,b3,l1)[T5].

¬active(pour(a2,b2,b3,·,l1),T5) ⇒
�(pour(a2,b2,b3,·,l1), level(b3),T5) = 0.

The first constraint above is read, “If agent a2 pours water from bucket b2 to bucket b3 at
location l1 at time T5, then the increase in the level of water in b3 due to this action is equal
to the amount that has been poured”.

D: Let A1 . . .Ak be all the action/events that can change numeric fluent Q incrementally.
Let E1 . . .Ep be all the action/events that can assign to Q. Add the constraint:

(1.5) ¬active(E1)[Ti] ∧ · · · ∧ ¬active(Ep)[Ti]
⇒

[
Q[T +

i ] = Q[T −
i ] +

∑
j

�(Aj ,Q,Ti)

]
.

For example, suppose that there are three buckets, b1, b2, b3, one agent a1 and two loca-
tions l1 and l2. Then the level in b1 can be changed either by pouring out of b1 to b2 or b3
or by pouring into b1 from b2 or b3. We have therefore the following constraint:

level(b1)[T +
5 ] − level(b1)[T −

5 ] =
�(pour(a1,b1,b2,·,l1),level(b1),T5) +
�(pour(a1,b1,b2,·,l2),level(b1),T5) +
�(pour(a1,b1,b3,·,l1),level(b1),T5) +
�(pour(a1,b1,b3,·,l2),level(b1),T5) +
�(pour(a1,b2,b1,·,l1),level(b1),T5) +
�(pour(a1,b2,b1,·,l2),level(b1),T5) +
�(pour(a1,b3,b1,·,l1),level(b1),T5) +
�(pour(a1,b3,b1,·,l2),level(b1),T5).
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Of course, in any specific scenario all but at most two of these are 0, because at most two
of these events can occur concurrently. In most instances of these constraints, all the terms
end up being 0. For this reason, the actual process of solving these constraints is not nearly
as difficult as one might guess from just looking at the number and size of the constraints.

E: Conditional effects: If an effect of one of the above types is conditional on expression
β then add β[T −

i ] as a conjunct on the left side of the above implication.

6.1.2. Preconditions
If action A has precondition β , then add the constraint

(1.6) active(A)[Ti] ⇒ β[T −
i ].

For example, one constraint generated by the action “turnOnTap” is

active(turnOnTap(a1,t2,b1,l3))[T5]
⇒ ¬on(t2)[T4] ∧ at(a1,l3)[T4] ∧ at(t2,l3)[T4] ∧

at(b1,l3)[T4].

6.1.3. Mutual exclusion
If action A is mutually exclusive (mutex) with action or event E then add the constraint:

(1.7) active(A)[Ti] ⇒ ¬active(E)[Ti].
As mentioned in Section 4, the PDDL+ rules [25] for mutual exclusion are complex, but
statically determined.

6.2. Events

6.2.1. Effects
The axioms for the effects of an event have exactly the same form as those for the effects

of an action. (Section 6.1.1 above.)

6.2.2. Preconditions
We assume that any numeric precondition of an event is a non-strict (in)equality (that is,

of the form τ � 0 where τ is a term). Otherwise, if there were a precondition τ > 0 where
τ was a term involving continuously changing fluents, there would be no first instant at
which the precondition became TRUE, and therefore there might be no way in which the
event could be triggered at the exact moment of change. The same applies to preconditions
of processes.

Let β be the precondition of event E. Add the constraint:

(2.1) active(E)[Ti] ⇔ β[T −
i ].

For example, suppose that we define the event “breakBucket” in the “Bucket” domain as
follows:

(:event breakBucket
:parameters (?b - bucket)
:precondition (and (not (broken ?b))
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(>= (level ?b) (weight-limit ?b)))
:effect (and (broken ?b) (assign (level ?b) 0))

)

This gives the constraint:

active(breakBucket(b2))[T5] ⇔
¬broken(b2)[T4] ∧ [level(b2)[T −

5 ] >= weight-limit(b2)].

6.2.3. Immediate triggering of events by discrete change
Let β be the preconditions of event E. Add the constraint:

(2.2) β[T +
i ] ⇒ [c(Ti+1) = c(Ti)].

This constraint ensures that when the event E is triggered at Ti+1 by a discrete change
made by actions or events at Ti , it happens immediately, without any finite time duration
between the change and the event.

For example, suppose that “(weight-limit b1)” is 55 gallon, that “(level b1)” is 50 gallon
at Ti−1, and that the atomic action “(pour a1 b2 b1 10 l1)” occurs at Ti . Then the event
“breakBucket” must occur at Ti+1, and Ti+1 and Ti must have equal clock times.

Note that the zero crossing axiom (10.7) in Section 6.10.1 assumes that the event
is triggered when a numeric precondition attains its threshold value, and therefore does
not correctly handle a discrete change that discontinuously pushes a precondition past its
threshold value, as in the above example.

6.2.4. Mutual exclusion
Any interference between an action and an event is resolved in a way that gives priority

to the event over the action. This is enforced by axiom (2.1) and axiom (1.6): axiom (2.1)
asserts that the event must occur if the preconditions hold; axiom (1.6) asserts only that the
action can be carried out only if the preconditions hold. Therefore, if the preconditions of
both event E and action A are satisfied, but it is logically inconsistent that both the event
and the action should occur, the logical consequence is that the event does occur and that
the action therefore does not.

It is the domain designer’s responsibility to make sure that events happening at the same
time point do not interfere each other; otherwise, the theory is inconsistent.

6.3. Processes

6.3.1. Effects
A: For each process P , for each quantity Q influenced by P , let Φ be the influence of

P on the derivative of Q. For each time Ti add the constraints:

(3.1) active(P )[Ti] ⇒ Γ (P,Q,Ti, Ti+1) = Φ · (c(Ti+1) − c(Ti)).

(3.2) ¬active(P )[Ti] ⇒ Γ (P,Q,Ti, Ti+1) = 0.

Note that Φ must be constant and statically evaluable; otherwise, the system becomes non-
linear.

For example, the process “fillingBucket(b2,t3,l2)” generates the constraints:



216 J. Shin, E. Davis / Artificial Intelligence 166 (2005) 194–253
active(fillingBucket(b2,t3,l2))[T5] ⇒
[ Γ (fillingBucket(b2,t3,l2),level(b2),T5, T6) =

flow-rate(t3) * (c(T6) - c(T5)) ].
¬active(fillingBucket(b2,t3,l2))[T5] ⇒

[ Γ (fillingBucket(b2,t3,l2),level(b2),T5, T6) = 0 ].

B: For each quantity Q, let P1 . . . Pm be the processes that potentially affect Q. Add the
constraint:

(3.3) Q[T −
i+1] = Q[T +

i ] +
∑
j

Γ (Pj ,Q,Ti, Ti+1).

For example, suppose there are two taps t1 and t2 and two locations l1 and l2. Then
the four processes that might affect “level(b1)” are “fillingBucket(b1,t1,l1)”, “filling-
Bucket(b1,t1,l2)”, “fillingBucket(b1,t2,l1)”, and “fillingBucket(b1,t2,l2)”. Thus we get the
constraint:

level(b1)[T −
6 ] − level(b1)[T +

5 ] =
Γ (fillingBucket(b1,t1,l1),level(b1),T5, T6) +
Γ (fillingBucket(b1,t1,l2),level(b1),T5, T6) +
Γ (fillingBucket(b1,t2,l1),level(b1),T5, T6) +
Γ (fillingBucket(b1,t2,l2),level(b1),T5, T6).

6.3.2. Preconditions
Let β be the precondition for process P . Add the constraint:11

(3.4) active(P )[Ti] ⇔ β[T +
i ] ∧ β[T −

i+1].
The atom “active(P)[Ti ]” means that P is active over an interval starting with Ti . The

condition β must continue to hold over this entire interval. The time point when P termi-
nates must be a significant time point. Hence, β holds both after Ti and before Ti+1.

If the process is triggered or terminated by a discrete change, then that change must
occur at a significant time point, and hence this axiom will suffice to make P triggered
or terminated. If the process is triggered by a continuous change, then the zero crossing
axioms given in Section 6.10 below suffice to ensure that the exact moment of change will
be constructed as a significant time point.

For example, the process “fillingBucket(b2,t3,l2)” generates the constraint:

active(fillingBucket(b2,t3,l2))[T5] ⇔
filling(t3,b2)[T5] ∧ at(b2,l2)[T5] ∧ at(t3,l2)[T5] ∧
[level(b2)[T +

5 ] � capacity(b2)] ∧
[level(b2)[T −

6 ] � capacity(b2)].

6.4. Durative actions

6.4.1. Conditions and effects at start and at end
The axioms for these are exactly analogous to those for atomic actions.

11 The formulation of these axioms in [47] was not quite correct.
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6.4.2. Constraints on duration
In PDDL+ it is possible to specify, either that the duration of a durative action is equal

to a specified term, or that it is bounded by two specified terms. One can specify that these
terms be evaluated either at the beginning of the action (time-annotated as at start) or at
the end of the action (time-annotated as at end). Each such constraint is translated directly
into the corresponding constraint on “Duration(A,Ti )”.

If a duration constraint is given in the form “(at start β(?duration))” the corresponding
axioms have the form:

(4.1) starts(A)[Ti] ⇒ β(Duration(A,Ti))[T −
i ].

That is, the instance of action A that starts in Ti has a duration that constrained by β where
β is evaluated with values at T −

i .
Similarly, if a duration constraint is given in the form “(at end β(?duration))” the corre-

sponding axioms have the form:

(4.2) [starts(A)[Ti] ∧ continues(A)[Ti+1] ∧ · · · ∧ continues(A)[Tj−1] ∧
end(A)[Tj ]]

⇒ β(Duration(A,Ti))[T −
j ].

(Here and in axiom (4.3) below, if j = i + 1, then there are no “continues” literals in the
left-hand side of the implication.)

For example, in the durative action “fillBucket1” given in Example 5.2, the constraint
on duration is encoded as the following constraint:

starts(fillBucket1(a1,b1,t1,l2))[T2] ∧
continues(fillBucket1(a1,b1,t1,l2))[T3] ∧
ends(fillBucket1(a1,b1,t1,l2))[T4]

⇒ [ Duration(fillBucket1(a1,b1,t1,l2),T2) <=
(capacity(b1) − level(b1)[T −

4 ]) / flow-rate(t1)].

6.4.3. Coherence
For a durative action A, for each time Ti , 1 � i < N , add the following constraints:
A: Elapsed time between the starting action and the ending action. Add the constraint

for all j , i < j � N :

(4.3) [starts(A)[Ti] ∧ continues(A)[Ti+1] ∧ · · · ∧ continues(A)[Tj−1] ∧
ends(A)[Tj ]]

⇒ [c(Tj ) − c(Ti) = Duration(A,Ti)].
B: A durative action does not continue before the beginning or after the end of the plan.
Add the constraint:

(4.4) ¬continues(A)[T1] ∧ ¬continues(A)[TN ].
C: For continuity, add the constraint:
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(4.5) starts(A)[Ti] ⇒ continues(A)[Ti+1] ∨ ends(A)[Ti+1].
(4.6) ends(A)[Ti] ⇒ continues(A)[Ti−1] ∨ starts(A)[Ti+1].
(4.7) continues(A)[Ti] ⇒ ends(A)[Ti+1] ∨ continues(A)[Ti+1].
(4.8) continues(A)[Ti] ⇒ starts(A)[Ti−1] ∨ continues(A)[Ti−1].

6.4.4. Invariant conditions
Let β be the invariant conditions for a durative action A. Add the constraint:

(4.9) continues(A)[Ti] ⇒ β[T +
i ].

(4.10) starts(A)[Ti] ⇒ β[T +
i ].

Termination (i.e., from TRUE to FALSE) of the invariant conditions at a “continues” point
by continuously changing quantities is handled by axiom of zero crossing from TRUE to
FALSE, axiom (10.11) in Section 6.10.1.

6.4.5. Continuous effects over the period of a durative action
The axiom for continuous effects of a durative action are exactly analogous to the ax-

ioms given in Section 6.3.1 for the continuous effects of a process.
“starts(A)[Ti]” and “continues(A)[Ti]” initiate a continuous change over Ti and Ti+1.

6.5. Frame axioms

6.5.1. Propositional or interval fluents
For any fluent F let A1 . . .Ak be the actions and events that potentially change F . For

each time Ti , for each value V of F , add the constraint:

(5.1) ¬active(A1)[Ti] ∧ · · · ∧ ¬active(Ak)[Ti] ⇒ F [Ti] = F [Ti−1].

6.5.2. Numeric fluents
No additional frame axioms are needed. If no atomic actions or events that change

quantity F are active at time Ti , then all the terms in the sum in equation of axiom (1.5)
will be 0, so the equation will state that F does not change. If no processes or durative
actions that change F are continuing between Ti and Ti+1, then all the terms in the sum in
Eq. (3.3) will be 0, so the equation will state that F does not change.

6.6. Gap between significant time points

In Level 4, we have the constraint that, for each Ti ,

(6.1) c(Ti+1) − c(Ti) � ε.

In Level 5, we have the constraint12 that, for each Ti ,

(6.2) c(Ti+1) � c(Ti).

12 See Section 4.
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6.7. Reusable metric resources

The encoding we give here is for a finite resource shared among durative actions. The
encoding for sharing resources among atomic actions or in a mixed collection of atomic ac-
tions and durative actions is given in [46]; the latter uses two variables for the resource level
at each time point. An example would be where a robot with multiple identical manipula-
tors must use some of them for durative actions, such as carrying a tray, and concurrently
use others for atomic actions, such as flipping a light switch.

Recall that “U(R,A,Ti)” denotes the amount of R that A uses at time Ti .

6.7.1. Resource allocation and deallocation
For any numeric resource R, and durative action A, let β be the expression describing

the amount of R that A would use during its period. Add the constraints:

(7.1) starts(A)[Ti] ⇒ U(R,A,Ti) = β[T −
i ].

(7.2) ¬starts(A)[Ti] ⇒ U(R,A,Ti) = 0.

(7.3) ends(A)[Tj ] ∧ starts(A)[Ti] ⇒ U(R,A,Tj ) = −β[T −
i ].

(7.4) ¬ends(A)[Tj ] ⇒ U(R,A,Tj ) = 0.

6.7.2. Propagation
For any resource R let A1 . . .Ak be the actions that could use R; let “L(R,Ti)” be the

level of resource R at Ti . Add the constraint:

(7.5) L(R,Ti) = L(R,Ti−1) −
∑
j

U(R,Aj ,Ti).

6.7.3. Capacity constraint
For each time Ti , add the constraint:

(7.6) 0 � L(R,Ti) � capacity(R).

6.8. Intervals

Predicates and functions over intervals can be translated in the standard way into
(in)equalities and functions over their endpoints [12,46].

6.9. Reusable interval resources

Recall that “lower(A,R,Ti )” and “upper(A,R,Ti )” be the lower and upper bounds of
the segment of R allocated to A at Ti . Let “left(R)” and “right(R)” be the lower and upper
bounds of interval resource R.

6.9.1. Segment allocation

(9.1) starts(A)[Ti] ⇒ [upper(A,R,Ti) − lower(A,R,Ti) = β[T −]].
i
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(9.2) lower(A,R,Ti) � left(R).

(9.3) upper(A,R,Ti) � right(R).

6.9.2. Frame axiom: Segments don’t move

(9.4) continues(A)[Ti] ⇒ [lower(A,R,Ti+1) = lower(A,R,Ti)].
(9.5) continues(A)[Ti] ⇒ [upper(A,R,Ti+1) = upper(A,R,Ti)].
(9.6) starts(A)[Ti] ⇒ [lower(A,R,Ti+1) = lower(A,R,Ti)].

6.9.3. Non-overlap
Let A1 and A2 be two distinct durative actions that use R.

(9.7) continues(A1)[Ti] ∧ continues(A2)[Ti]
⇒ [[lower(A2,R,Ti) � upper(A1,R,Ti)] ∨

[lower(A1,R,Ti) � upper(A2,R,Ti)]].

6.10. Zero crossings

6.10.1. Triggering/terminating by continuous change
One final type of constraint is rather trickier. This has to do with an event or process

being triggered or terminated by a continuously changing numerical fluent attaining a par-
ticular value.13 Suppose that process P1 is active between times Ta and Tb and is steadily
increasing the value of fluent Q; that process P2 will be triggered when Q reaches value
V; and that this transition will occur at a time Tx between Ta and Tb . Suppose, further,
that in the absence of P2, no significant change would occur between Ta and Tb, so they
would be consecutive significant time points. The problem is, how do we force the system
of constraints to recognize the time point Tx? That is, how can we prevent the system from
accepting a solution in which Ta and Tb are consecutive time points and process P2 starts
at time Tb? (Worse yet, consider a case where P2 is only triggered if Q is between V1 and
V2; Q is less than V1 at time Ta and Q is greater than V2 at time Tb. Then the system of
constraints will discover that P2 is not triggered at time Ta and not triggered at time Tb and
will conclude that it never occurs at all.)

The same thing can happen, in the reverse direction, with the numeric conditions of
processes and the “over all” conditions of durative actions: We must check that they con-
tinue to hold throughout the interval, not just that they hold at the endpoints.

The solution rests on the fact that all numeric conditions are Boolean combinations of
linear constraints, and that, within our domains, any numeric fluent that changes continu-
ously is a linear function of time. A simple solution, therefore, is as follows: Assume that
every numerical constraint that appears as any kind of precondition for events or processes
has the form Q(t) � 0, where Q(t) is a linear function of the numerical variables and of

13 It would appear, though the point is not entirely clear, that in the definition of PDDL+ Level 5, one process
cannot directly trigger another, nor can one process terminate another or itself; such an interaction must be medi-
ated by an event. We do not see what purpose this restriction serves, so we have not required it.
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time t . We can “track” each such constraint Q(t) and make sure that we “notice” when-
ever any such constraint becomes TRUE or becomes FALSE by asserting that it does not
change from positive to negative or vice versa without an intermediate “significant time
point” where it is zero. This gives the following two constraints:

(10.1) ¬[(Q[T +
i ] > 0) ∧ (Q[T −

i+1] < 0)].
(10.2) ¬[(Q[T +

i ] < 0) ∧ (Q[T −
i+1] > 0)].

These are respectively equivalent to

(10.3) Q[T +
i ] > 0 ⇒ Q[T −

i+1] � 0.

(10.4) Q[T +
i ] < 0 ⇒ Q[T −

i+1] � 0.

This is just a continuity constraint over Q of a form familiar from qualitative process
theory [22].

The problem with these constraints is that they will generate lots of spurious time points,
where a constraint of this form becomes TRUE or FALSE, but no actual event or process
is triggered, because the constraint is only one of a set of preconditions and the other
preconditions are not TRUE. Generating spurious time points is extremely undesirable,
of course, because the number of propositional atoms and the size of the constraint set is
proportional to the number of time points.

We need, therefore, to rephrase the above constraints in such a way that they will gen-
erate a significant time point only when a numerical constraint changes its truth value and
thereby causes an entire set of preconditions to changes its truth value. We will first deal
with the case where a truth value changes from FALSE to TRUE and then with the case
where it changes from TRUE to FALSE. First, we put every precondition of an event or
process into disjunctive normal form; that is, we express it as the disjunction of a collection
of conjuncts. (This in itself can be a fairly complex manipulation of the PDDL+, especially
in the case of conditional expression.) Now, consider any such conjunct:

F1 ∧ · · · ∧ Fk ∧ Q1 � 0 ∧ · · · ∧ Qm � 0,

where the Fi are literals and the Qi are linear functions.
What we wish to assert is that, if this condition is not satisfied at Ti , then it remains

unsatisfied until Ti+1; equivalently, if it is satisfied at any time T between Ti and Ti+1 then
it is satisfied at T +

i . Symbolically,

(10.5)

[
∃T ∈(Ti ,Ti+1)

∧
p

Fp[T ] ∧ · · · ∧p Qp[T ] � 0

]

⇒
∧
p

Fp[T +
i ] ∧ · · · ∧p Qp[T +

i ] � 0.

We now have to convert the quantified formula on the left hand side of this implication to
an evaluable expression. This is done as follows:

• The values of the Fp do not change between two consecutive significant time points.
That is, Fp[T ] = Fp[Ti].
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• Since between any two significant time points the Qp are all linear and hence
monotonic functions of time, we know that, if Qp[T ] � 0 then either Qp[T +

i ] > 0
or Qp[T −

i+1] > 0 or Qp[T +
i ] = Qp[T −

i+1] = 0.

Hence the following axiom is sufficient to achieve the above condition:

(10.6)

[∧
p

Fp[Ti] ∧
∧
p

[Qp[T +
i ] > 0 ∨ Qp[T −

i+1] > 0 ∨ Qp[T −
i+1] = Qp[T +

i ] = 0]
]

⇒
∧
p

Qp[T +
i ] � 0.

The following set of axioms14 is slightly stronger, but substantially simpler: for each
Qj , assert

(10.7)

[∧
p

Fp[Ti] ∧ Qj [T +
i ] < 0 ∧

∧
p �=j

[Qp[T +
i ] � 0 ∨ Qp[T −

i+1] � 0]
]

⇒ Qj [T −
i+1] � 0.

The logical relations between the above axioms is that [the conjunction over i of ax-
ioms (10.3)] implies [the conjunction over j of axioms (10.7)] which further implies axiom
(10.6). Since axiom (10.6) implies (10.5), the conjunction of (10.7) implies (10.5). That
means that if we enforce (10.7), that will enforce (10.5) and ensure that no significant zero
crossing are missed. On the other hand, since (10.3) implies (10.7), that means that (10.7)
can be satisfied if there are enough time points to satisfy (10.3)—i.e., there is a time point
for every zero crossing of the constraints. That, however, is a worst-case upper bound; in
practice, (10.7) generates few if any time points that are not significant.

(The proof of the above implications is as follows. That axiom (10.3) implies axiom
(10.7) is trivial, as axiom (10.7) differs from axiom (10.3) only in having additional con-
ditions on the left side of the implication. That axiom (10.6) implies axiom (10.5) was
discussed above. That axiom (10.7) implies axiom (10.6) can be justified as follows. Ax-
iom (10.7) has the form

(10.8) β ∧ Qj [T +
i ] < 0 ⇒ Qj [T −

i+1] � 0.

Taking the contrapositive of the conditions on Qj we have

(10.9) β ∧ Qj [T −
i+1] > 0 ⇒ Qj [T +

i ] � 0.

Now, since trivially

Qj [T +
i ] = Qj [T −

i+1] = 0 ⇒ Qj [T +
i ] � 0 and Qj [T +

i ] > 0 ⇒ Qj [T +
i ] � 0,

14 The formulation of these axioms in [47] was not quite right.
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axiom (10.9) is equivalent to

(10.10) β ∧ [Qj [T −
i+1] > 0 ∨ Qj [T +

i ] > 0 ∨ Qj [T +
i ] = Qj [T −

i+1] = 0]
⇒ Qj [T +

i ] � 0.

Now, β is the conjunction∧
p

Fp[Ti]
∧
p �=j

[Qp[T +
i ] � 0 ∨ Qp[T −

i+1] � 0].

We can weaken axiom (10.10) by strengthening the condition in β on the left-hand side
of the implication. Specifically, we replace

[Qp[T +
i ] � 0 ∨ Qp[T −

i+1] � 0] by

[Qp[T −
i+1] > 0 ∨ Qp[T +

i ] > 0 ∨ Qp[T +
i ] = Qp[T −

i+1] = 0].
Substituting these forms in the left hand side of axiom (10.10), and combining the con-
straint on Qj with the same constraints on Qp where p �= j gives us axiom (10.6). End of
proof.)

The case of change from TRUE to FALSE applies in somewhat different cases. On
the one hand, the preconditions of events do not have to be checked. As soon as the pre-
condition of an event becomes TRUE, it is executed and necessarily “turns off” its own
precondition; hence, these never become FALSE by virtue of the change to a continuous
fluent. On the other hand, the invariant conditions of durative actions do have to be checked.
We do not have to detect zero crossings for durative actions from FALSE to TRUE, because
a durative action is optional, and if the planner decided to execute it, then a time variable
for its starting time will be generated. On the other hand, the invariant conditions for a
durative action could change from TRUE to FALSE and then back to TRUE between Ti

and Ti+1, and that should be detected and marked as impossible.15

To construct the axiom for checking for changes from TRUE to FALSE, we simply “run
time backward”; if a precondition changes from TRUE to FALSE when time is run in the
positive direction, then it changes from FALSE to TRUE when time is run backward. It
suffices, therefore, just to exchange T −

i+1 and T +
i in the numerical terms in axiom (10.7):

(10.11)

[∧
p

Fp[Ti] ∧ Qj [T −
i+1] < 0 ∧

∧
p �=j

[Qp[T +
i ] � 0 ∨ Qp[T −

i+1] � 0]
]

⇒ Qj [T +
i ] � 0.

The effect of these constraints is, essentially, to generate the necessary intermediate time
points by a sort of proof by contradiction, but a logic-based system such as TM-LPSAT
has no trouble with proof by contradiction.

For example: The process “fillingBucket(b1,t2,l2)” has the propositional conditions
“filling(t2,b1)”, “at(t2,l2)” and “at(b1,l2)”, and the numeric condition “capacity(b1)–

15 This can happen if there is a disjunctive precondition that depends on a continuously increasing fluent, such
as ((� 2Q) ∨ (� Q 4)).
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level(b1) � 0”. These conditions therefore generates the two constraints:

[ filling(t2,b1)[T5] ∧ at(t2,l2)[T5] ∧ at(b1,l2)[T5] ∧
[ capacity(b1)−level(b1)[T +

5 ] < 0 ] ]

⇒ [ capacity(b1)−level(b1)[T −
6 ] � 0 ].

[ filling(t2,b1)[T5] ∧ at(t2,l2)[T5] ∧ at(b1,l2)[T5] ∧
[ capacity(b1)−level(b1)[T −

6 ] < 0 ] ]

⇒ [ capacity(b1)−level(b1)[T +
5 ] � 0 ].

Putting together the constraints from all these categories, it seems like a lot of constraints,
and in many cases it is. But things are not quite as bad as they look. For any given plan,
many of the numerical variables are of the form �[A,Q,Ti] where A is inactive at Ti or
Γ [P,Q,Ti, Ti+1] where P is inactive between Ti and Ti+1, and are therefore equal to 0.
Many of the constraints turn out to be equations between variables or between a variable
and a constant; these can be eliminated by variable renaming and constant folding. Others
are difference constraints of the form Vi − Vj � C where Vi and Vj are variables and C is
a constant; these are also easy to deal with [3].

6.10.2. Extended example of zero crossing
Let us give an artificial example to illustrate how the above zero crossing constraints

work. Suppose that we have the following world: There is a numeric fluent N and two
Boolean fluents P and Q. Process R is always active and causes N to grow at the rate of
1 unit per second. Event E is triggered if 1 � N � 2 and P is TRUE, and it causes P to be
FALSE. Event F is triggered if N � 3 and P is TRUE, and it causes Q to be TRUE and P
to be FALSE. Action A has no precondition and causes P to be TRUE. Initially N = 0, P is
TRUE and Q is FALSE. The goal is that Q should be TRUE.

Note that only event F can bring about Q, and that F can only occurs if P is TRUE and
the time is at least 3. Any time between 1 and 2, if P becomes TRUE, it will immediately
cause P to be FALSE. Therefore the correct plan is to wait until any time after 2 and then
execute A to make P TRUE. F will then occur at time 3 (or immediately after A, if A was
executed later than time 3).

The PDDL+ representation of this world is shown in Table 2. The corresponding set of
axioms is shown in Table 3.

Note that, if we omit the zero crossing axioms 17 and 18 in Table 3, there would be a
solution with two time points16, T1 at clock time 0 and T2 at clock time 3. The remaining
axioms do not “notice” that E would be triggered in between. At clock time 3, since P is still
TRUE, F will be triggered, and will cause Q to be TRUE. Table 4 shows this “solution”
symbolically. However, the zero crossing axiom 17 excludes this solution; the left hand
side of the implication is TRUE, and the right hand is FALSE.

Indeed, it is easily shown that there is no solution to the axioms with only two time
points. Since ¬Q[T1] and Q[T2] by 14 we have active(F )[T2]. By 6 we have N[T −

2 ] � 3.

16 T0 denotes the initial state. A plan starts at T1.
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Table 2
PDDL+ representation of extended example

(define (domain Extended-Example)
(:requirements :time)
(:predicates P Q)
(:functions (N) - fluent)
(:action A
:parameters ()
:precondition ()
:effect P

)
(:event E
:parameters ()
:precondition (and (<= 1 N) (<= N 2) P)
:effect (not P)

)
(:event F
:parameters ()
:precondition (and (<= 3 N) P)
:effect (and Q (not P))

)
(:process R
:parameters ()
:precondition ()
:effect (increase N (* #t 1))

)
)
(define (problem EE-problem)
(:domain Extended-Example)
(:requirements :time)
(:inits (= (N) 0)

P )
(:goal Q )
)

By 4 we have ¬active(E)[T1]. Using 15, 1, and 20 we have P[T2]. But now we have a
contradiction with 17.

Similarly, there is no solution with three time points. There is a solution with four time
points, shown symbolically in Table 5 corresponding to the plan described above.

7. Soundness and completeness

We have proven a soundness and completeness proof for TM-LPSAT over a restricted
class of problems in our extended version of PDDL+. Stating the proof involves the fol-
lowing three steps.

First, we must give a suitable definition of the semantics of PDDL+ Level 5. To allow
the possibility of multiple time points with the same clock time, as described in Section 4,
we use the following non-standard temporal model: A time point is a pair 〈X,N〉 where X

is a positive real number (the clock time) and N is a positive integer (the N ’th time points at
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Table 3
Axioms for extended example
1. active(A)[Ti ] ⇒ P[Ti ]. (Effect of A. Axiom (1.1))
2. active(A)[Ti ] ⇒ TRUE. (Precondition of A – vacuous. Axiom (1.2))
3. active(E)[Ti ] ⇒ ¬P[Ti ]. (Effect of E. Section 6.2.1)
4. active(E)[Ti ] ⇔ P[Ti−1] ∧ 1 � N [T −

i
] ∧ N [T −

i
] � 2.

(Precondition of E. Axiom (2.1))
5. active(F )[Ti ] ⇒ Q[Ti ] ∧ ¬P[Ti ]. (Effect of F. Section Section 6.2.1)
6. active(F )[Ti ] ⇔ P[Ti−1] ∧ 3 � N [T −

i
]. (Precondition of F. Axiom (2.1))

7. active(A)[Ti ] ⇒ ¬active(E)[Ti ].
8. active(A)[Ti ] ⇒ ¬active(F )[Ti ].

(7 and 8 are mutex conditions. In this case, they are redundant. Section 6.2.4)
9. N[T +

i
] − N[T −

i
] = 0.

(Frame axioms for N at significant time points. Axiom (1.5).
Since there are no actions or events that affect N, the sum on the right
is taken over the null set.)

10. active(R)[Ti ] ⇒ Γ (R,N,Ti , Ti+1) = 1 · (c(Ti+1) - c(Ti )).
(Direct influence of process R on N. Axiom (3.1))

11. ¬active(R)[Ti )] ⇒ Γ (R,N,Ti , Ti+1) = 0.
(Influence of process R on fluent N. Axiom (3.2))

12. N[T −
i+1] − N[T +

i
] = Γ (R,N,Ti , Ti+1).

(Net effect of processes on N. Axiom (3.3))
13. active(R)[Ti )] ⇔ TRUE. (Precondition of R. Axiom (3.4))
14. ¬active(F )[Ti ] ⇒ Q[Ti ] ⇔ Q[Ti−1]. (Frame axiom for Q. Axiom (5.1))
15. [¬active(A)[Ti ] ∧ ¬active(E)[Ti ] ∧ ¬active(F )[Ti ]] ⇒ [P[Ti ] ⇔ P[Ti−1]].

(Frame axiom for P. Axiom (5.1))
16. c(Ti+1) � c(Ti ). (Sequence of time points. Axiom (6.2))
17. P[Ti ] ∧ N[T +

i
]−1 < 0 ∧ [2−N[T +

i
] � 0 ∨ 2−N[T −

i+1] � 0] ⇒ N[T −
i+1]−1 � 0.

(First zero crossing rules for precondition of E. Axiom (10.7))
18. P[Ti ] ∧ 2−N[T +

i
] < 0 ∧ [N[T +

i
]−1 � 0 ∨ N[T −

i+1]−1 � 0] ⇒ 2−N[T −
i+1] � 0.

(Second zero crossing rules for precondition of E. Axiom (10.7))
19. P[Ti ] ∧ N[T +

i
]−3 < 0 ⇒ N[T −

i+1]−3 � 0.
(Zero crossing rule for precondition of F. Axiom (10.7))

20. P[T0] ∧ ¬Q[T0] ∧ N[T +
0 ] = 0. (Initial state.)

21. Q[TK ]. (Goal.)

Table 4
Solution to constraints with no zero crossing axiom

Time c(Ti ) active(A) active(E) active(F) active(R) N[T −
i

] N[T +
i

] P Q

0 0 F F F F 0 0 T F
1 0 F F F T 0 0 T F
2 3 F F T T 3 3 F T

Table 5
Correct solution

Time c(Ti ) active(A) active(E) active(F) active(R) N[T −
i

] N[T +
i

] P Q

0 0 F F F F 0 0 T F
1 0 F F F T 0 0 T F
2 1 F T F T 1 1 F F
3 3 T F F T 3 3 T F
4 3 F F T T 3 3 F T
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that clock time). Time points are ordered lexicographically; that is, 〈X1,N1〉 < 〈X2,N2〉
iff X1 < X2 or [X1 = X2 and N1 < N2]. A history is a mapping that maps any time point
within a bounded interval to the values of the fluents at that point, and the sets of actions,
events, and processes that are active at that point. A history is consistent with a PDDL+
domain description if it obeys the rules set forth in the description. A plan is a mapping
that maps any time point to the set of actions that are executed at that point.

History H is a projection of plan P starting in situation S0 relative to domain description
D if

• H and P specify the same actions at the same times.
• H is consistent with D.
• S0 is the starting state of H.

A goal is a property of histories. A planning problem is a specification of a starting state,
a goal, and a domain description. A plan is a correct solution of a planning problem if every
projection of the plan from the starting state relative to the domain description satisfies the
goal.

Note that constraint-based planning techniques give correct results only if the only
source of uncertainty is the actions to be carried out; once the actions are specified, there
is only one possible projection. If there is more than one possible projection, or if there
is anything unspecified in the starting state, then a constraint-based planner will make the
most optimistic assumptions about these; that is, it will set these uncontrolled parameters
in the same way that it sets the actions to be carried out.

Second, we must properly delimit the class of problems. A problem is a candidate for
TM-LPSAT if the following two conditions are satisfied:

• Let H be a history. We say that time point T is significant in H if either at least one
action is executed at H(T); at least one event occurs at H(T); or at least one process
begins or ends at H(T). A planning problem is finitely solvable if there exists a history
that satisfies the problem with finitely many significant time points.

• Every arithmetic function that appears in the PDDL+ domain description is a linear
function of the numeric fluents and non-constant numeric parameters involved with
constant coefficients.

Note that the first condition is a semantic constraint over the class of histories considered,
and that the second condition is a syntactic constraint over the form of the PDDL+ de-
scription. Moreover, it is in general only semi-decidable whether the semantic constraint
holds. That is inelegant, but there does not seem to be any way around it.

Third, we must use the right notion of “completeness”. (There are several different
possible notions of what it means for a planner to be complete.) TM-LPSAT is complete
in the following sense: Let G be any planning problem that is a candidate for TM-LPSAT.
Then if TM-LPSAT is executed with a sufficient number of time points, it will return a plan
that is a valid solution to the problem.
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In Appendix B, we give an extensive, though not fully formal, account of the semantic
definition, of the precise statement of the theorem, and of the proof.

8. Conclusions and future work

There exist very few domain-independent planners that can handle problems involv-
ing continuous change to numeric quantities. The TM-LPSAT planner demonstrates that
the SAT-based planning framework can be extended to deal with such problems. Other
features incorporated in TM-LPSAT include real-valued and interval-valued fluents, ex-
ogenous events and processes, atomic and durative actions with numeric parameters, and
reusable metric and interval resources. To permit the representation of some of these fea-
tures, we have introduced a number of extensions into the PDDL+ description language.
We have tested our encoding generated by the TM-LPSAT compiler, using different SAT-
based arithmetic constraint solvers, on a number of problems of varying complexity and
characteristics. We have proven that TM-LPSAT is sound and complete for a significant
subset of this extended description language.

The contributions of our work are:

• We have shown that the SAT-based planning framework can be used for reasoning
about continuous change. This disproves previous claims, cited in Section 2.1, that
this would be impossible.

• The capability of TM-LPSAT for dealing with issues typical of scheduling prob-
lems, such as metric quantities and reusable resources, suggests that SAT-and-LP-
based planning techniques may offer a bridge spanning the divide between domain-
independent planning and scheduling.

• Our approach to dealing with continuous change and continuous time—specifically,
the characterization of overall behavior in terms of the values of fluents at “signifi-
cant” time points—may also be applicable to other planning methodologies, such as
Graphplan [7].

The current version of TM-LPSAT has the following limitations:

• The existing SAT-based arithmetic constraint solvers can only deal with Boolean com-
binations of linear (in)equalities and propositional atoms. This makes it necessary to
require that all numeric terms in preconditions and in effects are linear functions of
fluents, and that any continuous effect of processes and durative actions is a constant
influence on the derivative of the affected fluent.

• It is not possible in TM-LPSAT to specify a given plan metric to be optimized. This
limitation is inherited from the architecture of the constraint solvers we used, such as
LPSAT [53] or MathSAT [3,9]. (The search strategy in TM-LPSAT will return a plan
with the minimum number of significant time points; but this is not even the same as
the plan with the minimum number of actions, let alone any other metric.)

• Neither the compilation process nor the encoding is optimized in the current version
of TM-LPSAT.
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• Scalability is certainly a concern, as in all SAT-based planners. The question is,
how far can you go, using optimized encodings and heuristics for constraint solvers
based on domain characteristics, before running into intractable combinatorial explo-
sion.

Some thoughts on overcoming these limitations:
As regards non-linear constraints: It would certainly be possible using current tech-

nology to develop an more powerful arithmetic constraint solver that could solve Boolean
combinations of non-linear constraints. How effective such a solver could be made, we can-
not guess. If such an engine were constructed, then that would allow two easy extensions to
TM-LPSAT. First, obviously, it would make it possible to use non-linear arithmetic terms
in preconditions and on the right-hand side of assignment and increment effects. Second,
a little more subtly, it would allow processes whose continuous effect on a output fluent
is constant, but depends on a numeric fluent set by a atomic action or event. For example,
the “Bucket” domain could be modified to allow the agent to turn on a tap to any desired
level of flow-rate. In the Zeno domain of [53], it would be possible to set a desired constant
speed for the airplane, which would affect both the rate of motion and the rate of fuel con-
sumption. Since, in such domains, all numeric fluents would be piecewise linear functions
of time, with breaks only at significant time points, the TM-LPSAT compilation rules, in-
cluding the zero crossing rules, would still be valid; indeed, the proof of their soundness
and completeness would be essentially unchanged.

Extensions beyond that would involve substantially greater difficulties. If the effect of
a process depends on a fluent whose value changes continuously, then there is a differ-
ential equation to be solved, particularly if the dependencies have a cycle. If numeric
fluents can be non-linear functions of time, then it becomes hard to guarantee that they
are monotonic functions of time; and if they are not monotonic, then the zero crossing
rules of Section 6.10.1 are insufficient. The constraint solver would need to incorporate a
zero crossing detector.

We can think of a couple of approaches to adapt TM-LPSAT to plan optimization.17 If
an upper bound is placed on N , the number of time points, then an objective function M

can be optimized by adding a constraint of the form M � B where B is a constant, and
doing binary search to find the smallest possible value of B . However, this strategy cannot
be used to find the overall optimal plan, where N is not bounded. In principle, of course,
one could dovetail the search for B and N ; but such dovetailing is surely more suited to
proofs in computation theory than to practical programming.

A more promising approach would be to modify the interaction between the SAT solver
and the LP solver in the arithmetic constraint solver to use branch and bound [31]. The
problem space consists of a collection of states. Each state is represented by two sets of

17 One difficulty about plan optimization is that, in domains as rich as these, there may not exist any optimal
plan; it is easy to construct problems in which plans can be made better and better as the number of actions
increases, as the number of significant time points increases, as the duration of the plan goes either to infinity or
to a finite limit, or as the value of a numeric action parameter goes either to infinity or to a finite limit. Moreover,
even if an optimal solution is known to exist—e.g., the metric is always a positive integer, and one is searching
for a minimum—proving that a particular solution is optimal may be undecidable.
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constraints, one of logical constraints and the other of mixed logical linear constraints, such
that the two sets share action variables appearing in the mixed constraints. The relaxed
version of mixed constraints is solved, only if the set of logical constraints is satisfiable;
the optimal value of the relaxed constraints gives the lower bound (for a minimization
problem) of the mixed constraints so that it can be used either to bound the optimal value
of the problem (if the values of action variables in the solution satisfy the set of logical
constraints), to prune the search space, or to branch from the current state. This approach,
we believe, may prune the search space quickly due to the action variables shared between
the two sets of constraints. The major challenge is to derive heuristics to decide a branching
variable or to pick up a state to solve next. Currently we are working on this approach using
an incremental SAT solver and an LP solver.

Optimization techniques known for the propositional domains may be extended for tem-
poral metric domains: adding domain axioms, such as state constraints, that are inferred
through domain analysis [26] as preprocessing step; reducing encoding size by removing
unnecessary action instantiations through type analysis [23] at compilation stage; simplify-
ing binary clauses in the encoding produced by the compiler, which are generally numerous
in the SAT encoding of planning [10].

In the SAT-based arithmetic constraint solver, it is known that the running time is dom-
inated by the time consumed by the LP solver [1,54]. In order to reduce calls to the LP
solver, one optimization technique at the encoding (compiling) phase would be to lift
arithmetic constraints mutually exclusive up to the Boolean level. In the example of Sec-
tion 6.10.2, the inequalities N [Ti] � 2 in axiom 4 of Table 3 and 3 � N [Ti] in axiom 6
are mutually exclusive. If we were to add this mutual exclusion as a clause, then the SAT
solver could not assign them (or, more precisely, their Boolean triggers) TRUE in a partial
propositional solution. Thus, it would never be necessary to pass the two of them together
to the LP solver to find the inconsistency. The detection of arithmetic constraints mutually
exclusive in the encoding can generally be done as a preprocessing step in a constraint
solver, called static learning. It, however, is certainly more expensive than at the encoding
phase. The layered structure adopted in MathSAT [3,9] is also an effective approach to
reduce unnecessary calls to the LP solver (or, generally computationally more expensive
routines).

It was known that a branching heuristic utilizing characteristics specific to encoding of
planning domains (i.e. nondeterminism on choices of actions) can drastically reduce run-
ning times [28]. Our preliminary experiments also show that different branching heuristics
could make a big difference in running time of a planning problem in temporal metric
domains. We, however, do not know any SAT solver or SAT-based arithmetic constraint
solver specially tailored for planning domains. Our ongoing work on branch-and-bound
architecture built on LP and SAT solvers is to combine completeness and these heuristics
coming from planning domains.

We have done some preliminary experiments18 with IPC3 problem domains [39] and
“Bucket” domain, and a number of SAT-based arithmetic solvers based on different algo-
rithms. The intention of the experiments was to observe the feasibility of our encoding, the

18 The report is available at http://cs.nyu.edu/~jiae/papers/experiments.pdf.
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scalability of this approach in temporal metric domains, and how features of different con-
straint solvers react with characteristics of constraints specific to different kinds of planning
(metric planning in discrete time, temporal planning with durative actions, temporal metric
planning of real-time model).

The difficulty of solving a constraint set generally grows rapidly with its size, and shows
striking difference in performance among different constraint solvers. This is particularly
apparent in the problems of the “Bucket” domain, which are more constrained, and which
intertwine metric constraints with temporal constraints. For temporal planning problems
in which the arithmetic constraint set consists mostly of equality equations, we have found
that the solver with a specialized routine for equality equation, a variant of Bellman–Ford
algorithm, in the layered and delayed architecture [3,9] performs considerably better than
others. Currently the constraint solver is used as a black box and advanced analysis is left
for future work.

Finally, we plan to explore some further applications of this type of planning. It should
be possible to implement some kinds of spatial reasoning by allowing region-valued fluents
and motion as a process. If regions are restricted to polygons or polyhedra, either fully
specified, or of a specified maximum complexity, and all motions are constant-velocity
translations, then it should be possible to compile these domains into systems of linear
constraints.
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Appendix A. The bucket domain and problem in an extended PDDL+

A.1. The bucket domain

;; ===================================================================
;; "Bucket" Domain: ;;
;; Deliver a specified amount of water to a specified ;;
;; location(s) by a specified deadline. ;;
;; ;;
;; Assumptions: ;;
;; - Zero or more than one tap are in each location. ;;
;; - Each tap fills only one bucket at a time. ;;
;; - Each bucket can be filled by more than one tap ;;
;; in a location at a time, allowing concurrent continuous ;;
;; change on the level of a bucket. ;;
;; ===================================================================
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(define (domain Buckets)
(:requirements :time :continuous-effects)
(:types agent bucket tap location)
(:predicates (at ?o - (either agent bucket tap) ?l - location)

(on ?t - tap)
(filling ?t - tap ?b - bucket)
(carrying ?a - agent ?b - bucket)
(is_walking ?a - agent ?d - location)
(connected ?s - location ?d - location)

)

(:functions (capacity ?b - bucket) - float
(flow_rate ?t - tap) - float
(walking_speed ?a - agent) - float
(distance ?s - location ?d - location) - float
(amount_of_water ?l - location) - fluent
(distance_to_walk ?a - agent ?d - location) - fluent
(level ?b - bucket) - fluent

)

;; ==================================================================
;; Filling buckets with taps ;;
;; ==================================================================

(:action turnOnTap
:parameters (?a - agent ?t - tap ?b - bucket ?l - location)
:precondition (and (at ?a ?l)

(at ?b ?l)
(at ?t ?l)
(not (on ?t)))

:effect (and (on ?t)
(filling ?t ?b))

)

(:action turnOffTap
:parameters (?a - agent ?t - tap ?b - bucket ?l - location)
:precondition (and (at ?a ?l)

(at ?t ?l)
(on ?t)
(filling ?t ?b))

:effect (and (not (on ?t))
(not (filling ?t ?b)))

)

(:process fillingBucket
:parameters (?b - bucket ?t - tap ?l - location)
:precondition (and (at ?b ?l)

(at ?t ?l)
(filling ?t ?l)
(<= (level ?b) (capacity ?b)))

:effect (increase (level ?b) (* #t (flow_rate ?t)))
)
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;; =================================================================
;; Moving buckets between locations ;;
;; =================================================================

(:action pickUp
:parameters (?a - agent ?b - bucket ?l - location)
:precondition (and (at ?a ?l)

(at ?b ?l))
:effect (and (not (at ?b ?l))

(carrying ?a ?b))
)

(:action putDown
:parameters (?a - agent ?b - bucket ?l - location)
:precondition (and (at ?a ?l)

(carrying ?a ?b))
:effect (and (at ?b ?l)

(not (carrying ?a ?b)))
)

(:action go
:parameters (?a - agent ?s - location ?d - location)
:precondition (and (at ?a ?s)

(or (connected ?s ?d) (connected ?d ?s))
(not (is_walking ?a ?d)))

:effect (and (not (at ?a ?s))
(is_walking ?a ?d)
(assign (distance_to_walk ?a ?d)

(distance ?d ?s)))
)

(:process walking
:parameters (?a - agent ?d - location)
:precondition (and (is_walking ?a ?d)

(>= (distance_to_walk ?a ?d) 0)
:effect (decrease (distance_to_walk ?a ?d)

(* #t (walking_speed ?a)))
)

(:event arrive
:parameters (?a - agent ?d - location)
:precondition (and (is_walking ?a ?d)

(<= (distance-to-walk ?a ?d) 0))
:effect (and (not (is_walking ?a ?d))

(at ?a ?d))
)
;; =================================================================
;; Filling among buckets in a location ;;
;; =================================================================

(:action pour
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:parameters
(?a - agent ?s - bucket ?d - bucket ?q - real ?l - location)

:precondition (and (at ?a ?l)
(carrying ?a ?s)
(at ?d ?l)
(> ?q 0)
(<= ?q (level ?s))
(<= ?q (- (capacity ?d) (level ?d))))

:effect (and (decrease (level ?s) ?q)
(increase (level ?d) ?q))

)

(:action deliver
:parameters (?a - agent ?b - bucket ?l - location ?q - real)
:precondition (and (at ?a ?l)

(carrying ?a ?b)
(> ?q 0)
(<= ?q (level ?b)))

:effect (and (increase (amount_of_water ?l) ?q)
(decrease (level ?b) ?q))

)

A.2. A bucket problem

;; ===================================================================
;; ;;
;; The Problem 1.1 in Section~1 ;;
;; ;;
;; A possible solution: ;;
;; 1. turnOnTap(ERNIE,TAP1,BUCKET1,SL) ;;
;; ==> fillingBucket(BUCKET1,TAP1,SL) on ;;
;; 2. turnOffTAP(ERNIE,TAP1,BUCKET1,SL) ;;
;; 3. turnOnTap(ERNIE,TAP1,BUCKET2,SL) ;;
;; ==> fillingBucket(BUCKET2,TAP1,SL) on ;;
;; 4. pickUp(ERNIE,BUCKET1,SL) ;;
;; 5. go(ERNIE,SL,DL) ==> walking(ERNIE,DL) on ;;
;; 6. arrive(ERNIE,DL) ;;
;; 7. deliver(ERNIE,BUCKET1,DL,1) ;;
;; 8. go(ERNIE,DL,SL) ==> walking(ERNIE,SL) on ;;
;; 9. arrive(ERNIE,SL) ;;
;; 10. turnOffTAP(ERNIE,TAP1,BUCKET2,SL) ;;
;; 11. pickUp(ERNIE,BUCKET2,SL) ;;
;; 12. go(ERNIE,SL,DL) ==> walking(ERNIE,DL) on ;;
;; 13. arrive(ERNIE,DL) ;;
;; 14. deliver(ERNIE,BUCKET2,DL,4) ;;
;; ===================================================================

(define (problem problem1.1)
(:domain Buckets)
(:requirements :time :continuous-effects)
(:objects SL - location DL - location

TAP1 - tap
BUCKET1 - bucket BUCKET2 - bucket
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ERNIE - agent
)
(:init (at ERNIE SL)

(at BUCKET1 SL)
(at BUCKET2 SL)
(at TAP1 SL)
(= (flow_rate TAP1) 0.1)
(= (walking_speed ERNIE) 5)
(= (capacity BUCKET1) 4)
(= (capacity BUCKET2) 4)
(= (distance SL DL) 100)
(= (distance DL SL) 100)
(= (amount_of_water SL) 0)
(= (amount_of_water DL) 0)
(= (distance_to_walk ERNIE SL) 0)
(= (distance_to_walk ERNIE DL) 0)
(= (level BUCKET1) 0)
(= (level BUCKET2) 0)
(connected SL DL)
(connected DL SL)

)
(:goal (and (>= (amount_of_water DL) 5))

(<= ?total-time 70))
)
)

Appendix B. Proof of soundness and completeness

In this appendix we present the proof that TM-LPSAT is sound and complete over a
substantial subset of our extended version of PDDL+ Level 5. We do not carry this analysis
to the point of a full formal semantics, in the sense of a fully specified mapping from the
symbolic form of the PDDL+ description to the ontological model; rather, we rely on an
informal reading of the PDDL+ description. We are confident that the aspects of the formal
semantics not dealt with here involve only issues that are well established in the theory of
formal semantics of representations and that are essentially orthogonal to the issues that
we will deal with here. Our focus here is on defining how a valuation over discrete and
numeric variables characterizes behavior over real-valued time and on establishing that the
formal constraints generated by TM-LPSAT correspond to the meaning of the PDDL+
representation.

The subset of PDDL+ Level 5 that we deal with here includes atomic actions, events,
discrete and numeric fluents, and processes. It does not include interval-valued fluents or
resources, but we are confident that extending the proof to cover these is both straightfor-
ward and uninteresting. For the remainder of this appendix, we will use “PDDL+” to mean
that subset of PDDL+ that we are dealing with here.

To simplify the exposition, in most of this section we will ignore the issue of actions
with numerical parameters; these make the definitions more complex but do not present
any substantive difficulty. At the end, we will sketch how these can be incorporated.

Formulating and proving these theorems involves the following steps:
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1. Defining the ontology of the microworld in which PDDL+ plans are executed.
2. Defining the semantics of a PDDL+ problem statement in terms of this ontology.
3. Defining the relation between a valuation over the variables used in TM-LPSAT and

microworld entities.
4. Identifying the rare circumstances in which the physical projection of a system of

processes is underdetermined.
5. Formalizing and proving the sense in which TM-LPSAT is “sound” and “complete”.

(In particular, there are several different senses in which a planner can be “complete”;
only one of these applies to TM-LPSAT.)

B.1. Ontology

We assume that there are disjoint finite sets of actions, events, processes, and fluents.
Each fluent F has associated with it a set of possible values, denoted vals(F ). If F is
discrete then vals(F ) is a finite set of non-numeric values. If F is numeric, then vals(F ) is
the set of real numbers.

Definition B.1. A situation is a four-tuple 〈A,E,P,M〉 where A is a set of actions; E is a
set of events; P is a set of processes, and M is a mapping over the set of fluents, such that,
for any fluent F , M(F) ∈ vals(F ).

We will use a Pascal-style dot notation to denote the fields of a tuple; for example, if S

is a situation, then S.A is the set of actions in S, S.P is the set of processes, and so on.
To allow the possibility of multiple time points with the same clock time, as discussed

in Section 4, we use the following non-standard temporal model:

Definition B.2. A time point is a pair 〈X,N〉 where X is a real number and N is a positive
integer.

Intuitively, 〈X,N〉 is the N th time point (counting from 0) at clock time X. Time points
are ordered lexicographically; that is, 〈X1,N1〉 < 〈X2,N2〉 iff X1 < X2 or [X1 = X2
and N1 < N2].

Definition B.3. A time interval I is a non-empty set of time points such that, if T 1 ∈ I ,
T 2 ∈ I and T 1 < T < T 2 then T ∈ I . If T 1 and T 2 are time points with T 1 < T 2 then
the closed interval [T 1, T 2] is, as usual, the set of all time points T such T 1 � T � T 2.

Definition B.4. For any time point T = 〈X,N〉, if N > 0 then the time point preceding T

is the point 〈X,N − 1〉. If N = 0, then there is no time point preceding T .

Definition B.5. Let I = [〈X1,0〉, 〈X2,N〉] be a closed time interval. A history H over I

is a mapping from I to situations.

The following abbreviations will be convenient. Let H be a history over the time interval
I = [〈X1,0〉, 〈X2,N〉]. We will write I = dom(H) (read “the domain of H ”), and the
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real interval [X1,X2] = domX(H) (read “the X-domain of H ”). For any time point T ∈
dom(H) and fluent F we will write H(T ,F ) as an abbreviation for [H(T ).M](F ), and we
will write ΦH,F (X) for the function over domX(H) defined by ΦH,F (X) = H(〈X,0〉,F ).
Note that H(T ).A, H(T ).E, and H(T ).P are respectively the set of actions, events, and
processes active in H at time point T .

Definition B.6. A history H over [T 0, T 1] is compact if the following holds: For any
TA,TB, if TA �= T 0, TA.X = TB.X, TA.N < TB.N and H(TA).A = H(TA).E = ∅ then
H(TB).A = H(TB).E = ∅.

That is, looking at a sequence of time points 〈X,0〉, 〈X,1〉, . . . all of the time points
when an action or event happens are “compacted” together at the beginning of the se-
quence, with the exception of the starting time point of this history.

Definition B.7. Let H be a history and let X ∈ domX(H). We say that the processes in H

are constant around X if there exists a neighborhood (XA,XB) of X over which the active
processes do not change. That is, for every TC,TD if XA < TC.X < XB and XA < TD.X <

XB, then H(TC).P = H(TD).P. If the processes in H are not constant around X, then X is
a time of process change in H .

Definition B.8. Let H be a history and let T be a time point in dom(H ). T is a significant
time point in H if either

• T is the starting time point of H .
• T is the ending time point of H .
• H(T ).A �= ∅.
• H(T ).E �= ∅.
• T .X is a time of process change and T .N = 0.

Definition B.9. A history H has finite complexity if it has finitely many significant time
points. H is monotonous over real interval (XA,XB) if there is no significant time point T

such that T .X ∈ (XA,XB).

In all that follows, we will write “history” to mean “compact history of finite complex-
ity”.

Definition B.10. Let H be a history, T a time point in the domain of H , and F a fluent.
Assume that T is not starting time point of H . Value V is the value of F before T if the
following conditions are satisfied.

• If T .N > 0, then V = H(T 1,F ) where T 1 is the point preceding T .
• If T .N = 0 and F is discrete, then there exists a T 0 < T such that for all T 1, if

T 0 < T 1 < T then V = H(T 1,F ).
• If T .N = 0 and F is numeric, then V is the limit of ΦH,F (X) as X approaches T .X

from below.
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If α is a term computed over fluents, then the value of α before T is α computed over
the values of the fluents before T . If α is a Boolean expression and the value of α before
T is TRUE, in the above sense, then we say that α holds before T .

Definition B.11. A plan P is a mapping over a bounded time interval I , such that,

• For any T ∈ I , P(T ) is a finite set of actions;
• P(T ) = ∅ for all but finitely many T.

We write I = dom(P ), the domain of P .

Intuitively, P(T ) is the set of actions that the plan says should be executed at time T .

B.2. Semantics of PDDL+

Definition B.12. A PDDL+ planning problem is a triple 〈D,S,G〉 where D is a PDDL+
domain representation, S is a PDDL+ representation of a starting situation, and G is a
PDDL+ representation of a goal.

In Section 6 we did not describe how PDDL+ representations of a starting situation
and of a goal are compiled into axioms (a) because it is obvious; (b) because it is the same
as in any SAT-based planner. We will similarly not discuss the issue here. We do, how-
ever, assume that a PDDL+ representation of a starting situation uniquely determines the
situation. If S is a PDDL+ representation of a starting situation, we will write “Sit(S)”
to denote the actual situation. As for goals, for our purposes here a “goal” can be essen-
tially any property of a history; we assume that the translation of a PDDL+ goal into the
corresponding property is done correctly.

The following long definition contains the details of the meaning of the constructs of
PDDL+ in terms of the properties of a history. As is common in this kind of semantic
definition, the left-hand side of the definition is an almost tautological rewording of the
right-hand side. Likewise notable is the strong resemblance of the definition here to the
description of the constraint compiler in Section 6. This resemblance (a) is to be expected;
(b) means that large parts of the proof of correctness are trivial; (c) limits substantially
the degree to which the exhibition of a soundness and correctness proof of this kind ac-
tually increases the reader’s confidence in the compiler or augments her understanding
of it.

Definition B.13. Let H be a history and let D be a PDDL+ domain representation. H con-
forms to D if the following conditions hold:

1. If action Z ∈ H(T ).A or event Z ∈ H(T ).E and D specifies that Z assigns term τ to
fluent F , then H(T ,F ) is equal to the value of τ before T .

2. If F is a numeric fluent and if there is no action Z ∈ H(T ).A nor event Z ∈ H(T ).E

such that D specifies that Z assigns a value to fluent F , then H(T ,F ) is equal to the
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value of F before T plus the sum over (all actions/events Z ∈ [H(T ).A ∪ H(T ).E])
of the increase/decrease that Z causes in F .

3. (Frame property) Let F be a discrete fluent and let T 1, T 2 be time points such
that T 1 < T 2. Then H(T 2,F ) = H(T 1,F ), unless there exists a time T such that
T 1 < T � T 2 and either an action Z ∈ H(T ).A or an event Z ∈ H(T ).E such that D

specifies that Z assigns a value to fluent F .
4. If action Z ∈ H(T ).A, then the precondition for Z holds before T in H (in the sense

of Definition B.10).
5. Event E is in H(T ).E if and only if the precondition of E holds before T in H .
6. Process P is in H(T ).P if and only if the precondition of P holds before T in H .
7. Suppose that H is monotonous over real interval (X1,X2). Let F be a numeric fluent.

Then:
7.1 The function ΦH,F is continuous and differentiable throughout (X1,X2).
7.2 For any x ∈ (X1,X2) the derivative d

dX
(ΦH,F (X)) at time x is equal to the sum

over all processes P in H(〈x,0〉).P of the influence of P on F at time 〈x,0〉.
7.3 For all sufficiently large N , H(〈X1,N〉,F ) is equal to the limit of ΦH,F (x) as x

approaches X1 from above.

Definition B.14. Let P be a plan; let H be a history; let S be a PDDL+ representation of
a starting situation; and let D be a PDDL+ domain description. H is a projection of plan
P starting in S and following D if the following conditions hold:

• dom(P ) = dom(H);
• For all T ∈ dom(H), H(T ).A = P(T ).A;
• Sit(S) is the starting situation of H ; and
• H conforms to D.

As we shall see in Lemma B.1, for any P , S, D there exists at most one such projection,
with rare exceptions to be discussed below.

Definition B.15. Let R = 〈D,S,G〉 be a PDDL+ problem. History H is a historical solu-
tion of R if H starts in Sit(S), conforms to D, and achieves G. A finite plan P is a planning
solution of R if every projection of P starting in S and following D is a historical solution
of R.

Note that constraint-based planning techniques give correct results only if the only
source of uncertainty is the actions to be carried out; once the actions are specified, there
is only one possible projection. If there is more than one possible projection, or if there is
anything unspecified in the starting situation, then a constraint-based planner will make the
most optimistic assumptions about these; that is, it will set these uncontrolled parameters
in the same way that it sets the actions to be carried out. Note also that the definition above
of the correctness of a plan only works for complete plan representations; partial plan rep-
resentations, such as those returned by TWEAK [11], require a more complex definition
of correctness.
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B.3. Valuations and their interpretations

Definition B.16. Let R be a PDDL+ problem representation. Let T0 . . . Tk be a sequence
of k + 1 distinct symbols, called “time point variables”. We define the set “ATOMS[R,k]”
to be the set of all the following atoms: For each time point variable Ti ,

• The atom “c(Ti )”.
• For each action, event, or process Z in R, the atom “active(Z)[Ti ]”.
• For each discrete fluent F in R, the atom “F [Ti]”.
• For each numeric fluent F in R, the atoms “F [T −

i ]” and “F [T +
i ]”.

• For each numeric fluent F and each action or event Z that potentially changes F

incrementally, the atom “�(F,Z)[Ti]”.
• For each numeric fluent F and each process P that potentially influences F , the atom

“Γ (F,P,Ti, Ti+1)”.

Definition B.17. A T-valuation V is an assignment of each atom in ATOMS[R,k] to a
value of the appropriate sort, such that, for each i < j , V(“c(Ti )”) � V(“c(Tj )”).

Definition B.18. Let V be a T-valuation over ATOMS[R,k]. The time point mapping for V
is the function τ from Ti to time points defined as follows: τ(Ti) = 〈X,J 〉 where

• X = V(“c(Ti )”);
• Ti is the J th time point variable such that X = V(“c(Ti)”). That is, V(“c(Ti )”) =

V(“c(Ti−1)”) = · · · = V(“c(Ti−J )”) �= V(“c(Ti−J−1)”).

Definition B.19. Let V be a T-valuation over ATOMS[R,k]. Let τ be the time point map-
ping for V. Plan P is indicated by V if:

• For each Ti , P(τ(Ti)) = the set of all actions A such that V(“active(A)[Ti ]”) = TRUE.
• For each T , if T �= τ(Ti) for all i, then P(T ) = ∅.

Definition B.20. Let D be a domain description, let V be a T-valuation, and let H be a
history. Let τ be the time point mapping of V . H corresponds to V if:

1. dom(H ) = [τ(T0), τ (Tk)].
2. If i < j then τ(Ti) < τ(Tj ).
3. For each Ti , H (τ(Ti )).A = {A | V (“active(A)[Ti ]”) = TRUE}.
4. For each Ti , H (τ(Ti )).E = {E | V (“active(E)[Ti ]”) = TRUE}.
5. For any discrete fluent F , H(τ(Ti),F ) = V (“F [Ti]”).
6. For any numeric fluent F , H(τ(Ti),F ) = V (“F [T +

i ]”).
7. Let T be any time point in dom(H ). Let Ti be the greatest time variable such that

τ(Ti) � T .
7.1. If T �= τ(Ti) then H(T ).A = H(T ).E = ∅.
7.2. For any discrete fluent F , H(T ,F ) = V (“F [Ti]”).
7.3. If T .X = τ(Ti).X, then
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7.3.1. For any numeric fluent F , H(T ,F ) = V (“F [T +
i ]”).

7.3.2. For any process P , P ∈ H(T ).P if the preconditions of P , as defined in D,
are satisfied before T in H .

7.4. If T .X > τ(Ti).X then
7.4.1. For any numeric fluent F , let

q = (
T .X − τ(T +

i ).X
)
/
(
τ(Ti+1).X − τ(Ti).X

)
.

Then H(T ,F ) = (1 − q)V (“F [T +
i ]”) + qV (“F [T −

i+1]”).
(Linear interpolation between significant points.)

7.4.2. H(T ).P = {P | V (“active(P )[Ti ]”) = TRUE}.

Note that at a significant time Ti and at all subsequent non-significant times with the
same clock time, the activity of a process in H is rather awkwardly defined in terms of the
preconditions specified in the domain description D (which is the only reason for including
D as a parameter in this definition at all). The reason for this is as follows: Recall that in
our discussion of axiom (3.4) we defined “active(P )[Ti ]” to mean that P was active over
an interval starting in Ti . Therefore, if P comes to an end at Ti , then in V , “active(P )[Ti ]”
is FALSE. However in H , P will be active at T = τ(Ti) if its preconditions are satisfied
at Ti ; thus, P will still be active at T in H if the preconditions are becoming FALSE due to
a zero crossing, which will be come negative only after T , but it will be inactive at T in H

if the preconditions have just become FALSE in T due to a discrete change. The valuation
V by itself does not distinguish these two cases; one needs to know the domain definition.
Of course, since the effect of a process is differential, whether or not a process is active at
an instant actually makes no difference.

B.4. Indeterminate projections

As discussed above, the constraint-based approach to planning relies on the assumption
that any plan has a unique projection; that is, once you fix the actions you are to do, that de-
termines everything else that can happen. Unfortunately, in a theory that include processes
of the kind in PDDL+, there are rare cases where that assumption is false.

The problem arises for the following reason: A system of processes in effect imposes
a set of ordinary differential equations (ODE’s) over the numerical fluents involved. In
standard applications of ODE’s one can rely on a standard existence and uniqueness result
for initial value problems to guarantee that, having set up the starting condition and the
differential equation, history can develop in only one way. However, this result only holds
when the “driving function” for the ODE is continuous. PDDL+ processes define a dis-
continuous driving function, so neither existence nor uniqueness is guaranteed and indeed
there are cases where history can develop in more than one way.

Consider the following example: There is one numeric fluent F and two processes P 1
and P 2. P 1 has precondition TRUE and increases F at the rate of 1 unit per second. P 2
has the precondition F � 0 and decreases F at the rate of 1 unit per second. Suppose that
F = 0 at time T = 0. Then for any T 1 � 0, the following is a consistent behavior:
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For any time T ,

If 0 � T � T 1 then P 1 and P 2 are active at T and F = 0.
If T 1 < T then only P 1 is active at T and F = T − T 1.

This corresponds to the fact that the differential equation

Ḟ =
{

0 if F � 0,

1 if F > 0

has infinitely many solutions (if one allows a “solution” to have finitely many points where
it is continuous but not differentiable).

However, a history H only encounters this problem at time T if the following condition
is met: (this is a necessary condition for the problem, not a sufficient condition).

Indeterminacy condition. There is a dependency cycle between processes, numeric flu-
ents, and preconditions:

P1 → F1 → Φ1 → P2 → ·· · → Φk → P1,

such that process Pi is active at T and influences fluent Fi ; Fi is involved in precondition
Φi ; and Φi is a precondition of process Pi+1 which is satisfied but just on the borderline at
time T .

A history H satisfies the Unique Projection Condition (UPC) if it never satisfies the
indeterminacy condition.

In principle, it would be possible to add the unique projection condition as a TM-LPSAT
constraint. The theoretical advantage would be that doing so would give a slightly improved
pair of soundness and completeness results, as discussed below. We have not implemented
it, however. In most actual domains where the PDDL+ representation is at all a reasonable
approximation, it is possible to determine at compilation time that no circularity can arise
among fluents and processes; hence, no UPC axioms will be formulated. If a domain does
have this kind of circular dependence among fluents and processes, then it is very unlikely
that it can be adequately modeled using constant-rate influences. The theoretical improve-
ment to the algorithm in the rare cases where the UPC axioms do have an effect did not
seem worth the programming effort.

B.5. Constraints and theorems

Finally, we introduce a notation for the set of constraints generated by TM-LPSAT, state
our soundness and completeness theorems, and prove the theorems.

Definition B.21. Let R be a planning problem and let k be a positive integer. We define
TM-LPSAT(k,R) to be the set of constraints constructed from R over ATOMS[R,k] as
defined in Sections 6.1, 6.2, 6.3, 6.5, 6.6, and 6.10, using versions (10.7) and (10.11) of
the zero crossing axioms, but excluding the mutex axioms in Sections 6.1.3 and 6.2.4. The
mutex axioms are useful for enforcing certain regularity conditions that are important in
other contexts, and they are part of the standard semantics of PDDL+, but in the context
of this proof they just get in the way.
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Let Λ be an algorithm (the constraint solver) that achieves the following: Λ takes as
input a set of constraints C of the form produced by TM-LPSAT. If the constraints C have
a solution, then Λ returns a T-valuation that is a solution of C. If the constraints C do not
have a solution, then Λ returns a flag indicating there is no solution.

Theorem B.1 (Soundness). Let R be a planning problem. If Λ(TM-LPSAT(k,R)) returns
a T-valuation V , and V satisfies the UPC then the plan indicated by V is a planning
solution to R.

Theorem B.2 (Completeness). Let R be a planning problem. If there exists a planning
solution to R, then for some value of k, Λ(TM-LPSAT(k,R)) returns a T-valuation V . By
Theorem B.1, if V satisfies the UPC then V indicates a planning solution to R.

The above pair of theorems does not close quite tight for the following reason: One can
construct a problem R where there is a correct plan P 1 that satisfies the UPC, but where
there is also a plan P 2 that does not satisfy the UPC, such that some but not all of the
projections of P 2 satisfy the goal. Such a plan P 2 is not a correct solution of the problem,
since, if you execute it, you cannot be sure of accomplishing the goal. In this case, there
are two things that Λ(TM-LPSAT(R)) may do:

• It may return a valuation that indicates P 1. In that case, you can check that P 1 satisfies
the UPC, and you are certain that it is a correct plan.

• It may return a valuation that indicates P 2. In that case, you can detect that P 2 violates
the UPC. If you accept P 2, you are accepting an incorrect plan. If you reject P 2 then
you have failed to find a plan, even though there exists a plan that satisfies the UPC.

We can tighten this, in principle, by adding the UPC to the constraints generated by
TM-LPSAT. Let TM-LPSATU(k,R) be TM-LPSAT(k,R) together with the UPC. Thus, if
TM-LPSATU is applied to the above problem it will return P 1 and not P 2.

Theorem B.3. Let R be a planning problem.

• For any k, if Λ(TM-LPSATU(R, k)) returns a T-valuation V , then V indicates a plan-
ning solution to R satisfying the UPC.

• If there exists a planning solution to R satisfying the UPC, then there exists k such that
Λ(TM-LPSATU(R, k)) returns a T-valuation V that indicates a planning solution to
R satisfying the UPC.

B.6. Proofs

The proofs of the above three theorems follow, in a series of lemmas.

Lemma B.1. Let D be a PDDL+ domain description and let S be a PDDL+ representa-
tion of a starting situation. Let P be a finite plan. Then there exists at most one history H
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of finite complexity that is a projection of P , starts in S, conforms to D, and satisfies the
UPC.

Proof. (By contradiction.) Suppose that there exist two such histories H1 �= H2. Note
that, if TS is the starting time point of dom(P ) then Sit(S) = H1(TS) = H2(TS). Note also
that dom(P ) = dom(H1) = dom(H2). Let interval I be the maximal initial segment of
dom(P ) such that, for all T ∈ I H1(T ) = H2(T ). (I can be constructed as the union of
all initial segments I1 of dom(P ) such that, for all T ∈ I1, H1(T ) = H2(T ).) There are
three cases to be considered:

Case 1: I has the form [TS,TE] for some ending point TE. Let TE1 be the time point
following TE. Then P determines the actions in TE1. Definition B.13 parts 5 and 6 deter-
mine the events and processes in TE1. Definition B.13 parts 1, 2, and 3 determine the value
of all the fluents in TE1. Hence H1(TE1) = H2(TE1).

Case 2: I has the form {T | TS � T ∧ T .X < XE} for some upper bound XE. Let TE1 =
〈XE,0〉. Then the situation in TE1 is determined, by the same argument as in part (1).

Case 3: I has the form {T | TS � T ∧ T .X � XE} for some upper bound XE. In this
case, there is no “next” situation after I , so the arguments in cases 1 and 2 do not ap-
ply. Rather, we proceed as follows: Since H1 and H2 have finite complexity, there exists
XF > XE and NE such that no events or actions after 〈XE,NE〉 and before 〈XF,0〉 in
either H1 or H2. That is, no actions or events occur in this interval; and the values of
discrete fluents does not change during this interval; and the class of active processes does
not change in the interval {T | 〈XE,NE〉 � T < 〈XF,0〉}. Let TE = 〈XE,NE〉. By virtue
of the UPC, there is a topological sorting of numerical fluents, processes that are active
at TE, and numerical preconditions of processes that are active at TE that are just on the
borderline such that every process comes after its preconditions, every fluent comes af-
ter the processes that influence it, and every precondition comes after the fluents that it
references. Since numerical fluents are continuous in the absence of actions and events,
there exists XG > XE such that at all time points T where XE < T.X < XG, all numeri-
cal preconditions that were not on the borderline at TE remain with the same truth value
as at TE. Going through this topological sorting in order, therefore, we can predict that
there is an interval [TE,TH] where TH.X > XE where the value of a numeric fluent is
determined only the value at TE together with processes preceding it in the list; where the
truth of a borderline precondition is determined only by numerical fluents preceding it on
the list; and where the activities of processes is determined only by preconditions preced-
ing it on the list. Thus, the history is determined for some time after I , contrary to the
assumption. �
Lemma B.2. For any T-valuation V and domain description D there exists a unique his-
tory H that corresponds to V relative to D.

Proof. Definition B.20 gives an explicit, fully determined, construction of H from V

and D. �
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In all the following definitions, let R be a planning problem; let D be the domain de-
scription of R; let V be a T-valuation; let H be a history; and let τ be the time point
mapping of V .

Definition B.22. A valuation V covers time point T if there exists a time point variable Ti

such that T = τ(Ti).

Lemma B.3. If H corresponds to V relative to D and either some action or event A occurs
in T at H , then V covers T .

Proof. Contrapositive of part 7.1 in Definition B.20. �
Definition B.23. Let T be a time point in dom(H ).

• T is significant-1 if there is a precondition Φ of an event that is TRUE in T .
• T is significant-2 if there is a precondition Φ of a process such that Φ is FALSE in H

before T and Φ is TRUE in H(T ).
• T is significant-3 if there is a precondition Φ of a process for which one of the follow-

ing holds:
– Φ is TRUE in H before T and FALSE in H(T ).
– Φ is TRUE in H(T ), T .N = 0, and there exists X2 > T .X such that, for all X1,

N1, if T .X < X1 < X2 then Φ is FALSE in H(〈X1,N〉).

Lemma B.4. Let I be an initial segment of dom(H). Let Ti be a time variable such that
τ(Ti) ∈ I and such that τ(Ti).X < τ(Ti+1).X. Let time interval I1 = {T ∈ I | τ(Ti) <

T < τ(Ti+1)}. Let T 1 be any time point in I1. Let T 2 be a time point in I1 such that
T 2.X > τ(Ti).X. If V satisfies TM-LPSAT(k,R) and H corresponds to V then

A. τ(Ti+1).N = 0.
B. If τ(Ti).X < T.X < τ(Ti+1).X then P is active in T if and only if V (“active(P )[Ti]”)

= TRUE.
C. H is monotonous over the real interval (τ (Ti).X, T 2.X).
D. If F is a discrete fluent then H(T 1,F ) = H(τ(Ti),F ).
E. Let PP = H(T 2).P. Let F be a numeric fluent. Let Γ be the sum over P ∈ PP of the

influence of P on F . Then H(T 1,F ) = H(τ(Ti),F ) + Γ · (T 1.X − τ(Ti).X).
F. For any numerical fluent F , the value of F before Ti+1 is equal to V (“F [T −

i+1]”).

Proof.

A. Immediate by Definition B.18 of a time point mapping.
B. From Definition B.20 part 7.4.2, for all such T , the active processes are those such

that V (“active(P )[Ti ]”) = TRUE.
C. By Lemma B.3, no actions or events can occur in H at uncovered points. By part B, the

set of processes remains constant; hence there are no times of process change. Hence
(T 2.X,T 3.X) is monotonous.
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D. Immediate from Definition B.20 part 7.2.
E. There are two cases to consider:

E.1. T 1.X = τ(Ti).X. In this case, the result is immediate from Definition B.20 part
7.3.1.

E.2. T 1.X > τ(Ti).X. By axioms (3.1), (3.2), and (3.3) the difference V (“F [T −
i+1])”−

V (“F [T +
i ])” is equal to [the sum over [all processes P such that V (“active(P )[Ti ]”)

= TRUE] of the influence of P on F ] times [V (“c(Ti+1)”) − V (“c(Ti)”)]. By part
B this set is PP and this sum is Γ . By Definition B.20 part 2, V(“c(Ti )”) = τ(Ti).X,
so we have

V
(
“F [T −

i+1]”
) − V

(
“F [T +

i ]”) = Γ · (τ(Ti+1).X − τ(Ti).X
)
.

By Definition B.20 part 7.4.1,

H(T ,F ) = (1 − q)V
(
“F [T +

i ]”) + qV
(
“F [T −

i+1]”
)
, where

q = (
T .X − τ(Ti).X

)
/
(
τ(Ti+1).X − τ(Ti).X

)
.

By Definition B.20 part 7.3.1, H(τ(Ti),F ) = V (“F [T +
i ]”). Combining the above

with some algebraic manipulation gives the desired result.
F. Again there are two cases:

F.1. τ(Ti+1).N > 0. In that case the value of F before τ(Ti+1) is the value H(T 1,F )

where T 1 is the situation that precedes τ(Ti+1). Since history H is compact, some
action or event must occur in T 1. Hence, by Lemma B.3, T 1 = τ(Ti). By Def-
inition B.20 part 6, H(T 1,F ) = V (“F [T +

i ]”). By axioms (3.1), (3.2), and (3.3),
V (“F [T +

i ]”) = V (“F [T −
i+1]”).

F.2. τ(Ti+1).N = 0. In that case the value of F before τ(Ti) is the limit of ΦH,F (X)

as X approaches τ(Ti).X from below.
By part (E), ΦH,F = H(τ(Ti),F ) + Γ · (τ (Ti+1).X − τ(Ti).X).
Using (E) and axioms (3.1), (3.2), and (3.3), this is equal to V (“F [T −

i+1]”). �
Lemma B.5. If H corresponds to V , then there can be at most finitely many points that are
significant-1, significant-2, or significant-3.

Proof. By Definition B.20, between any two points τ(Ti) and τ(Ti+1) every discrete fluent
is constant and every numeric fluent is a linear function of time. Any numeric precondi-
tions are a linear inequality over the numeric fluents, and thus a linear inequality in time
over this time interval. A time point that is significant-1, -2, or -3 must either involve a
change to a discrete fluent, which do not occur at uncovered points, or a zero crossing of a
numeric constraint, which can occur at most once for each such constraint between τ(Ti)

and τ(Ti+1). �
Lemma B.6. If H corresponds to V and V satisfies axiom (10.6), then V covers any time
point that is significant-1 or significant-2.

Proof. (By contradiction.) (This proof is essentially the same as the discussion in Sec-
tion 6.10, but set in a specific formal context.) Let T be a time point that is significant-1
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or significant-2 but not covered. Let Ti be the greatest time point variable for which
τ(Ti) < T ; thus T < τ(Ti+1). Let T 1 = τ(Ti) and T 2 = τ(Ti+1). Let the precondition
of the event or process involved be put into DNF: Θ1 ∨ · · · ∨ Θz. Then all of the Θi

are FALSE before T and at least one is TRUE at T . Let Θ(T ) be a constraint that be-
comes TRUE at T . Let TF be a time such that T 1 � TF < T and Θ(TF) is FALSE.
Θ(T ) has the form

∧
p Fp(T ) ∧ ∧

p Qp(T ) � 0. where F(p) are discrete constraints.
By Definition B.20, Fp(T ) = Fp(T 1); since Θ(T ) is TRUE,

∧
p Fp(T 1) must be TRUE.

Thus we must have
∧

p Qp(T ) � 0 but not
∧

p Qp(TF) � 0. Since each Qp is a linear
function of time, if Qp(T ) � 0 but Qp(TF) < 0 then Qp(T 1) < 0. Also, since each Qp

is a linear function of time if Qp(T ) � 0 then either Qp(T 1) > 0 or Qp(T 2−) > 0 or
Qp(T 1) = Qp(T 2−) = 0. where Qp(T 2−) is the limit of Qp(T ) as T approaches T 2
from below. But Qp(T 1) = V (“Qp(T +

i )”) and Qp(T 2−) = V (“Qp(T −
i+1)”); so this pos-

sibility is excluded by axiom (10.6). �
Let us define an additional axiom for zero crossings from TRUE to FALSE analogous

to axiom (10.6):

(10.12)

[∧
p

Fp[Ti] ∧
∧
p

[Qp[T −
i+1] > 0 ∨ Qp[T +

i ] > 0 ∨ Qp[T +
i ] = Qp[T −

i+1] = 0]
]

⇒
[∧

p

Qp[T −
i+1] � 0

]
.

As with axiom (10.11), we constructed this axiom by starting with axiom (10.6) and inter-
changing F[T +

i ] and F[T −
i+1].

Lemma B.7. If H corresponds to V and V satisfies axiom (10.12), then V covers any time
point that is significant-3.

Proof. Exactly analogous to the proof of Lemma B.6, with the following changes: Since
Θ changes from TRUE to FALSE, choose TF such that T < TF � Ti+1 and Θ(TF) is
FALSE. Since Qp is a linear function of time, Qp(T ) � 0 and Qp(TF) < 0, it follows that
Qp(T 2) < 0. �
Lemma B.8. Suppose that V satisfies TM-LPSAT(k,R) using axiom (10.6) and H corre-
sponds to V . If the preconditions of event E are satisfied before T in H , then E occurs in
H at time T .

Proof. (By contradiction.) Suppose that there is a time T when precondition Θ of event E

holds before T but event E is not active. Since E is not active, T is not a significant time
point. We have the following case analysis:

• T .N > 0. In this case, Θ holds in T 1 where T 1 is the situation preceding T . This
would violate axioms (2.1) and (2.2).
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• T .N = 0, and T = τ(Ti) is a covered time point. By Lemma B.4, the value of β before
T is equal to V (“β(T −

i )”). Thus, this violates axiom (2.1).
• T .N = 0 and T is not a covered time point. Let T 1 be the greatest covered time point

such that T 1 < T . Let TS be the smallest value such that TS � T 1 and such that
Θ(TX) holds for all TX ∈ [TS, T ]. (Since H has finite complexity and since numer-
ical preconditions are non-strict inequalities, it is easily shown that such a smallest
value exists.) If TS = T 1 then TS is covered. If Θ(T ) comes to be TRUE in TS as a
result of a discrete change or of a discontinuous change to a numeric variable, then
TS must be covered. If Θ(T ) comes to be TRUE in TS as a result of a continuous
change in a numeric variable, then TS is significant-1 in H and hence covered. There-
fore, since TS is covered, by axioms (2.1) and (2.2), E occurs in the successor to
TS; hence the successor to TS must be covered. But this contradicts the definition of
T 1. �

Lemma B.9. Suppose that V satisfies TM-LPSAT(k,R) using axioms (10.6) and (10.12)

and H corresponds to V . P is active in H at time T if and only if the preconditions of
process P are satisfied before T in H .

Proof. Let Ti be the maximum time point such that τ(Ti) � T . If τ(Ti).X = T .X, then the
result is immediate from Definition B.20 part 7.3.2. Otherwise, note that between τ(Ti) and
τ(Ti+1) there are no actions or events or time points that are significant-2 or significant-3.
Since numerical precondition are all non-strict inequalities, we have the following possible
cases:

• Some precondition β of P is satisfied for all T 1 such that τ(Ti) � T 1 < τ(Ti+1). Then
β[T +

i ] is TRUE and, by Lemma B.4 part F, β[T −
i+1] is TRUE. Hence by axiom (3.4),

V (“active(P )[Ti ]”) = TRUE. Hence by Definition B.20 P is active in H(T ).
• Some precondition β of P is satisfied in τ(Ti) but depends on a numerical constraint

that is on the borderline and just about to become FALSE; and no precondition of P is
satisfied for any T 1 such that τ(Ti).X < T 1.X < τ(Ti+1).X. In this case, β[T −

i+1] is
FALSE, so by axiom (3.4), V (“active(P )[Ti ]”) = FALSE. Hence by Definition B.20
P is not active in H(T ).

• No precondition β of P is satisfied in τ(Ti). In this case, no precondition β can be
satisfied for any T 1 such that τ(Ti) � T 1 < τ(Ti+1). Therefore β[T +

i ] is FALSE,
so by axiom (3.4) V (“active(P )[Ti ]”) = FALSE. Hence by Definition B.20 P is not
active in H(T ). �

Lemma B.10. If V satisfies TM-LPSAT(k,R) using axioms (10.6) and (10.12) and H

corresponds to V , then H conforms to the domain description D of R.

Proof. If an action or event Z occurs in H at time T , then by Definition B.20 there is
a Ti in V such that τ(Ti) = T and such that V(“active(Z)[Ti ]”). By axioms (1.1)–(1.5)
for actions and the corresponding axioms for events (Section 6.2.1), the effects of these
actions will be reflected in the value of the fluents in Ti in a way that exactly matches
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constraints 1, 2, and 3 in Definition B.13. Thus Definition B.13 constraints 1, 2, and 3 are
always satisfied.

By axioms (1.6) and (2.1), if V(“active(Z)[Ti ]”) then β[T −] must hold. By Lemma B.4
part F, this is equivalent to the condition that β must hold before Ti . So constraint 4 and
the left to right implication of constraint 5 of Definition B.13 must hold.

The right to left implication of constraint 5 is Lemma B.6. Constraint 6 is Lemma B.7.
Constraint 7 follows immediately from Lemma B.4. �
Corollary B.11. Lemma B.10 continues to hold if axioms (10.6) and (10.12) are replaced,
either by axioms (10.3) and (10.4) or by axioms (10.7) and (10.11).

Proof. As discussed in Section 6.10, these new axioms are stronger than (10.6) and
(10.12), so a T-valuation that satisfies the conditions of Corollary B.11 a fortiori also sat-
isfies the conditions of Lemma B.10. �
Lemma B.12. Let R be a planning problem; let V be a T-valuation that satisfies TM-
LPSAT(k,R) and let H be a history that corresponds to V . Then H is a historical solution
of R.

Proof. Immediate from Corollary B.11 and Definition B.15. �
Let Λ be a constraint solver, with the properties defined on p. 243.

Theorem B.1 (Soundness). Let R be a planning problem. If Λ(TM-LPSAT(k,R)) returns
a T-valuation V , and V satisfies the UPC then the plan P indicated by V is a planning
solution to R.

Proof. By Lemma B.2, there exists a unique history H corresponding to V relative to the
domain description of R. By Corollary B.11, H is a historical solution of R. By Defini-
tion B.15, P is a planning solution to R. �
Definition B.24. Let H be a history that conforms to domain description D. A real value
XZ is a zero crossing of H with respect to D if there is some numerical precondition β � 0
of either an event or a process in D such that either

• There exists X1 < XZ such that
[if X1 < X < XZ then ΦH,β(X) < 0] and limX→XZ− ΦH,β(X) = 0; or

• There exists X1 > XZ such that
[if XZ < X < X1 then ΦH,β(X) < 0] and limX→XZ+ ΦH,β(X) = 0.

Lemma B.13. If history H conforms to domain description D, then H has only finitely
many zero crossings relative to D.

Proof. Using Definition B.20, the fact that H has finite complexity, and the fact that every
precondition β is a linear function of the numeric fluents, it follows that every such β is
piecewise linear. �
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Definition B.25. Let H be a history that conforms to D. A time point Y is significant-4 if
either Y is significant or Y = 〈X,0〉 where X is a zero crossing.

Definition B.26. Let H be a history that conforms to domain description D. The trace
of H relative to D is the T-valuation V constructed as follows: Let Y0 . . . Yk be all the
significant-4 time points of H in sequential order. Let T0 . . . Tk be time point variables.
Then:

• V (“c(Ti )”) = Yi .X.
• For any action A, V (“active(A)[Ti ]”) = TRUE iff A ∈ H(T ).A.
• For any event E, V (“active(E)[Ti ]”) = TRUE iff E ∈ H(T ).E.
• For any process P , V (“active(P )[Ti ]”) = TRUE iff P ∈ H(T ).P.
• For any discrete fluent F , V (“F [Ti]”) = H(T ,F ).
• For any numeric fluent F , V (“F [T +

i ]”) = H(T ,F ).
• For any numeric fluent F , V (“F [T −

i ]”) = the value of F before T in H .
• For each numeric fluent F and each action or event Z that potentially changes F

incrementally, V(“�(F,Z)[Ti]”) is the change that Z makes to F at time Yi .
• For each numeric fluent F and each process P that potentially influences F , the atom

“Γ (F,Z,Ti, Ti+1)” is the change that P makes to F between Yi and Yi+1.

Lemma B.14. Let R be a planning problem. Let H be a historical solution to R. Let V be
the trace of H . Then V satisfies TM-LPSAT(k,R) and H corresponds to V .

Proof. We must establish that if H and the domain description in R satisfy the conditions
of Definition B.13 for “conform” and if V satisfies the conditions of Definition B.25 for
“trace” then V satisfies each of the axioms of TM-LPSAT(k,R) and H and V satisfy each
of the conditions in Definition B.20 for “correspond”. However, this is all a straightforward
repetition of the argumentation that we have given above in Section 6 of the paper and in
the proof of Theorem B.1. �

Note that the trace V of H will satisfy the strongest version (10.3) and (10.4) of the zero
crossing axioms, and hence satisfy the weaker forms (10.6), (10.7), (10.11) and (10.12).

Theorem B.2 (Completeness). Let Λ be a constraint solver, as in Theorem B.1 above. Let
R be a planning problem. If there exists a planning solution to R, then for some value of k,
Λ(TM-LPSAT(k,R)) returns a T-valuation V . By Theorem B.1, if V satisfies the UPC
then V indicates a planning solution to R.

Proof. Let P 1 be a planning solution to R. Let H1 be a projection of P 1 relative to R.
Let k be the number of significant-4 time points in R. Let V 1 be the trace of H1. By
Lemma B.14, V 1 satisfies TM-LPSAT(k,R), so by definition of Λ, Λ(TM-LPSAT(k,R))
returns some valuation V that satisfies TM-LPSAT(k,R). By Theorem B.1, V indicates a
planning solution to R. �
Theorem B.3. Let R be a planning problem.
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• For any k, if Λ(TM-LPSATU(R, k)) returns a T-valuation V , then V indicates a plan-
ning solution to R satisfying the UPC.

• If there exists a planning solution to R satisfying the UPC, then there exists k such that
Λ(TM-LPSATU(R, k)) returns a T-valuation V that indicates a planning solution to
R satisfying the UPC.

Proof. Immediate from Theorems B.1 and B.2. �
B.7. Actions with numerical parameters

Finally, let us sketch how actions with numerical parameters can be fit into this frame-
work. Define a symbolic action to be an atom; intuitively, this corresponds to the action
functor and its non-numeric parameters. Define an action to be a tuple 〈SA,P1 . . . Pk〉
where S is the symbolic action and P1 . . . Pk are values of the numerical parameters. Thus,
in the bucket domain, the tuple 〈POUR(A1,B1,B2,L3), 5〉 would correspond to the action
“(pour a1 b1 b2 5 l3)”. Modify the definitions in this appendix as follows:

• In Definition B.1, add the constraint that in any situation S there cannot be two differ-
ent actions with the same symbolic action.

• In Definition B.16, delete the word “actions” from the specification of the second cat-
egory of atoms.

• In Definition B.16, add the following two categories of atoms:
◦ For each symbolic action SA, the atom “active(SA)[Ti ]”.
◦ For every symbolic action SA, for each numerical parameter P , the atom “SAP [Ti]”.

• Add the following definition between Definitions B.17 and B.18:
For any action A = 〈SA,X1 . . .Xk〉, define V (“active(A)[Ti ]”) to be TRUE if
V (“active(SA)[Ti ]”) = TRUE and V (SAPj

[Ti]) = Xj for j = 1 . . . k.

The remainder of the definitions and the proofs of the lemmas remain unchanged. (Nothing
in the other definitions or in the proofs depends on the class of actions being finite. The
new atoms enter into the preconditions and effect constraints for the symbolic action SA in
the obvious way.)

References

[1] A. Armando, C. Castellini, E. Giunchiglia, F. Giunchiglia, A. Tacchella, SAT-based decision procedures for
automated reasoning: A unifying perspective, in: Lecture Notes in Computer Science, vol. 2605, 2003.

[2] J.F. Allen, Maintaining knowledge about temporal intervals, Comm. ACM 26 (11) (1983) 832–843.
[3] G. Audemard, P. Bertoli, A. Cimatti, R. Kornilowicz, R. Sebastiani, A SAT based approach for solving

formulas over Boolean and linear mathematical propositions, in: Proceedings of the International Conference
of Automated Deduction, in: Lecture Notes in Artificial Intelligence, vol. 2392, 2002, pp. 193–208.

[4] G. Audemard, M. Bozzano, A. Cimatti, R. Sebastiani, Verifying industrial hybrid systems with MathSAT,
Electronic Notes Theoret. Comput. Sci. 89 (4) (2004).

[5] C. Barrett, S. Berezin, CVC Lite: A new implementation of the cooperating validity checker, in: Proceedings
of the International Conference on Computer Aided Verification (CAV-04), 2004, pp. 515–518.



252 J. Shin, E. Davis / Artificial Intelligence 166 (2005) 194–253
[6] R. Bayardo, R. Schrag, Using CSP Look-back techniques to solve real-world SAT instances, in: Proceedings
of the 14th National Conference on Artificial Intelligence (AAAI-97), Providence, RI, 1997, pp. 203–208.

[7] A. Blum, M. Furst, Fast planning through planning graph analysis, Artificial Intelligence 90 (1997) 281–300.
[8] A. Borning, G. Badros, The cassowary linear arithmetic constraint solving algorithm: Interface and imple-

mentation, Technical Report UW-CSE-98-06-04, University of Washington, WA, 1998.
[9] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Rossum, S. Schults, R. Sebastiani, MATHSAT:

Tight integration of SAT and mathematical decision procedures, J. Automat. Reason. (Special Issue on SAT)
(2005).

[10] R. Brafman, A simplifier for propositional formulas with many binary clauses, in: Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI-01), Seattle, WA, 2001, pp. 515–522.

[11] D. Chapman, Planning for conjunctive goals, Artificial Intelligence 32 (3) (1987) 333–377.
[12] E. Davis, Representations of Common Sense Knowledge, Morgan Kaufmann, San Fransisco, CA, 1990.
[13] E. Davis, Axiomatizing qualitative process theory, in: Proceedings of the 3rd International Conference on

Principles of Knowledge Representation and Reasoning (KR-92), 1992, pp. 177–188.
[14] M. Davis, G. Logemann, D. Loveland, A machine program for theorem proving, Comm. ACM 5 (1962)

394–397.
[15] T. Dean, J. Firby, D. Miller, Hierarchical planning involving deadlines, travel times and resources, Comput.

Intelligence 4 (4) (1988) 381–398.
[16] Y. Dimopoulos, A. Gerevini, Temporal planning through mixed integer programming: A preliminary report,

in: Proceedings of the 8th Conference on Principle and Practice on Constraint Programming (CP-02), 2002,
pp. 47–62.

[17] M.B. Do, S. Kambhampati, Sapa: A scalable multi-objective metric temporal planner, J. Artificial Intelli-
gence Res. 20 (2003) 155–194.

[18] B. Drabble, EXCALIBUR: A program for planning and reasoning with processes, Artificial Intelligence 62
(1993) 1–40.

[19] S. Edelkamp, J. Hoffman, PDDL2.2: The languages for the classical part of the 4th International Planning
Competition, Available at http://ipc.icaps-conference.org, 2004.

[20] N. Een, N. Sorensson, An extensible SAT-solver, in: Proceedings of Conference on Theory and Applications
of Satisfiability Testing (SAT-03), 2003, pp. 502–518.

[21] M. Ernst, T. Millstein, D. Weld, Automatic SAT-compilation of planning problems, in: Proceedings of the
15th International Joint Conference on Artificial Intelligence (IJCAI-97), Nagoya, Japan, 1997, pp. 1169–
1176.

[22] K. Forbus, Qualitative process theory, Artificial Intelligence 24 (1984) 85–168.
[23] M. Fox, D. Long, The automatic inference of state invariants in TIM, J. Artificial Intelligence Res. 9 (1998)

367–421.
[24] M. Fox, D. Long, PDDL+ Level 5: An extension to PDDL2.1 for modelling planning domains continuous

time-dependent effects, Available at http://www.dur.ac.uk/d.p.long/competition.html, 2001.
[25] M. Fox, D. Long, PDDL2.1: An extension to PDDL for expressing temporal planning domains, J. Artificial

Intelligence Res. 20 (2003) 61–124.
[26] A. Gerevini, L. Schubert, Inferring state constraints for domain independent planning, in: Proceedings of the

15th National Conference of Artificial Intelligence (AAAI-98), St. Paul, MN, 1998, pp. 905–912.
[27] A. Gerevini, A. Saetti, I. Serina, Planning through stochastic local search and temporal action, J. Artificial

Intelligence Res. 20 (2003) 239–290.
[28] E. Giunchiglia, A. Massarotto, R. Sebastiani, Act and the rest will follow: Exploiting determinism in plan-

ning as satisfiability, in: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98),
St. Paul, MN, 1998, pp. 948–953.

[29] G. Hendrix, Modeling simultaneous actions and continuous changes, Artificial Intelligence 4 (1973) 145–
180.

[30] T. Henzinger, The theory of hybrid automata, in: Proceedings of the 11th Annual Symposium on Logic in
Computer Science, 1996, pp. 278–292.

[31] J. Hooker, Logic-Based Methods for Optimization, Wiley, New York, 2000.
[32] H. Kautz, B. Selman, Planning as satisfiability, in: Proceedings of the 10th European Conference on Artifi-

cial Intelligence (ECAI-92), 1992, pp. 359–363.



J. Shin, E. Davis / Artificial Intelligence 166 (2005) 194–253 253
[33] H. Kautz, D. McAllester, B. Selman, Encoding plans in propositional logic, in: Proceedings of the 5th In-
ternational Conference on Principles of Knowledge Representation and Reasoning (KR-96), 1996, pp. 374–
384.

[34] H. Kautz, B. Selman, Pushing the envelope: Planning, propositional logic and stochastic search, in: Proceed-
ings of the 13th National Conference on Artificial Intelligence (AAAI-96), Portland, OR, 1996, pp. 1194–
1201.

[35] H. Kautz, B. Selman, Unifying SAT-based and graph-based planning, in: Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-99), Stockholm, Sweden, 1999, pp. 318–325.

[36] K. Kichkaylo, A. Ivan, V. Karamcheti, Constrained component deployment in wide-area networks using AI
planning techniques, in: Proceedings of the International Parallel and Distributed Symposium (IPDPS-03),
2003, pp. 3–8.

[37] D. Long, M. Fox, I. Sebastia, A. Coddington, An examination of resources in planning, in: Proceedings of
UK Planning and Scheduling SIG Workshop, 2000.

[38] D. Long, M. Fox, Exploiting a Graphplan framework in temporal planning, in: Proceedings of International
Conference on Automated Planning and Scheduling (ICAPS-03), 2003, pp. 51–62.

[39] D. Long, M. Fox, The 3rd international planning competition: Results and analysis, J. Artificial Intelligence
Res. 20 (2003) 1–59.

[40] A. Mali, Encoding temporal planning as CSP, in: Proceedings of IEEE International Conference on Tools
with Artificial Intelligence, 2002, pp. 75–92.

[41] D. McDermott, The AIPS-98 planning competition committee, PDDL—the planning domain definition lan-
guage, Version 1.2, Available at http://www.cs.yale.edu/homes/dvm, 1998.

[42] D. McDermott, The formal semantics of processes in PDDL, in: Proceedings of Workshop on PDDL at
International Conference on Automated Planning Scheduling, 2003.

[43] D. McDermott, Reasoning about autonomous processes in an estimated-regression planner, in: Proceedings
of the International Conference on Automated Planning and Scheduling (ICAPS-03), 2003, pp. 143–152.

[44] J. Penberthy, Planning with continuous change, Ph.D. Dissertation, Department of Computer Science and
Engineering, University of Washington, WA, USA, 1993.

[45] J. Penberthy, D. Weld, Temporal planning with continuous change, in: Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI-94), Seattle, WA, 1994, pp. 1010–1015.

[46] J. Shin, TM-LPSAT: Encoding temporal metric planning in continuous time, Ph.D. Dissertation, Department
of Computer Science, New York University, NY, USA, 2004.

[47] J. Shin, E. Davis, Continuous time in a SAT-based planner, in: Proceedings of the 22th National Conference
on Artificial Intelligence (AAAI-04), San Jase, CA, 2004, pp. 531–536.

[48] R. Simmons, Combining associational and causal reasoning to solve interpretation and planning problems,
Technical Report AI-TR-1048, MIT AI Lab, MA, USA, 1988.

[49] D. Smith, J. Frank, A. Jonsson, Bridging the gap between planning and scheduling, Knowledge Engrg.
Rev. 15 (1) (2000) 61–94.

[50] D. Smith, D. Weld, Temporal planning with mutual exclusion reasoning, in: Proceedings of the 16th Inter-
national Joint Conference of Artificial Intelligence (IJCAI-99), Stockholm, Sweden, 1999, pp. 326–333.

[51] S. Vere, Planning in time: Windows and durations for activities and goals, Pattern Anal. Machine Intelli-
gence 5 (1983) 246–267.

[52] D. Wilkins, Can AI planners solve practical problems?, Comput. Intelligence 6 (4) (1990) 232–246.
[53] S. Wolfman, D. Weld, The LPSAT engine and its application to resource planning, in: Proceedings of

the 16th International Joint Conference of Artificial Intelligence (IJCAI-99), Stockholm, Sweden, 1999,
pp. 310–316.

[54] S. Wolfman, D. Weld, Combining linear programming and satisfiability solving for resource planning,
Knowledge Engrg. Rev. 16 (1) (2000) 85–99.

[55] L. Zhang, S. Malik, The quest for efficient boolean satisfiability solvers, in: Proceedings of the International
Conference on Computer Aided Verification (CAV-02), 2002, pp. 17–36.


