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a b s t r a c t

In this review paperwe present geographical, ecological and historical aspects of Southeast
Asia from the perspective of forest degradation monitoring and critically discuss available
approaches for large area forest degradationmonitoring with satellite remote sensing data
at high to medium spatial resolution (5–30 m). Several authors have achieved promising
results in geographically limited areas within Southeast Asia using automated detection
algorithms. However, the application of automated methods to large area assessments
remains a major challenge. To-date, nearly all large area assessments of forest degradation
in the region have included a strong visual interpretation component. We conclude that
due to the variety of forest types and forest disturbance levels, as well as the variable image
acquisition conditions in Southeast Asia, it is unlikely that forest degradation monitoring
can be conducted throughout the region using a single automated approach with currently
available remote sensing data. The provision of regionally consistent information on forest
degradation from satellite remote sensing data remains therefore challenging. However,
the expected increase in observation frequency in the near future (due to Landsat 8 and
Sentinel-2 satellites) may lead to the desired improvement in data availability and enable
consistent and robust regional forest degradation monitoring in Southeast Asia.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC
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1. Introduction

Over the past decade, assessment of forest degradation has become one of the main targets of tropical forest monitoring.
Information on the extent and level of forest degradation is required to support reporting obligations under international
conventions, to design and implement forest-related policies and as input to potential payment mechanisms and incentive
schemes (FAO, 2011a). Forest degradation can be generally defined as: the reduction of the capacity of a forest to provide goods
and services (FAO, 2010a). However, this general definition can be interpreted in numerous and potentially rather contra-
dictingways. Depending on the scope of the analysis, the evaluation of degradation in a given forest area can be based e.g. on
(1) biological diversity; (2) forest health and vitality; (3) productive functions of forest resources; (4) protective functions of
forest resources; and (5) socio-economic functions of forests (FAO, 2011a). Due to the recent prominence of carbon issues
in international forestry discussion, most particularly in the context of the Reduction of Emissions from Deforestation and
Forest Degradation (REDD+) scheme under the United Nations Framework Convention on Climate Change (UNFCCC), the
long-term reduction of forest biomass is nowadays perhaps the most widely discussed aspect of forest degradation (GOFC-
GOLD, 2014), although changes in forest biomass do not necessarily provide any information on several other aspects of
forest degradation.

Different drivers of tropical forest degradation (e.g. unsustainable logging or shifting cultivation) cause varying effects
in forest ecosystems, ranging from structural changes such as canopy cover and biomass reduction to more subtle effects
including e.g. minor alterations in ecosystem services. Furthermore, different types of forests (e.g. humid evergreen and dry
deciduous forests) respond differently to the numerous types of activities taking place in tropical forest areas. Therefore,
optimal approaches for monitoring forest degradation by remote sensing are likely to vary considerably depending on the
driver of degradation, the type of forest concerned, the intensity of the impact as well as on the geographical location, and
combined use of different data sources and methods may be required (De Sy et al., 2012).

In this review paper we first discuss the geographical, ecological and historical differences between sub-regions within
Southeast Asia from the perspective of remote sensing based forest degradationmonitoring. Wewill then contrast the most
commonly used remote sensing approaches to the characteristics of the region and analyse their usability for monitoring
forest degradation in Southeast Asia. We mainly concentrate on degradation processes caused by selective logging, shifting
cultivation and fire, which all may cause reduction in canopy cover and can lead to reduction of forest biomass. Our main
focus will be on approaches that would allow large area assessments utilizing satellite data with spatial resolution typically
in the range of 5–30 m.

2. Geography of Southeast Asia

Southeast Asia is defined in this paper as the area covered by the Association of Southeast Asian Nations (ASEAN) coun-
tries, along with Timor Leste and Papua New Guinea, stretching between 92° E and 155° E longitude and 10° S and 28° N
latitude. The region covers around 5 million km2 of land areas (Fig. 1(a)) and can be divided into two distinctively different
parts: (1) continental Southeast Asia (2.2 million km2) and (2) insular (i.e. archipelagic) Southeast Asia (2.7 million km2).
The continental part includes Cambodia, Lao PDR, Myanmar, Thailand and Viet Nam. In addition, we include the Philippines
in continental Southeast Asia in this paper, due to climatic similarities. Insular Southeast Asia is shared by Brunei, Indonesia,
Malaysia, Papua New Guinea and Timor Leste. Thus, the border between the seasonally dry continental and the per-humid
insular parts of the region can be drawn at around 7° N latitude.

Apart from the large archipelago, another distinct feature of Southeast Asian geography is the high number of mountain
ranges and steep landscapes, in many ways affecting both the current distribution of forest areas as well as the degradation
level of the remaining forests. Major mountain ranges in the region include e.g. the Arakan and the Annamite Mountains in
the continent aswell as the string of volcanic peaks along the ‘‘ring of fire’’ in Indonesia and the highlands in the central parts
of Borneo, Sulawesi and New Guinea Islands. Maybe even more than the elevation (which generally reduces the availability
of cloud free data in mountainous areas), it is the steepness of the landscape that affects any remote sensing based forest
monitoring system widely over the region by introducing considerable topographic effects (due to varying steepness and
aspect) into the satellite data (Fig. 1(a) and (b)).

There is a striking difference in climate between continental and insular Southeast Asia, leading to marked differences
in forest types and their appearance on satellite data, and thereby affecting the suitability of remote sensing data and of
monitoring methodologies. Continental Southeast Asia has a distinct monsoonal (i.e. seasonal wet/dry) climate. In this area,
drought limits plant growth in the dry season that typically stretches from November to April (Corlett, 2009). Evergreen,
semi-evergreen and deciduous forest types intermingle with managed landscapes in this part of the region, with the
evergreen forests typically in mountainous areas and on nutritious soils on lowlands, and the deciduous forests on poorer
and dryer soils on lowlands and gently undulating landscapes. In the driest areas of continental Southeast Asia, the increase
in anthropogenic fire activity over recent history has caused degradation of the deciduous tropical forests into savanna and
grasslands (Stott, 1988; Corlett, 2009).

In insular Southeast Asia, different variations of humid tropical evergreen forests dominate the lowland vegetation in
natural conditions. These forests are considered to contain the highest biodiversity of all regions in the world (Whitmore,
1984; Corlett, 2009). Perhaps themost special feature of this region is the vast extent of tropical peat swamp forests growing
on up to 15 m thick peat deposits that have formed over thousands of years through the accumulation of organic material
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Fig. 1. Geography of Southeast Asia. (a) Extent of forest cover in 2000 (in green colour; Stibig et al., 2007a) and (b) steepness of the terrain with areas
steeper than 15° gradient in red colour (derived from 90 m SRTM product; Jarvis et al., 2008). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

in waterlogged conditions (Rieley and Page, 2005). Several other vegetation types exist in smaller extent on special soil or
hydrological conditions and in higher elevations (see e.g. Corlett, 2009 for more details).

The Southeast Asian region has experienced a 2.8 fold population increase over the past 50 years, reaching a total pop-
ulation of over 600 million people by 2010 (UN, 2013). Over the past 70 years, much of the region has also experienced a
politically turbulent transformation from colonial territories into sovereign states. This instability has unavoidably affected
the design and enforcement of natural resource policies. Furthermore, during the past two decades the economic growth in
the region has been very rapid. Several countries, like Lao PDR, Malaysia, Singapore, Thailand and Viet Nam, have more than
doubled their per capita Gross Domestic Product (GDP) since 1990 (World Bank, 2014). The rural/agricultural sector is one
of the most affected by these demographic, political and economic changes, as it has simultaneously been going through
transformation from traditional subsistence farming to modern agricultural practices favouring cash crops like oil palm,
rubber, tea and coffee (Fox et al., 2009). This has profoundly affected the entire rural landscape including both agricultural
and forest areas.

The majority of the original extent of natural forest areas in Southeast Asia have by now been either logged with varying
intensity, have been reduced to degraded savanna and grassland, or have been converted into managed land cover types
while environmental degradation and land cover changes continue to take place (Kauppi et al., 2006; Hansen et al., 2009;
Miettinen et al., 2011a,b, 2012; Stibig et al., 2014). As the pressure on the remaining forests is expected to remain high in
the near future, operational monitoring methods for forest degradation are urgently needed.
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3. Forest degradation in Southeast Asia

3.1. Definition of the scope of this paper

There are several drivers of forest degradation in Southeast Asia including unsustainable selective logging (legal and ille-
gal), shifting cultivation, small-holder forest encroachments, fuel wood collection, wood extraction for charcoal production,
overgrazing, fires and even changes of natural water regimes. In this paper, we concentrate on themost dominant and phys-
ically destructive forms of forest disturbances that are in principle detectable on 5–30 m resolution remotely sensed data.
From the categories outlined byHosonuma et al. (2012) in an analysis of drivers of degradation in tropical forests, we discuss
here selective logging and uncontrolled fires as main causes of forest degradation. We also include fuelwood and charcoal
collection as potential causes of noticeable forest canopy changes. We do not look into livestock grazing, as it is merely a
marginal degradation driver in Southeast Asia (Hosonuma et al., 2012; Kissinger et al., 2012). However, we include shifting
cultivation in our analysis, although some authors (e.g. Hosonuma et al., 2012) consider it purely as a driver for deforestation
rather than for forest degradation. The three main types of disturbances included in the analysis in this paper (selective log-
ging, shifting cultivation and fire) account for themajority of degradation in the forests of Southeast Asia (Stibig et al., 2007b).

3.2. Selective logging

In continental Southeast Asia large scale selective logging has been practiced since the mid of the 19th century, when Sir
Dietrich Brandis, often considered the ‘father of tropical forestry’, set the foundation for modern forestry approaches and
sustainable logging systems in Myanmar (Schlich, 1907). In the year 2000, the extent of ‘intact forest landscapes’ in conti-
nental Southeast Asiawas estimated at only 110000 km2 (Potapov et al., 2008), corresponding to 12% of the remaining forest
area (FAO, 2010b). However, it is important to point out that when practiced in a sustainable way respecting the allowable
cut limits, selective logging does not necessarily render the forest ‘degraded’. For instance, some areas in Myanmar have
been logged using the Myanmar Selection System continuously since 1856 without causing forest degradation, i.e. without
causing long-term reduction of forest biomass or changes in forest types (Mon et al., 2012a).

Selective logging with high temporal frequency or logging intensity (i.e. unsustainable logging), on the other hand, does
lead to forest degradation (Mon et al., 2012a) and is considered to be the most dominant driver of degradation in Southeast
Asia (Kissinger et al., 2012). Although, due to higher profitability of agricultural crops and increasing importance of planta-
tion forests, the peak of timber extraction from natural forests in continental Southeast Asia has most likely already been
passed, both legal and illegal logging operations continue to take place in the sub-region (FAO, 2011b; EU FLEGT Facility,
2011a). Whilst for instance Thailand imposed a logging ban in 1989 (EU FLEGT Facility, 2011b), in some countries (e.g. Lao
PDR) the number of logging operations continues to rise (EU FLEGT Facility, 2011c), most likely including unsustainable
logging.

In insular Southeast Asia the history of logging is rather different from the continent. The escalation of timber extraction
in the humid tropical forests of insular Southeast Asia is well described by Kaur (1998), using the Sarawak state in Bor-
neo Island as an example. He highlights the slow increase in logging activities between the World Wars and the dramatic
change in policies after the Second World War when logging became an integral source of revenue for Southeast Asian
governments. Finally, in the 1960’s the development in technology and machinery for both road making and timber han-
dling enabled heavy exploitation of tropical forests in often difficult working conditions (e.g. in peatlands or steep slopes)
of insular Southeast Asia (Fig. 2(a)).

Due to the high number of commercially valuable timber trees and poor adoption of Reduced Impact Logging (RIL) prac-
tices (FAO, 2011b) selective logging in insular Southeast Asia tends to be significantly more intensive than in other humid
tropical areas. In an analysis including several studies Putz et al. (2008) estimated harvesting intensities in insular Southeast
Asia (Sabah) to be 80–120 m3/ha, compared to only 5–30 m3/ha in Latin America and Africa. In addition, the damage to re-
maining vegetation is often significant, causing further biomass loss and decrease in canopy cover (Pinard and Putz, 1996;
Pearson et al., 2014). This, together with the short repeat period, has commonly led to unsustainable logging practices with
a cycle of biomass reduction. Rotational times as short as 20 years are sometimes used in insular Southeast Asia (Wilcove
et al., 2013), at which point the forest carbon stock may be less than two-thirds of what it was before the previous logging
(Putz et al., 2008). Carbon emissions from tropical forest degradation caused by logging have been estimated at 6.0 and
27.5 Tg C yr−1 in Indonesia and Malaysia respectively, representing 6% and 68% of emissions from deforestation in these
two countries for year 2005 (Pearson et al., 2014). A cycle of degradation initiated by logging and further exacerbated by fire
(which is rare in undisturbed humid tropical forests) has been particularly damaging in the peatlands of the region (Mietti-
nen et al., 2011b), but is by no means restricted to peatland areas (Goldammer, 1999; Cochrane, 2003). At the dawn of the
newmillennium, only around 620000 km2 or 38% of the remaining forest areas in insular Southeast Asia were estimated to
remain ‘intact’ (Potapov et al., 2008; FAO, 2010b), mostly concentrated in the island of New Guinea and in the Indonesian
part of Borneo Island.

3.3. Shifting cultivation and other small-holder activities

The history of shifting cultivation in Southeast Asia goes back for thousands of years (Maxwell, 2004). This agricultural
system can be considered sustainable in low population densities. However, this is not the case where population densities



28 J. Miettinen et al. / Global Ecology and Conservation 2 (2014) 24–36

Fig. 2. Examples of different types of potential forest degradation. (a) Selective logging in Indonesia, New Guinea Island (note that the sustainability of the
operation cannot be evaluated from this image), (b) shifting cultivation area in Lao PDR and (c) repeatedly burnt and extremely degraded peatland area in
Borneo Island. Photo by Jukka Miettinen.

are high and fallow periods too short. Due to the very long history of shifting cultivation it can be asked whether there is
much ‘primary’ forest left in continental Southeast Asia (Fox, 2000). In insular Southeast Asia the situation is very different.
Until recently, the forested inner parts of the major islands remained primarily habited by hunter and gatherer societies
conducting very minor shifting cultivation activities (Kaur, 1998). This was followed by rapid shift to permanent agricul-
tural practices. Therefore, shifting cultivation is not considered to be a significant driver of forest degradation in the insular
part of the region (Stibig et al., 2007b).

For the analysis of forest degradation, shifting cultivation is a complex issue. The temporal and spatial scales of the analy-
sis, the definition of forest and the definition of degradation definewhether, or for how long, shifting cultivation areas should
be considered ‘degraded forest’, or even deforested land (Fig. 2(b)). In continental Southeast Asia biomass valuesmay remain
reduced up to 50 years after the abandonment of the fields, particularly after cultivation of certain crops (e.g. poppy), while
other crops (e.g. upland rice)may allow faster recovery (Fukushima et al., 2008). Regardless of the definitions of degradation,
monitoring the extent and effects of shifting cultivation is challenging since the disturbances are spatially limited (i.e. more
difficult to identify) and temporally dynamic (i.e. need to use time series with high frequency), and the long-term impacts
on biomass are very complex (Kissinger et al., 2012; Mertz et al., 2012).

Largely as a result of socio-economic policies favouring permanent agriculture, shifting cultivation practices are progres-
sively disappearing in Southeast Asia (Fox et al., 2009). However, this does not mean that the effect of small-holder farmer
activities leading to forest degradation would necessarily be diminishing. Due to continuing population growth, the rural
population is constantly encroaching into new forest areas throughout Southeast Asia. This often startswith collection of fuel
wood or charcoal production, andmay later lead to deforestation and conversion of land use. The combination of policy sup-
port for permanent agriculture and continuing population growth also increases available labour force in rural areas, which
can further support unsustainable exploitation of forest products like fuel wood and non-timber forest products (Davidar
et al., 2010). In Myanmar, fuel wood collection and marginalization of sustainable forest management systems have been
witnessed to build up pressure on forests near populated areas (Leimgruber et al., 2005; EU FLEGT Facility, 2011d). Charcoal
production can be particularly destructive for certain ecosystems (e.g. mangrove). Where available, mangrove tree species
are favoured for charcoal, which puts high pressure on the already depleted Southeast Asianmangrove areas (Spalding et al.,
2010).
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3.4. Fire

Forest fires are strongly connected to the selective logging and small-holder activities presented above but they deserve
to be highlighted separately when discussing forest degradation, particularly if the reduction of biomass is of interest, as
is the case e.g. in the REDD+ context (Barlow et al., 2012). In Southeast Asia, nearly all vegetation fires are nowadays of
anthropogenic origin. Fire is widely used throughout the region for numerous purposes, but the fire regimes and the effects
of fires vary significantly between the continental and insular parts of the region.

In the seasonally dry continental Southeast Asia, anthropogenic vegetation fires have been an essential part of the ecosys-
tem dynamics for thousands of years (Maxwell, 2004). In these areas forest ecosystems are nowadays often fire tolerant and
repeated fires do not lead to degradation in short term. However, it is likely that over the past thousands of years, the in-
creased anthropogenic fire frequency has caused changes in vegetation types favouring more fire tolerant vegetation (Stott,
1988; Corlett, 2009). Fires are mainly used for either preparation of shifting cultivation fields in denser forests or clearance
of ground layer vegetation in open forests (Maxwell, 2004).

The humid tropical forests of insular Southeast Asia, on the other hand, very rarely experienced fire in natural conditions
(Goldammer, 2006). Undisturbed humid tropical forests are highly resistant to fire but selective logging and other human
activities tend to open the canopy, make the microclimate dryer and increase the amount of dry fuel, thereby increasing
fire vulnerability remarkably (Cochrane, 2003). This raises the risk of wildfires greatly and causes them to become more
severe and more destructive (Siegert et al., 2001). In the worst case this may lead to repeated wildfires each time further
degrading the area and finally leading to the replacement of the forest ecosystemwith grassland (Goldammer, 1999). Fire is
nowadays widely used in insular Southeast Asia for land clearance and preparation by both small-holder farmers as well as
large scale plantation developers, often resulting in uncontrolled wild fires (Miettinen and Liew, 2009). Over the past 20–30
years fire driven forest degradation has become a serious problem particularly in selectively logged lowland forests as well
as in drained and degraded peatlands (Siegert et al., 2001; Langner and Siegert, 2009; Miettinen et al., 2011b; Fig. 2(c)).

4. Degradation monitoring methodology review

4.1. Definition of the approaches included in the analysis

The different forest degradation processes discussed above (apart from fires in fire-tolerant forests in continental South-
east Asia) cause physical destruction in the forest and usually lead to a significant reduction of canopy cover which can be
assessed using high to medium spatial resolution (5–30 m) satellite data. Subsequently, spatial patterns and context from
the satellite data, as well as auxiliary information sources can be used to determine the type of the disturbance. However, in
reality, even the detection of the main types of forest disturbance may not be a simple task. The remote sensing conditions
(both ground and data characteristics), intensity of the disturbance and type of the ecosystem all affect the feasibility of
forest degradation monitoring by remote sensing.

To further complicate the matter, the detected disturbance in the forest should ideally be evaluated against a desired
baseline (corresponding to ‘intact’ forest) in order to determine the level of degradation, taking into account the duration
of the detected effects and the natural variation of the forest (Thompson et al., 2013). Available remote sensing data often
do not cover long enough historical time-frame to properly monitor the full duration of the effects. Therefore, although the
aspect of duration is discussed at some points in the following sections, it is important to emphasize that we primarily look
at indicators of forest degradation which can be derived from remote sensing data. In other words, we look at methods
which can identify areas of ‘‘potential recent forest degradation’’, using a single date or time series of satellite datasets. For
practical applications, these potential signs of degradation derived from high to medium resolution satellite data need to be
verified and potentially calibrated with auxiliary information (e.g. field data or very high resolution satellite sampling).

Currently available remote sensing methods for forest degradation monitoring can be coarsely grouped into four cat-
egories: (1) detection of direct degradation indicators (e.g. canopy cover percentage) on single date or composite image
(e.g. Souza et al., 2003); (2) detection of direct degradation indicators by time series analysis (e.g. Healey et al., 2005);
(3) mapping of secondary indicators (e.g. logging roads, log landings, villages) and assuming certain degradation buffers
around them (e.g. Potapov et al., 2008); and (4) direct estimation of forest parameters (e.g. stem volume and biomass),
nowadays most typically performed with radar or LiDAR systems in tropical forests (e.g. Jubanski et al., 2013). We describe
and analyse the current status of know-how in each of these four categories from the perspective of Southeast Asia. Note
that, the category 4 methods are not particularly designed for degradation monitoring. Therefore, we do not attempt to
comprehensively cover this category, but merely highlight some of the latest developments which may be of interest from
the perspective of forest degradation monitoring.

4.2. Continental Southeast Asia

In view of monitoring forest degradation in continental Southeast Asia the following conclusions may be drawn from
Section 3. First, due to the long historical human impact in the form of both selective logging and shifting cultivation,
accompanied with anthropogenic fire activity, it is difficult to identify areas of remaining intact forests and, consequently,
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to produce or agree on a single standard definition of what should be considered as non-degraded forest in this sub-region.
Second, large variation exists in the physical structure of natural forest types, ranging from evergreen and semi-evergreen
(with some seasonality) closed canopy forests to open canopy dry deciduous savanna type forests. The variation in physical
forest structure characteristics (e.g. canopy openness) caused by these two points may not be easily distinguished from the
effects caused by recent disturbances (e.g. selective logging or shifting cultivation). This potential confusion profoundly
affects the suitability of various remote sensing approaches for forest degradation monitoring in continental Southeast
Asia.

Among the set of available remote sensing approaches, the first category deals with detection of direct degradation in-
dicators on a single image. It is indeed possible to assess the current status of a forest area by analysing a single image with
a choice of numerous existing methods and satellite datasets. The Forest Canopy Density mapper (Rikimaru et al., 2002),
which utilizes a semi-automated approach combining a set of vegetation indices, allowed to map canopy cover in semi-
evergreen forests in Myanmar with nearly 70% overall accuracy (Mon et al., 2012b). Similarly, Joshi et al. (2006) and Panta
et al. (2008) showed that artificial neural network can be used tomap forest canopy cover percentage from Landsat imagery
at 30 m resolution with 60%–80% overall accuracy. These two previous studies were conducted in semi-evergreen forests
in India and Nepal in conditions comparable to those in continental Southeast Asia. And finally, Hame et al. (2013a) used
unsupervised fuzzy classification methods applied to a combination of optical and radar data to produce a forest map in
Savannakhet Province (Lao PDR) including disturbed forest classes.

However, a single date mapping of canopy cover (or other degradation indicators) in continental Southeast Asia is not
meaningful for the assessment of forest degradation without longer time-frame or detailed information on forest charac-
teristics on the specific site in ‘intact’ conditions. Mon et al. (2012a) in Myanmar and Hett et al. (2012) in Lao PDR needed
to perform assessments of forest canopy cover percentage and shifting cultivation area (respectively) at several time slices
in their study sites to investigate the factors affecting forest degradation. Similarly, Panta et al. (2008) performed repeated
canopy cover assessment for forest degradation analyses in one study area in Nepal. The historical time-frame enabled these
authors to derive information on the status of forests (disturbed/degraded versus intact) based on the analysis of the changes
in the extent of different forest types and the development of canopy cover percentages over their study period. Therefore,
time series analysis has been strongly advocated for degradationmonitoring in open canopy tropical forests (Lambin, 1999),
representing the second category of remote sensing approaches listed above. The recent increase in the availability of high
tomedium spatial resolution (5–30m) satellite data (mainly due to the opening of the Landsat archive and the recent Rapid-
Eye and Landsat 8 satellites) and the anticipation of the upcoming Sentinel-2 mission, have sparked increasing amount of
interest in time series analyses conducted at unprecedented spatial and temporal scales. Several research groups have de-
veloped automated or semi-automated approaches utilizing large numbers of satellite scenes and taking advantage of time
series data (see e.g. Healey et al., 2005; Masek et al., 2008; Huang et al., 2010; Kennedy et al., 2010; Hansen et al., 2013).
However, not only have these methodologies mainly been developed for boreal and temperate areas, but they also typically
concentrate on the assessment of two land cover classes only: forest and non-forest. To date, to our knowledge, no automatic
time series analysis method has yet been implemented for forest degradation assessment in seasonal tropical forests.

The most extensive forest degradation mapping effort to-date, covering also continental Southeast Asia, has been pro-
duced by Potapov et al. (2008) through mapping of secondary indicators of degradation (third category of remote sensing
approaches listed above). The global coverage Potapov et al. (2008) map is based on the concept of intact/non-intact forest
areas, which has recently been suggested to be utilized also in the framework of REDD+ (Bucki et al., 2012), using a spatial
morphological pattern tool (Riitters et al., 2009) as a proxy to identify non-intact forests. Through visual interpretation of
Landsat imagery and utilization of auxiliary GIS datasets Potapov et al. (2008) mapped and buffered potential indicators of
human disturbance (e.g. logging roads, power lines, burnt areas and waterways) to exclude such areas from a forest map of
year 2000. The remaining forest areas were considered as intact forest landscapes. In a more automated approach, Messerli
et al. (2009) derived information on the extent and intensity of shifting cultivation in Lao PDR by analysing local spatial
statistics of land cover distribution on remote sensing based land cover maps. Although potentially a powerful tool for mon-
itoring forest degradation driven by shifting cultivation, this type of higher level land cover mosaic analysis is vulnerable
to the quality and scale of the input land cover maps. Moreover, similar set of parameters may not produce optimal results
throughout large areas (e.g. in sub-regional level analysis), but parameters may need to be tuned locally based on variations
e.g. in land cover regimes and map specifications.

The fourth category of approaches for forest degradation monitoring consists in using more direct forest inventory ap-
proach, concentrating on forest parameters like stem volume, basal area or biomass. The changes in these parameters over
consecutive inventories can then be used as potential signs of degradation (e.g. decrease of forest biomass) warranting fur-
ther investigation on the matter. Combinations of optical and radar satellite data, as well as airborne datasets, have been
tested in continental Southeast Asia to estimate basal area, stem volume and biomass, resulting in RMSE of the means at
∼40%–50% (e.g. Hou et al., 2011;Hameet al., 2013b). In comparable climatic conditions in forest-savanna landscape inAfrica,
L-band Synthetic Aperture Radar (SAR) data has been used to monitor biomass over time with r2 = 0.49–0.86 (Mitchard
et al., 2011; Ryan et al., 2012). Such methods for direct estimations of forest parameters may offer tools for biomass inven-
tories in seasonal tropical areas where forest biomass is low and the issue of saturation of the radar signal (see e.g. Morel
et al., 2011) is not as crucial as in humid tropical forests of high standing stock. However, the suitability of such radar based
biomass estimationmethods for continental Southeast is yet to be tested and itmay be seriously reduced by the vulnerability
of radar data to steep landscape features which are common in much of the remaining forest areas in the sub-region.
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4.3. Insular Southeast Asia

Apart from a few special landscapes, which altogether cover only a marginal area (e.g. in high elevation), all forest types
in insular Southeast Asia have closed canopy in natural undisturbed state. This, in theory, simplifies greatly the task of forest
degradation monitoring as any sign of canopy gaps and areas with reduced canopy cover can be considered as potential
indicator of degradation. Moreover, due to the per-humid climate conditions, intra-annual variation in forest characteristics
is minimal. Unfortunately the per-humid climate conditions seriously complicate remote sensing in the region by reducing
the number of available cloud-free optical satellite images. Furthermore, even the few acceptable scenes (with limited cloud
cover) are rarely free of remaining atmospheric disturbances (e.g. small clouds and haze). This reduces greatly the number of
valid observations for any given area. Together the abovementioned factors create a very different environment for remote
sensing based forest degradation monitoring compared to the continental part of the region.

The generally closed canopy of natural forest enables the effective use of canopy openness as an indicator of forest degra-
dation, even if measured only from a single scene without any time series analysis. This type of single date analysis has been
used in insular Southeast Asia with Landsat images e.g. by Langner et al. (2012) who developed a degradation index based
on Short Wave Infrared (SWIR) reflectance which showed to be correlated with biomass in Dipterocarp forests in Sabah
(r2 = 0.66), as well as by Wijedasa et al. (2012), who used simple maximum likelihood classification approach to clas-
sify disturbed and primary peat swamp forests (with 53%–88% user’s accuracies depending on site). In addition, a number of
methods developed in the Amazon basin are potentially useable also in insular Southeast Asia. Two separate research groups
workingwith logging and fire induced forest degradation found theModified Soil Adjusted Vegetation Index (MSAVI) to cor-
relate strongly (r2 ∼ 0.80) with forest canopy cover percentage (Wang et al., 2005; Matricardi et al., 2010). Pithon et al.
(2013) developed a segmentation based automated statistical method to detect canopy gaps caused by logging with ∼90%
accuracy. However, themajority of studies conducted in South America have been based on SpectralMixture Analysis (SMA).
This approach has been used with both SPOT satellite data (Souza et al., 2003) and Landsat data (Asner et al., 2005; Souza
et al., 2005; Negron-Juarez et al., 2011) with varying success for purposes ranging from canopy gap detection and biomass
estimation to delineation of logged areas. Souza et al. (2005) further developed a single index called Normalized Difference
Fraction Index (NDFI) to combine the information from SMA significant for forest degradationmonitoring into one band and
reached 94% accuracy in detecting forest areas with canopy damage.

Initial attempts to apply the SMA approach for forest degradation monitoring in the conditions of insular Southeast Asia
have encountered some problems. Franke et al. (2012) tested the SMA approach in a flat and rather homogeneous peat
swamp forest area in Central Kalimantan to map degradation caused by logging and fire using RapidEye satellite data. The
results were generally positive, allowing e.g. extraction of logging trails with 98% accuracy, and thereby indicating a great
potential of this approach. However, their study also revealed important limitations, most notably the fact that the end-
member selection for the SMA approach would have to take into account the variation in spectral reflectance caused by
topography and atmospheric conditions. Such limitations greatly complicate the use of SMA for analyses over large areas
(typically more than one satellite scene) in the difficult climatic and topographic conditions of insular Southeast Asia. Bryan
et al. (2013) used the CLASlite software (Asner et al., 2009) to apply the SMA approach with Landsat data in their study
in Sarawak for a basic tree/palm vegetation classification, but visual interpretation was needed to separate natural forests
from plantations, and subsequently they resorted to visual secondary indicator (i.e. logging road) mapping to estimate the
extent of degradation. Carlson et al. (2013), likewise using CLASlite, applied the SMA approach followed by a decision tree
classification step for land cover mapping, in a study focusing on oil palm conversion over the entire Kalimantan (i.e. In-
donesian part of Borneo Island). By excluding areas with atmospheric disturbances and masking out slopes >15° (to avoid
issues related to topography) they managed to obtain ∼60% coverage of Kalimantan using ±4 years of Landsat data around
their target years. They took into account the remaining atmospheric and topographic effects as well as variation of veg-
etation conditions over Kalimantan in the design of the decision tree classification. The approach resulted in the mapping
of two basic forest classes of ‘intact’ and ‘logged’ forests (in addition to two non-forest classes) with 77% overall accuracy.
This information was considered sufficient to produce meaningful results for the areas subjected to conversion to oil palm,
i.e. areas almost entirely concentrated on elevation <100 m above sea level. Then again, this study highlights very well the
obstacles in implementing automatic classification approaches for forest degradation monitoring in the insular Southeast
Asian conditions, especially asmost of the remaining forests are concentrated inmountainous inland areas (Fig. 1(a)), which
do not only have generally steep landscape features (Fig. 1(b)) but are also very prone to persistent cloud cover.

Due to the minimal seasonal changes in insular Southeast Asia, on the one hand, and the extremely limited availability
of cloud free observation, on the other, the feasibility and potential benefits of time series analysis for forest monitoring
can be debated. It is a fact that the initial signs of logging visible from satellite data (i.e. the soil spectral signature
corresponding to logging roads and gaps from logged trees) disappear in the humid tropics very fast due to fast regrowth of
secondary vegetation. This would promote the importance of frequent monitoring to follow closely the temporal dynamics
of reflectance signatures. However, it is also true that the vigorous regrowth vegetation that covers the scars in the canopy is
also detectable in satellite data, prolonging the available time for degradationmonitoring.Moreover, due to the atmospheric
conditions, it has been impossible to obtain continuous time series with high to medium resolution data until very recently.
Several authors (e.g. Broich et al., 2011a; Bryan et al., 2013; Carlson et al., 2013) have shown that the entire Landsat archive
is not sufficient to create even annual gap free maps in the region. Broich et al. (2011b) and Margono et al. (2012, 2014)
were able to produce results on the spatio-temporal distribution of deforestation in Indonesia using a long time series of
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Landsat data. But they were not able to derive information on forest degradation using time series analysis. Comparing to
the conditions in the Amazon, a study conducted in Mato Grosso state of Brazil, showed that annual mean values of selected
parameters derived from spectral channels of Landsat imagery (e.g. green vegetation fraction) could be used for monitoring
logging and fire induced degradation through long-term time series analysis (Morton et al., 2011). However, Mato Grosso
has somewhat more seasonal climate (with a short dry season around July–August) and less persistent cloud cover than
most of insular Southeast Asian forest areas, which likely increases the availability of satellite images.

Until now, nearly all large scale forest degradation estimates in insular Southeast Asia have been derived by visuallymap-
ping either primary or secondary indicators of forest degradation (e.g. canopy openness, logging roads, villages, waterways,
power lines). The global study by Potapov et al. (2008) already presented above covered the entire insular Southeast Asia and
provided valuable information on the general distribution of the major intact forest landscapes. Margono et al. (2012, 2014)
later utilized this approach in their Indonesian deforestation studies to derive information on forest degradation at 5-year
intervals. Miettinen and Liew (2010) used visual interpretation of SPOT 4 and 5 images to delineate areas of peat swamp
forest with visible signs of degradation including e.g. canopy openness, fire scars, small-holder encroachment and logging
canals. They classified all remaining peat swamp forests into four categories including intact forest and three intensities of
degradation. Several authors utilizing visual interpretation have concentrated specifically on selective logging. Shearman
et al. (2009) incorporated visual delineation of logging roads on SPOT and Landsat images into their forest and land cover
mapping scheme in Papua New Guinea and visually defined a timber extraction radius (100–500 m) around them. In the
Sarawak study alreadymentioned above, Bryan et al. (2013)mapped and buffered all logging roadswith a 350mbuffer using
Landsat images acquired since 1990 to estimate the extent and ‘intensity’ (i.e. frequency of repetition) of logging induced
disturbance. And most recently, Gaveau et al. (2014) published forest cover change results for Borneo Island 1973–2010
with the extent of selectively logged forests derived by visually mapping logging roads on Landsat data. They defined the
width of the buffer around logging roads (700 m) by analysing tree cover percentages derived from MODIS data.

Due to the closeddense canopywithmultiple layers, the direct estimation of forest parameters (e.g. basal area, biomass) is
generally not considered feasible in the humid evergreen forests of insular Southeast Asia using optical remote sensing data.
As a result of its cloud and canopy penetrating characteristics, radar data offer tempting possibilities for biomass estimation
in the humid tropical forests. However, low saturation levels of above ground biomass (AGB) estimates due to the inadequate
depth of canopy penetration even with the longest currently available space-borne radar wavelength (L-band) essentially
prohibits large scale usage of radar data in humid tropical forests (Mitchard et al., 2009; Morel et al., 2011). According to a
study performed on Central Kalimantan peatlands, the saturation level can be somewhat raised (up to ∼300 t/ha AGB) on
flat terrain with a combined used of L-band and X-band radar data (Englhart et al., 2011). Adding to the saturation problems
is the fact that the remaining forests can largely be found on mountainous and often steep landscape in insular Southeast
Asia (Fig. 1(a) and (b)), leading to associated issues with topography, including e.g. hill shadows. Thereby, it is unlikely that
spaceborne radar data could be successfully used for large area biomass or degradation monitoring in the region with the
currently available datasets in the near future. A new satellite with a P-band radar sensor is planned to be launched in 2020
as ESA Earth Explorer Core mission: the BIOMASS mission is aimed at mapping and monitoring the distribution of forest
biomass globally (Le Toan et al., 2011) and will thereby possibly offer means for forest degradation monitoring as well.

Recently, airborne LiDAR measurements have shown high potential for biomass estimation in insular Southeast Asia, in
some cases reaching r2 close to 0.90 (Kronseder et al., 2012; Jubanski et al., 2013). However, due to the limited coverage and
high associated costs, airborne LiDAR data alone cannot be expected to be used for large scale mapping. In South America,
LiDAR sampling has been used in combinationwithwall-to-wall datasets to derive large scale estimations of biomass (Asner
et al., 2012). Repetition of these types of assessments in suitable time intervals would allowmonitoring of the development
of biomass levels.

5. Synthesis and conclusion

In the preceding sections we have outlined themain geographical, ecological and historical issues affecting remote sens-
ing based forest degradation monitoring in Southeast Asia and contrasted these regional characteristics to the available
monitoring approaches utilizing high to medium resolution satellite data. The differences in the characteristics of the con-
tinental and insular parts of the region cause to some extent different types of challenges for remote sensing based forest
degradation monitoring. In the seasonally dry continental Southeast Asia specific difficulties are mainly related to (1) the
variety of natural forest types (e.g. in the openness of canopy) and (2) the intra-annual variability of radiometric reflectance
in the satellite data related to the seasonality of vegetation. In the per-humid Southeast Asia the limited availability of cloud
free images combined with issues related to the variability of reflectance values due to remaining atmospheric effects has
largely directed the development of methodologies until now. Throughout the region, steepness of the landscape compli-
cates forest degradation monitoring by remote sensing.

Regardless of these difficulties, several authors have achieved promising results on single date image analysis on forest
disturbance using automated or semi-automatedmethods. However, the majority of such studies have been geographically
limited, allowing the authors to fine tune their image processing and analysis tools for the specific dataset and area (Table 1).
Furthermore, a number of limitations have been documented (e.g. Franke et al., 2012; Langner et al., 2012;Mon et al., 2012b;
Carlson et al., 2013): (1) the extent of natural forest area should be known, or should be first reliably mapped, in order to
put any subsequent findings in a focused context. This information alone can be difficult to produce in some parts of the
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region due to the challenges in mapping seasonal forest cover and coping with other effects (e.g. topography); (2) current
approaches most often need an image-by-image sample area/end-member collection, jeopardizing the consistency of the
analysis over large areas; (3) most of the successful studies have been performed on relatively flat and homogeneous forest
areas, avoiding topographic issues and therefore not reflecting the reality in the vast majority of the remaining forest
areas in Southeast Asia; (4) empirically defined thresholds of parameters/indicators have been used to define categories
for degradation, thereby putting extreme pressure on the radiometric calibration of large datasets; (5) automatic filtering
or manual clean-up of the results has often been used, potentially reducing the reliability of comparisons to subsequent
assessments. Finally, it is worth noting that to our knowledge no studies conducted in Southeast Asia so far has been able
to apply multi-temporal time series analysis to forest degradation monitoring, although it has been used in deforestation
monitoring (Broich et al., 2011b; Margono et al., 2012, 2014).

With such a list of limitations, it is very difficult to implement locally developed methodologies into large area assess-
ments. The propagation of automated approaches over large areas, often with a limited set of generally poor quality satellite
data (affected by both atmospheric and topographic issues) has proven nearly impossible until now. Satellite data quality
problems may have been further exacerbated by changing viewing angles and compatibility issues when using data from
different satellite sensors to obtain large area image coverage (e.g. the SPOT satellite series and RapidEye). Consequently,
nearly all forest degradation mapping efforts over large areas in the region to-date have been performed using visual in-
terpretation (Table 1). These assessments have provided valuable information on the extent and distribution of potentially
degraded forest areas over the region. However, the unavoidably subjective nature of visual interpretation as well as the
slowness and laboriousness of the effort greatly complicate the use of visual interpretation in operational forest degrada-
tion monitoring over large areas.

It is evident from the literature review that the implementation of the knowledge obtained in local small scale studies
into large area assessments of forest degradation is currently the most important research gap and obstacle for operational
forest degradation monitoring in the region. This is partially a scientific problem (i.e. finding the most suitable methodolo-
gies, coping with topographic and atmospheric effects) but also largely a technical problem (i.e. obtaining a high quality set
of satellite data). As far as the latter is concerned, the expected dramatic increase in high tomedium resolution satellite data
observation frequency enabled by the upcoming Sentinel-2 twin satellites (10–20 m) and the already functioning Landsat
8 (30 m spatial resolution) may prove to be a crucial step forward. These two satellite systems together will provide the
systematic coverage of all land areas in the region in <5 day observation frequency with fixed viewing angles and image
acquisition times. This type of data should allow implementation of time series analysis in high spatial and temporal de-
tail and derivation of full coverage cloud free datasets in unprecedented intervals. The scientific challenge in the next few
years will be to develop operational approaches for forest degradation monitoring, fine-tuned for the continental and insu-
lar Southeast Asian conditions, taking advantage of the body of knowledge accumulated by the small scale studies and the
increased amount of high to medium resolution satellite data provided by the new satellite systems.

We conclude that the range of characteristics of forest types and remote sensing conditions in Southeast Asia is so
large that a single forest degradation monitoring approach is unlikely to work adequately throughout the region. Locally
developed approaches allow case-by-case assessments of the level of degradation in small target areas, but do not enable
production/derivation of regional level syntheses. The results achieved in different parts of the regionwith a range of locally
fitted methods are currently not fully comparable to each other. Therefore, regionally robust and consistent approaches to
assess and operationally monitor forest degradation throughout the region are urgently needed for the upcoming REDD+

era. The near future will tell whether the highly anticipated increase in the observation frequency of high to medium
spatial resolution satellite imagery will allow a crucial improvement of existing methods and enable monitoring of forest
degradation consistently and accurately in the whole region of Southeast Asia.
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