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Abstract

The diameter graph G of n points in Euclidean 3-space has a bipartite, centrally symmetric double cov-
ering on the sphere. Three easy corollaries follow: (1) A self-contained proof of Vázsonyi’s conjecture that
G has at most 2n − 2 edges, which avoids the ball polytopes used in the original proofs given by Grün-
baum, Heppes and Straszewicz. (2) G can be embedded in the projective plane. (3) Any two odd cycles in
G intersect [V.L. Dol’nikov, Some properties of graphs of diameters, Discrete Comput. Geom. 24 (2000)
293–299].
© 2007 Published by Elsevier Inc.

Keywords: Vázsonyi’s conjecture; Diameter graph; Graph drawing; Topological graph theory

Let R
d denote the d-dimensional Euclidean space, and S

d−1 the unit (d − 1)-sphere in R
d

centred at the origin. Let S be a set of n points of diameter D in R
d . Define the diameter graph on

S by joining all diameters, i.e., point pairs at distance D. The following theorem was conjectured
by Vázsonyi, as reported in [2]. It was subsequently independently proved by Grünbaum [3],
Heppes [4] and Straszewicz [9].

Theorem 1. The number of edges in a diameter graph on n � 4 points in R
3 is at most 2n − 2.

All three proofs (see [7, Theorem 13.14]) use the ball polytope obtained by taking the inter-
section of the balls of radius D centred at the points. However, ball polytopes do not behave the
same as ordinary polytopes already in R

3, where their graphs need not be 3-connected. See the
detailed study of Kupitz, Martini and Perles in [6]. The proof presented here avoids their use.

✩ This material is based upon work supported by the South African National Research Foundation.
* Current address: Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.

E-mail address: konrad.swanepoel@gmail.com.
0097-3165/$ – see front matter © 2007 Published by Elsevier Inc.
doi:10.1016/j.jcta.2007.08.006

https://core.ac.uk/display/82573648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


K.J. Swanepoel / Journal of Combinatorial Theory, Series A 115 (2008) 888–892 889
Theorem 2. Any diameter graph in R
3 has a bipartite double covering that has a centrally

symmetric drawing on S
2.

In fact, each point x ∈ S will correspond to an antipodal pair of points xr and xb on the sphere,
with xr coloured red and xb blue. Each edge xy of the diameter graph will correspond to two
antipodal edges xryb and xbyr on S

2, giving a properly 2-coloured graph on 2n vertices. The
drawing will be made such that no edges cross. By Euler’s formula there are at most 4n − 4
edges, and thus at most 2n − 2 edges in the original diameter graph, which proves Theorem 1.

The proof of Theorem 2 follows after the following two easy corollaries.

Corollary 3. Any diameter graph in R
3 can be embedded in the projective plane such that all

odd cycles are noncontractible.

Proof. Identify opposite points of S
2 to obtain the projective plane P

2. The centrally symmetric
drawing of Theorem 2 becomes a drawing of the original diameter graph in P

2. Since the drawing
on S

2 is 2-coloured, an odd cycle of length k in the diameter graph corresponds to a centrally
symmetric cycle of length 2k on S

2. Such a cycle on the sphere corresponds to a noncontractible
closed Jordan curve in P

2. �
Corollary 4. (See Dol’nikov [1].) Any two odd cycles in a diameter graph on a finite set in R

3

intersect.

Proof. As noted in the previous proof, an odd cycle corresponds to a centrally symmetric cycle in
the double covering. Two centrally symmetric closed Jordan curves on S

2 clearly intersect. �
Proof of Theorem 2. Without loss of generality, assume that D = 1. Repeatedly remove all
vertices of degree at most 1 in the diameter graph. Since such vertices and their incident edges
can easily be drawn later, this is no loss of generality. For each x ∈ S, let R(x) be the intersection
of S

2 with the cone generated by {y − x: xy is a diameter}. Each R(x) is a convex spherical
polygon with great circular arcs as edges. (If x has degree 2 then R(x) is an arc.) Colour R(x)

red and B(x) := −R(x) blue. Assume for the moment the following two properties of these
polygons:

Lemma 1. If x �= y, then R(x) and R(y) are disjoint.

Lemma 2. If R(x) and B(y) intersect, then xy is a diameter and R(x) ∩ B(y) = {y − x}.
For each x ∈ S choose an arbitrary point xr in the interior of R(x) and let xb = −xr . (If R(x)

is an arc, let xr be in its relative interior.) Draw Jordan arcs inside R(x) from xr to all the
vertices of R(x), as well as antipodal arcs from xb to the vertices of B(x). This gives a centrally
symmetric drawing of a 2-coloured double covering of the diameter graph. By Lemmas 1 and 2
no edges cross, and the theorem follows. �

The following proofs of Lemmas 1 and 2 are dimension independent, and thus give a natural
double covering on S

d−1 of any diameter graph in R
d .

Lemma 3. Let x1, . . . , xk and
∑k

i=1 λixi be unit vectors in R
d , with all λi � 0. Let y ∈ R

d .
Suppose that ‖y − xi‖ � 1 for all i = 1, . . . , k. Then ‖y − ∑k

λixi‖ � 1.
i=1
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Proof. By the triangle inequality,

1 =
∥∥∥∥∥

k∑
i=1

λixi

∥∥∥∥∥ �
k∑

i=1

λi. (1)

Expanding ‖y − xi‖2 � 1 by inner products,

−2〈xi, y〉 � −‖y‖2. (2)

Therefore,∥∥∥∥∥y −
k∑

i=1

λixi

∥∥∥∥∥
2

= ‖y‖2 − 2
k∑

i=1

λi〈xi, y〉 + 1

�
(

1 −
k∑

i=1

λi

)
‖y‖2 + 1 by (2)

� 1 by (1). �
Proof of Lemma 1. Let the neighbours of x be x +xi , and the neighbours of y be y +yj , where
all xi and yj are unit vectors. Suppose that∑

i

λixi =
∑
j

μjyj ∈ R(x) ∩ R(y) with λi,μj � 0.

Since ‖x + xi − y‖ � 1 for all i, Lemma 3 gives∥∥∥∥x +
∑

i

λixi − y

∥∥∥∥ � 1.

Similarly, Lemma 3 applied to ‖x − y − yj‖ � 1 gives∥∥∥∥x − y −
∑
j

μjyj

∥∥∥∥ � 1.

By the triangle inequality,

2 =
∥∥∥∥2

∑
i

λixi

∥∥∥∥
=

∥∥∥∥
(

x +
∑

i

λixi − y

)
−

(
x − y −

∑
j

μjyj

)∥∥∥∥
�

∥∥∥∥x +
∑

i

λixi − y

∥∥∥∥ +
∥∥∥∥x − y −

∑
j

μjyj

∥∥∥∥
� 2.

Consequently there is equality throughout. Since then x + ∑
i λixi − y and −x + y + ∑

j μjyj

are unit vectors in the same direction, they are equal, which gives x = y. �
Proof of Lemma 2. Since ‖xi −xj‖ � 1 for all i and j , R(x) is contained in an open hemisphere
of S

d−1, hence R(x) ∩ B(x) = ∅. Thus without loss of generality, x �= y. As before, let the
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neighbours of x be x + xi , and the neighbours of y be y + yj , with all xi and yj unit vectors.
Suppose that

∑
i λixi = −∑

j μjyj ∈ R(x) ∩ B(y) with λi,μj � 0. For a fixed j , ‖x + xi −
y − yj‖ � 1 for all i. Lemma 3 then gives∥∥∥∥x +

∑
i

λixi − y − yj

∥∥∥∥ � 1 for all j.

Again by Lemma 3,∥∥∥∥x +
∑

i

λixi − y −
∑
j

μjyj

∥∥∥∥ � 1.

By the triangle inequality,

2 =
∥∥∥∥2

∑
i

λixi

∥∥∥∥
=

∥∥∥∥
(

x +
∑

i

λixi − y −
∑
j

μjyj

)
+ (y − x)

∥∥∥∥
�

∥∥∥∥x +
∑

i

λixi − y −
∑
j

μjyj

∥∥∥∥ + ‖y − x‖

� 2.

As in the previous proof, x + ∑
i λixi − y − ∑

j μjyj = y − x. Consequently, y − x = ∑
i λixi ,

a unit vector, and R(x) ∩ B(y) = {y − x}. �
Remarks

Perlstein and Pinchasi [8] independently obtained a similar proof of Vázsonyi’s conjecture.
They proved a more general result and found a connection to a theorem of Katchalski and Last [5]
and Valtr [10].

The following example of Rom Pinchasi (personal communication) shows that diameter
graphs need not be planar. Choose α,β, γ > 0 with α > β . Let xk = (α cos 2πk

5 , α sin 2πk
5 ,0).

Then A = {xk: 0 � k � 4} is the set of vertices of a regular pentagon P in the xy-plane. Let
yk = (β cos 2πk

5 , β sin 2πk
5 , γ ). Then B = {yk: 0 � k � 4} is a smaller copy of the pentagon lifted

by a distance γ in the direction of the z-axis. The values of α,β, γ can be fixed such that

‖xi − xi+2‖ = ‖xi − xi+3‖ = ‖xi − yi+2‖ = ‖xi − yi+3‖ = D

for all i taken modulo 5, where D is the diameter of S := A ∪ B . Thus the diameter graph of S

is a subdivision of the complete graph on 5 vertices, which is not planar.
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