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We study well-posedness of triply nonlinear degenerate elliptic–
parabolic–hyperbolic problems of the kind

b(u)t − div ã
(
u,∇φ(u)

) + ψ(u) = f , u|t=0 = u0

in a bounded domain with homogeneous Dirichlet boundary con-
ditions. The nonlinearities b, φ and ψ are supposed to be con-
tinuous non-decreasing, and the nonlinearity ã falls within the
Leray–Lions framework. Some restrictions are imposed on the de-
pendence of ã(u,∇φ(u)) on u and also on the set where φ de-
generates. A model case is ã(u,∇φ(u)) = f̃(b(u),ψ(u),φ(u)) +
k(u)a0(∇φ(u)), with a nonlinearity φ which is strictly increasing
except on a locally finite number of segments, and the nonlinearity
a0 which is of the Leray–Lions kind. We are interested in exis-
tence, uniqueness and stability of L∞ entropy solutions. For the
parabolic–hyperbolic equation (b = Id), we obtain a general contin-
uous dependence result on data u0, f and nonlinearities b,ψ,φ, ã.
Similar result is shown for the degenerate elliptic problem, which
corresponds to the case of b ≡ 0 and general non-decreasing sur-
jective ψ . Existence, uniqueness and continuous dependence on
data u0, f are shown in more generality. For instance, the assump-
tions [b + ψ](R) = R and the continuity of φ ◦ [b + ψ]−1 permit to
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achieve the well-posedness result for bounded entropy solutions of
this triply nonlinear evolution problem.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Problem and assumptions

In this paper we consider problems under the general form

(P)

{
∂tb(u) + div f̃

(
b(u),ψ(u),φ(u)

) − diva
(
u,∇φ(u)

) + ψ(u) = f in Q T = (0, T ) × Ω,

u|t=0 = u0 in Ω, u = 0 on Σ = (0, T ) × ∂Ω,

where u : (t, x) ∈ Q T → R is the unknown function, T > 0 is a fixed time, Ω ⊂ RN is a bounded
domain with Lipschitz boundary ∂Ω .

We assume

(H1)

∣∣∣∣ the functions b,ψ,φ : R 
→ R are continuous non-decreasing,
normalized by the value zero at the point zero.

We require the following technical assumption on φ:

(H2)

∣∣∣∣ there exists a closed set E ⊂ R such that φ is strictly increasing
on R \ E , and the Lebesgue measure meas φ(E) is zero;

and, moreover,

(H3) lim inf
ε↓0

meas(Gε)

ε
< +∞, where Gε := {

z ∈ R
∣∣ dist

(
z, φ(E)

)
< ε

}
.

Notice that since φ(·) is continuous and strictly monotone on R \ E , the set G := φ(E) is also closed.

Remark 1.1. (i) Hypotheses (H2), (H3) are trivially satisfied if φ is a strictly increasing function. In case
φ has a finite number of segments on which it keeps constant values, E is just the union of all these
“flatness segments”, and (H2), (H3) are satisfied.

(ii) Property (H2) is still true if φ is locally absolutely continuous. In general, the set of discontinu-
ity points of φ−1 is not closed, and its closure can be large (this is the case, e.g., if φ is the “Cantor
stairs function”). Thus (H2) is a restriction, although it is fulfilled in most of the practical cases. Prop-
erty (H3) is a further restriction. Indeed, consider the following example. It is easy to construct a
Lipschitz continuous non-decreasing function φ such that G = φ(E) is equal to {0} ∪ {1/

√
i | i ∈ N}.

A straightforward calculation shows that for ε = 1/n, Gε contains the whole interval [0,1/(2n2/3)]; in
this case meas(Gε)/ε is of order ε−1/3 and gets unbounded as ε → 0.

The initial function u0 : Ω → R and the source f : Q → R are assumed to fulfill

(H4)

∣∣∣∣∣∣∣∣
u0 ∈ L∞(Ω); f is measurable such that

f (t, ·) ∈ L∞(Ω) for a.e. t ∈ (0, T ) and

T∫
0

∥∥ f (t, ·)∥∥L∞(Ω)
dt < +∞.1

1 In the sequel, we will abusively denote the latter quantity by ‖ f ‖L1(0,T ;L∞(Ω)) .
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Furthermore, the following condition (automatically satisfied in the case b(R) = R) is needed:

(H5)

∣∣∣∣ in the case b(+∞) �= +∞ (
resp., b(−∞) �= −∞)

one has ψ(+∞) = +∞ and f + ∈ L∞(Q T )
(
resp., ψ(−∞) = −∞ and f − ∈ L∞(Q T )

)
.

Assumptions (H4), (H5) are imposed in order to limit our study to bounded solutions of (P).
Note that in view of (H1) and (H5), we are assuming at least that (b + ψ)(R) = R. An important

part of the paper is devoted to the case b(R) = R. If, in addition, b is bijective, then performing a
change of the unknown one puts the problem into the doubly nonlinear framework with b = Id.

Our continuous dependence result for problem (P) (in which we perturb both the data and the
nonlinearities) concerns the case where the structure condition

(Hstr) b(r) = b(s) ⇒ φ(r) = φ(s)

is satisfied. This result implies the existence of solutions for (P), by reduction to non-degenerate prob-
lems. Assumption (Hstr) is trivially satisfied in the case b = Id. If (Hstr) fails, the convergence of
approximate solutions to (P) is known only for a particular monotone approximation method devel-
oped by Ammar and Wittbold [4]. This approach leads to an existence result which bypasses (Hstr);
but interesting issues (such as proving convergence of numerical methods for (P) without requiring
the structure condition (Hstr)) remain open. See Bénilan and Wittbold [14] for a thorough discussion
of the role of the structure condition for a simple model one-dimensional case ∂tb(u) + (f(u))x = uxx .

Furthermore,

(H6) the function f̃ : R × R × R → RN is assumed merely continuous.

Notice that under the structure condition (Hstr), the dependency of f̃ on φ(u) can be dropped.
Whenever it is convenient (and in particular, in the case where b is bijective), we use the notation
f(·) := f̃(b(·),ψ(·),φ(·)).

The function a : R × RN → RN is assumed to satisfy the following conditions:

(H7) a is continuous2 on R × RN , and a(r,0) ≡ 0;
(H8)

∣∣∣∣ a(r, ·) is monotone, i.e.,(
a(r, ξ) − a(r, η)

) · (ξ − η) � 0 for all ξ,η ∈ RN and all r ∈ R;

(H9)

∣∣∣∣∣∣∣
a(r, ·) is coercive at zero, i.e.,
there exist p ∈ (1,+∞) and C ∈ C(R;R+) such that

a(r, ξ) · ξ � 1

C(r)
|ξ |p for all ξ ∈ RN and all r ∈ R;

(H10)

∣∣∣∣∣∣
the growth of a(r, ξ) is not greater than |ξ |p−1, i.e.,
there exists C ∈ C(R;R+) such that∣∣a(r, ξ)

∣∣ � C(r)
(
1 + |ξ |p−1

)
for all ξ ∈ RN and all r ∈ R.

It follows from (H7)–(H10) that for all r, the operator w 
→ −div a(r,∇w) is an operator acting from
W 1,p

0 (Ω) to W −1,p′
(Ω), where p′ = p

p−1 . Since the work of Leray and Lions [29], this assumption
became classical. It can be generalized to the framework of Orlicz spaces (see the works of Kačur [27]
and those of Benkirane and collaborators [15,16]), and even to more general coercivity and growth
assumptions. We refer to Bendahmane and Karlsen [10,11] for the case of the anisotropic p-Laplacian.
In the case of dimension N = 1, very general coercivity assumption limξ→±∞ a(r, ξ)/ξ = +∞ (uni-
formly for r bounded) can be considered. In this framework, the well-posedness for (P) was already
established by Ouaro and Touré [37–39] and Ouaro [36] (see also Bénilan and Touré [13]); notice that
some essential arguments of these works are specific to the case N = 1. Notwithstanding the above

2 The assumption of continuity of a in the first variable can be relaxed: see Remark 1.3.
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generalizations, the classical Leray–Lions assumptions are sufficient for us to illustrate the arguments
of the existence proof for (P).

The relevant technical assumption in order to have uniqueness is

(H11)

∣∣∣∣∣∣∣∣∣∣

there exists C ∈ C
(
R2;R+)

such that(
a(r, ξ) − a(s, η)

) · (ξ − η) + C(r, s)
(
1 + |ξ |p + |η|p)∣∣φ(r) − φ(s)

∣∣ � 0
for all ξ,η ∈ RN and all r, s ∈ R such that
the segment which lies between r and s
does not intersect the exceptional set E .

This assumption goes along the lines of Carrillo and Wittbold [21] and combines the monotonicity
condition (H8) with a kind of Lipschitz continuity assumption on a(·, ξ) ◦ φ−1 on the connected com-
ponents of R \ E .

Remark 1.2. Notice that E is a set of the values of u that lead to a(u,∇φ(u)) being zero. Indeed,
since measφ(E) = 0, we have ∇φ(u) = 0 a.e. on the set where u ∈ E; then we have a(u,∇φ(u)) =
a(u,0) = 0, regardless of the exact value of u ∈ E .

Remark 1.3. Notice that we do not assume the structure condition

φ(r) = φ(s) ⇒ a(r, ξ) = a(s, ξ) ∀ξ ∈ RN .

This means that a(r, ξ) can be discontinuous with respect to φ(r); the set of discontinuities is in-
cluded in φ(E) which, by (H2), is a closed set of measure zero. This technical assumption is needed
to be able to “cut off” the discontinuity set.

One can also consider a(r, ξ) which is discontinuous in r. E.g., take the case of a(r, ξ) = a1(k(r), ξ)

with k(·) piecewise continuous. Thanks to Remark 1.2, it is reduced to our setting by a change
of unknown function u into v such that u = ρ(v) with ρ non-strictly increasing, chosen so that
k(ρ(z)) ≡ k̃(z) with k̃(·) continuous. Indeed, such change of the unknown preserves assumption (Hstr).

Let us mention that the assumptions (H4), (H5) and (H9), (H10) can also be generalized. Within the
framework of “variational” solutions, one usually works with “bounded energy initial data”, i.e., with
u0 measurable and such that B(u0) < +∞, where

B(z) :=
z∫

0

φ(s)db(s) (1)

is the function depending on b and φ which we introduce following Alt and Luckhaus [1], and with
relaxed growth and coercivity assumptions allowing for additional terms which depend on B(r) +
|φ(r)|p + rψ(r), these terms being controlled by means of a priori estimates (see, e.g., [1,5,27]).

A more general framework is the one of renormalized solutions (see [4,10,17–19,21] and the ref-
erences therein). Nonetheless, the assumptions (H4), (H5), (H9), and (H10) are sufficiently weak to
provide the starting point for the well-posedness theory for renormalized solutions of (P). Indeed, the
uniqueness proof for renormalized solutions of (P) remains essentially the same as the one of Carrillo
and Wittbold in [21], and the existence result is most easily obtained using bi-monotone sequences
of bounded entropy solutions, following Ammar and Wittbold [4] and Ammar and Redwane [3].

1.2. The notion of solution and known results

Problem (P) is of mixed elliptic–parabolic–hyperbolic type, and thus combines the difficulties re-
lated to nonlinear conservation laws with those related to nonlinear degenerate diffusion equations.
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We refer to Kruzhkov [28] and to Leray and Lions [29], Lions [30], Alt and Luckhaus [1], Otto [35] for
the fundamental works on these classes of equations, respectively.

One consequence is that the notion of weak solution (sometimes called “variational solution”)
generally leads to non-uniqueness, unless φ(·) is strictly increasing. The notion of entropy solution
we use is adapted form the founding paper of Carrillo [20], which extends the classical framework
of entropy solutions to scalar conservation laws to the case of problem (P) with the linear diffu-
sion a(u,∇φ(u)) = ∇φ(u). The uniqueness arguments of [20] were adapted by Carrillo and Wittbold
[21] to the case of a nonlinear Leray–Lions diffusion operator of the form a(u,∇u) corresponding
to φ = Id. The case of b = Id and of a diffusion operator of the form a(φ(u),∇φ(u)) is similar; one
particular case is considered in Andreianov, Bendahmane and Karlsen [6]. Both frameworks are some-
times referred to as “doubly nonlinear”. Notice that a new definition of an entropy solution, suitable
also for the case of doubly nonlinear anisotropic diffusion operators, was used in a series of works
by Bendahmane and Karlsen (see [10,11] and references therein); the issue of existence in this gen-
eral anisotropic framework is still open. The case of triply nonlinear problems of the form (P) has
been first addressed by Ouaro and Touré (see [39] and the references therein) and Ouaro [36]. Well-
posedness results are obtained in dimension N = 1, under very general coercivity conditions; see also
the works of Bénilan and Touré ([13] and the references therein). The multi-dimensional elliptic ana-
logue of (P) was recently addressed in the work of Ammar and Redwane [3], in the framework of
renormalized solutions; their approach is quite similar to the ours, but the proofs of [3] require a
special structure of the nonlinearity φ. We bypass the difficulties of [3] using two observations in
Section 3 (see Lemmas 3.2, 3.3).

In most of the works cited hereabove, the homogeneous Dirichlet boundary conditions were cho-
sen. One should bear in mind that, unless φ is strictly increasing, the boundary condition is also
understood in an entropy sense (see, e.g., Bardos, LeRoux and Nédélec [9], Otto [34], Carrillo [20]).
Focusing on the homogeneous boundary condition is a simplification which seems to be not merely
technical. A partial extension of the Carrillo’s techniques to inhomogeneous boundary data can be
found in Ammar, Wittbold and Carrillo [2]. Different techniques for the inhomogeneous problem,
based on the weak trace framework introduced by Otto [34] and developed by Chen and Frid [22],
were used by Mascia, Porretta and Terracina [32], by Michel and Vovelle [33], and by Vallet [41]. A re-
lated, though somewhat more straightforward approach was attempted by Andreianov and Igbida [7].
Notice that in all cases, a technique of “going up to the boundary” is preceded by obtaining the fun-
damental weak formulations and entropy inequalities “inside the domain”. In the present paper, we
also make the simplest choice of the homogeneous Dirichlet data, and focus on deriving the entropy
inequalities.

1.3. Main techniques and the outline of the paper

Our main concern is the existence for (P) (and more generally, the continuous dependence result
with respect to perturbations of the data and the nonlinearities) in the case b = Id (or, more gen-
erally, under the structure condition (Hstr)). We extend the arguments of Andreianov, Bendahmane
and Karlsen [6] developed for the case of a(u,∇φ(u)) ≡ a(∇φ(u)); the main difficulty stems from
the fact that we do not assume the structure condition of Remark 1.3, so that a(φ−1(·), ξ) can be
discontinuous.

In order to use the weak convergence while passing to the limit in the nonlinear diffusion term
in (P), we use a version of the classical Minty–Browder monotonicity argument. We use cut-off
functions to focalize on the intervals of the strict monotonicity of φ. We then show that the com-
plementary of this set can be neglected, thanks to a particular a priori estimate with the cut-off
function; this estimate focalizes on a neigbourhood of the “exceptional set” E of the values of u
introduced in (H2) (see Remark 1.2 and Lemma 3.2).

In order to deal with the convection term in (P), we use the technique of nonlinear weak-� con-
vergence to a measure-valued solution (as considered by Tartar, DiPerna, Szepessy, Panov), or more
exactly, to an entropy process solution as developed by Gallouët and collaborators (see [23–25] and
references therein). Considering entropy process solutions is a purely technical issue, since the unique-
ness proof also contains their identification to entropy solutions.
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The chain rule arguments of Lemmas 3.3, 3.4 permit to separate the two aforementioned weak
convergence arguments, the one for the diffusion term and the one for the convection term.

The uniqueness of an entropy solution is shown under the assumption (H11), with the help of (H3)
and the estimate of Lemma 3.2; we follow Carrillo [20], Carrillo and Wittbold [21], Eymard, Gallouët,
Herbin and Michel [24] and Andreianov, Bendahmane and Karlsen [6].

While the full continuous dependence result strongly relies upon the structure condition (Hstr),
the stability of entropy solutions to (P) with respect to the perturbation of the data (u0, f ) is shown
under the weaker structure assumption

(H′
str) (b + ψ)(r) = (b + ψ)(s) ⇒ φ(r) = φ(s).

Let us stress the fact that our argument using (H′
str) is not “robust”, in the sense that it cannot

be directly adapted to the proof of convergence of various kinds of approximate solutions. In or-
der to address the question of convergence of numerical approximations of (P), the stronger structure
assumption (Hstr) still seems essential. For finite volume approximations of the doubly nonlinear prob-
lem (P) with b = Id, a convergence proof using (Hstr) is given in [6].

Let us give an outline of the paper. We start with definitions and the formulation of the main
results in Section 2. In Section 3, we give the key ingredients of our techniques. Section 4 concerns
the adaptation of the standard uniqueness, L1 contraction and comparison result for entropy and
entropy process solutions of (P). Section 5 contains the a priori estimates for solutions. In Section 6,
we assume that b is bijective (or, more generally, conditions (Hstr), (H5) are satisfied); we deal with
the convergence of solutions to problems (Pn) with perturbed coefficients. Section 7 is devoted to the
proof of the well-posedness result for (P). In Section 8 we give existence, uniqueness and continuous
dependence results for the related elliptic equation ψ(u) + div f̃(ψ(u),φ(u)) − diva(u,∇φ(u)) = s,
s ∈ L∞(Ω).

2. Entropy solutions and well-posedness results

2.1. Entropies and related notation

As it was explained in the introduction, we need the notion of weak solution for (P) with addi-
tional “entropy” conditions. In order to use entropy conditions in the interior of Q T and, moreover,
take into account the homogeneous Dirichlet boundary condition, following Carrillo [20] we will work
with the so-called “semi-Kruzhkov” entropy–entropy flux pairs (η±

c ,q±
c ) for each c ∈ R:

η+
c (z) = (z − c)+, η−

c (z) = (z − c)−,

q+
c (z) = sign+(z − c)

(
f(z) − f(c)

)
, q−

c (z) = sign−(z − c)
(
f(z) − f(c)

)
.

By convention, we assign (η±
c )′(c) to be zero. Here (z − c)± stand for the non-negative quantities such

that z − c = (z − c)+ − (z − c)− , but we denote

sign+(z − c) = (
η+

c

)′
(z) =

{
1, z > c,

0, z � c,
sign−(z − c) = (

η−
c

)′
(z) =

{
0, z � c,

−1, z < c.

At certain points, we will also need smooth regularizations of the semi-Kruzhkov entropy–entropy
flux pairs; it is sufficient to consider regular “boundary” entropy pairs (η±

c,ε,q
±
c,ε) (cf. Otto [34] and

the book [31]), which are W 2,∞ pairs with the same support as (η±
c ,q±

c ), converging pointwise to
(η±

c ,q±
c ) as ε → 0. In particular, the functions

sign+
ε (z) = 1

ε
min{z+, ε}, sign−

ε (z) = 1

ε
max{−z−,−ε}

will be used to approximate sign±(·) = (η±
0 )′(·).
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Definition 2.1. For a function ϕ which is monotone on R, for all locally bounded piecewise continuous
function θ on R we can define (using, e.g., the Stiltjes integral)

ϕθ : z ∈ R 
→
z∫

0

θ(s)dϕ(s).

Moreover (see Lemma 3.1 below), there exists a continuous function ϕ̃θ such that ϕθ (u) = ϕ̃θ (ϕ(u)).

In the sequel, we denote by b±
c (·) the function z 
→ ∫ z

0 (η±
c )′(s)db(s).

2.2. Entropy and entropy process solutions

For the sake of simplicity, we will in this paper work with bounded entropy solutions, i.e., we
require that u ∈ L∞(Q T ) and put corresponding hypotheses on the data u0, f and functions b,ψ .
Note that the boundedness assumption can be bypassed in the framework of renormalized solutions
(see in particular Ammar and Redwane [3]); or in the framework of variational solutions in the spirit
of Alt and Luckhaus [1] (in this case, one has to replace the functions C(·) in assumptions (H9), (H10),
(H11) with a constant C ; further changes are indicated in Remark 6.1).

Definition 2.2 (Entropy solution). An entropy solution of (P) is a measurable function u : Q T → R
satisfying the following conditions:

(D.1) (Regularity) u ∈ L∞(Q T ) and w = φ(u) ∈ L p(0, T ; W 1,p
0 (Ω)).

(D.2) For all ξ ∈ D([0, T ) × Ω),

∫∫
Q T

(
b(u)∂tξ + f(u) · ∇ξ − a(u,∇w) · ∇ξ − ψ(u)ξ

)
dx dt

+
∫
Ω

b(u0)ξ(0, ·)dx +
∫∫
Q T

f ξ dx dt = 0. (2)

(D.3) For all (c, ξ) ∈ R± × D([0, T ) × Ω), ξ � 0, and also for all (c, ξ) ∈ R × D([0, T ) × Ω), ξ � 0,

∫∫
Q T

(
b±

c (u)∂tξ + q±
c (u) · ∇ξ − (

η±
c

)′
(u)a(u,∇w) · ∇ξ − (

η±
c

)′
(u)ψ(u)ξ

)
dx dt

+
∫
Ω

b±
c (u0)ξ(0, ·)dx +

∫∫
Q T

(
η±

c

)′
(u) f ξ dx dt � 0.

Remark 2.1. If in the above definition,

– u satisfies u ∈ L∞(Q T ), w = φ(u) ∈ L p(0, T ; W 1,p(Ω)) and w+ (resp., w−) belongs to
L p(0, T ; W 1,p

0 (Ω)),
– the equality sign in the weak formulation (2) is replaced by the inequality “�” (resp., with the

inequality “�”),
– entropy inequalities in (D.3) hold with the entropies η+

c for c ∈ R+ (resp., with the entropies η−
c

for c ∈ R−),

then u is called entropy subsolution (resp., entropy supersolution) of (P).
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Remark 2.2. Following Alt and Luckhaus [1], we can rewrite the weak formulation (D.2) of (P) as
follows:

– b(u)|t=0 = b(u0) and the distributional derivative ∂tb(u) satisfies

∂tb(u) ∈ L p′(
0, T ; W −1,p′

(Ω)
) + L1(Q T )

in the sense

T∫
0

〈
∂tb(u), ζ

〉 = −
∫∫
Q T

b(u)∂tζ −
∫
Ω

b(u0)ζ(0, ·)

for all ζ ∈ L p(0, T , W 1,p
0 (Ω)) ∩ L∞(Q T ) such that ∂tζ ∈ L∞(Q T ) and ζ(T , ·) = 0;

– equation (P) is satisfied in L p′
(0, T ; W −1,p′

(Ω)) + L1(Q T ).

We denote by 〈·,·〉 the duality pairing between L p′
(0, T ; W −1,p′

(Ω)) + L1(Q T ) and L p(0, T ,

W 1,p
0 (Ω)) ∩ L∞(Q T ).

For technical reasons, it is convenient to introduce the notion of entropy process solution adapted
from Eymard, Gallouët and Herbin [23], Gallouët and Hubert [25] and Eymard, Gallouët, Herbin and
Michel [24]. This definition is based upon an L∞ representation of Young measures via their distri-
bution functions, see Panov [40] and Gallouët et al. [23,25]. This allows for the so-called “nonlinear
weak-� convergence” property (see, e.g., Ball [8] and Hungerbühler [26] for the formulation in terms
of Young measures):

∣∣∣∣∣∣∣∣∣∣∣∣

each sequence (un)n of measurable functions
admits a subsequence such that for all F ∈ C(R,R),

F
(
un(·)) →

1∫
0

F
(
μ(·,α)

)
dα weakly in L1(Q T )

whenever the set
(

F (un)
)

n is weakly relatively compact in L1(Q T ),

(3)

where the function μ ∈ L∞(Q T × (0,1)) is referred to as the “process function”. Notice that in the
above statement, one also concludes that F (μ(·,α)) is independent of α whenever F (un) converges
to F (u) in measure (see, e.g., [26]).

Definition 2.3 (Entropy process solution). An entropy process solution of (P) is a couple (μ, w) of mea-
surable functions μ : Q T × (0,1) → R and w : Q T → R satisfying the following conditions:

(D′ .1) (Regularity and consistency) μ ∈ L∞(Q T × (0,1)), w ∈ L p(0, T ; W 1,p
0 (Ω)), and φ(μ(t, x,α)) ≡

w(t, x) for a.e. (t, x,α) ∈ Q T × (0,1).
(D′ .2) For all ξ ∈ D([0, T ) × Ω),

1∫
0

∫∫
Q T

z
(
b(μ)∂tξ + f(μ) · ∇ξ − a(μ,∇w) · ∇ξ − ψ(μ)ξ

)
dx dt dα

+
∫
Ω

u0ξ(0, ·)dx +
∫∫
Q T

f ξ dx dt = 0.
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(D′ .3) For all (c, ξ) ∈ R± × D([0, T ) × Ω), ξ � 0, and also for all (c, ξ) ∈ R × D([0, T ) × Ω), ξ � 0,

1∫
0

∫∫
Q T

(
b±

c (μ)∂tξ + q±
c (μ) · ∇ξ − (

η±
c

)′
(μ)a(μ,∇w) · ∇ξ − (

η±
c

)′
(μ)ψ(μ)

)
dx dt dα

+
∫
Ω

b±
c (u0)ξ(0, ·)dx +

1∫
0

∫∫
Q T

(
η±

c

)′
(μ) f ξ dx dt dα � 0.

Remark 2.3. In (D′ .3), setting u := ∫ 1
0 μ(α)dα one can rewrite the third term under the form

1∫
0

∫∫
Q T

(
η±

c

)′
(μ)a(μ,∇w) =

∫∫
Q T

(
η±

c

)′
(u)a(u,∇w).

Indeed, we have w ≡ φ(μ), and φ is invertible on R \ E , so that μ(t, x,α) ≡ φ−1(w(t, x)) = u(t, x)
whenever w(t, x) ∈ R \ φ(E); furthermore, ∇w = 0 a.e. on [w ∈ φ(E) ∪ {φ(c)}], and the exact value of
(η±

c )′(μ) on [w ∈ φ(E)∪ {φ(c)}] does not matter because a(r,0) ≡ 0. For the same reasons, a(μ,∇w)

can be replaced by a(u,∇w) in (D′ .2).

Remark 2.4. If u is an entropy solution of (P), then the couple (μ, w) defined by μ(t, x,α) = u(t, x)
a.e. on Q T × (0,1) (resp., by w(t, x) = φ(u(t, x)) a.e. on Q T ), is an entropy process solution of (P). In
turn, if (μ, w) is an entropy process solution of (P) such that μ(t, x,α) = u(t, x) a.e. on Q T × (0,1)

for some u : Q T → R, then the function u is an entropy solution of (P).

2.3. Well-posedness of problem (P) in the framework of entropy solutions

First note the uniqueness result, which requires no range condition nor structure condition on the
nonlinearities b and φ.

Theorem 2.1. Assume that (H1)–(H5) and (H6)–(H11) hold.
(i) Assume that (μ, w) is an entropy process solution of (P). Then

u(t, x) =
1∫

0

μ(t, x,α)dα

is an entropy solution of (P). Moreover, we have b(μ)(t, x,α) ≡ b(u)(t, x) and ψ(μ)(t, x,α) ≡ ψ(u)(t, x)
a.e. on Q T × (0,1). If (b + φ + ψ) is strictly increasing, then μ(t, x,α) = u(t, x) a.e. on Q T × (0,1).

(ii) Assume that u and û are two entropy solutions of (P) corresponding to the data u0, f and û0, f̂ ,
respectively. Then for a.e. t ∈ (0, T ),

∫
Ω

(
b(u) − b(û)

)+
(t) +

t∫
0

∫
Ω

(
ψ(u) − ψ(û)

)+

�
∫
Ω

(
b(u0) − b(û0)

)+ +
t∫

0

∫
Ω

sign+(u − û)( f − f̂ ).

(iii) In particular, if u, û are two entropy solutions of (P), then b(u) ≡ b(û) and ψ(u) ≡ ψ(û).
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Remark 2.5. In Theorem 2.1(ii), one can replace u, resp. û, with an entropy subsolution, resp. with an
entropy supersolution. The same proof applies.

The following continuous dependence property is the central result of this paper.

Theorem 2.2. Let (bn,ψn, φn,an, f̃n; un
0, fn), n ∈ N, be a sequence converging to (b,ψ,φ,a, f̃; u0, f ) in the

following sense:

• bn,ψn, φn converge pointwise to b,ψ,φ respectively;
• f̃n,an converge to f̃,a, respectively, uniformly on compacts;
• bn

(
un

0

) → b(u0) in L1(Ω), and fn → f in L1(Q T ).

(4)

Assume that (b,ψ,φ,a, f̃; u0, f ) and (bn,ψn, φn,an, f̃n; un
0, fn) (for each n) satisfy the hypotheses (H1), (H4),

(H5), and (H6)–(H11), and, moreover, that the functions C(·) in (H9), (H10), and (H11) as well as the L∞(Ω)

and L1(0, T , L∞(Ω)) bounds in (H4) are independent of n. We denote by (Pn) the analogue of problem (P)
corresponding to the data and coefficients (bn,ψn, φn,an, f̃n; un

0, fn).
Assume that either b(R) = R, or the L∞(Q T ) bounds on f ±

n in (H5) are independent of n. Assume that the
structure condition (Hstr) holds, and φ satisfies the technical hypotheses (H2), (H3).

Let un be an entropy solution of problem (Pn). Then the functions un converge to an entropy solution u of
(P) in L∞(Q T ) weakly-�, up to a subsequence. Furthermore, the functions φn(un) converge to φ(u) in L1(Q T )

up to a subsequence, and the whole sequences bn(un),ψn(un) converge in L1(Q T ) to b(u),ψ(u), respectively.

Remark 2.6. The structure condition (Hstr) seems to be essential for results like Theorem 2.2 to hold
(see [14]).

The surjectivity assumption on b or assumption (H5) were only required to ensure the L∞ estimate
on u. One could work with unbounded solutions, in which case these assumptions can be replaced
by a growth condition on f̃ (see Remark 6.1 below).

Notice that assuming simultaneously (Hstr), b(R) = R and ψ ≡ 0, by a change of the unknown u
into v = b(u) we can always reduce the triply nonlinear problem (P) to the doubly nonlinear problem
with b ≡ Id.

Finally, we state the well-posedness result for (P). Note that when only the data (u0, f ) are
perturbed, the continuous dependence result analogous to Theorem 2.2 holds under the structure
assumption (H′

str) which is weaker than (Hstr).

Theorem 2.3. (i) Assume that (H1)–(H5) and (H6)–(H11) hold. Then there exists an entropy solution to (P).
Moreover, it is unique, in the sense of Theorem 2.1(iii).

(ii) Assume in addition that the structure condition (H′
str) holds. Then the entropy solution of (P) depends

continuously on the data (u0, f ). More precisely, let un be an entropy solution of (P) with data (un
0, fn).

Assume b(un
0) → b(u0) in L1(Ω) and fn → f in L1(Q T ), as n → ∞. Assume that the bounds in (H4), (H5)

are uniform in the sense

• ‖un
0‖L∞(Ω) � Const;

• either b(+∞) = +∞ and
∫ T

0 ‖ f +
n (t, ·)‖L∞(Ω) dt � Const, or ψ(+∞) = +∞ and ‖ f +

n ‖L∞(Q T ) � Const;

• either b(−∞) = −∞ and
∫ T

0 ‖ f −
n (t, ·)‖L∞(Ω) dt � Const, or ψ(−∞) = −∞ and ‖ f −

n ‖L∞(Q T ) � Const.

Then b(un),ψ(un) and φ(un) converge, respectively, to b(u),ψ(u) and φ(u) in L1(Q T ) as n → ∞, where u
is an entropy solution of (P) with data (u0, f ).
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Moreover, if we reinforce hypothesis (H8) by requiring the uniform monotonicity of a(r, ·) in the sense

(H′
8)

∣∣∣∣∣∣∣
there exists C ∈ C

(
R2;R+)

such that

(
a(r, ξ) − a(r, η)

) · (ξ − η) � 1/C

(
r,

1

|ξ − η|
)

,

then also ∇φ(un) converge to ∇φ(u) in (L p(Q T ))N and a(un,∇φ(un)) converge to a(u,∇φ(u)) in
(L p′

(Q T ))N , as n → ∞.

3. Notation and preliminary lemmas

Let us give some notation which will be used throughout the remaining sections.
We will use the notation like [u ∈ F ] for the sets like {(t, x) ∈ Q T | u(t, x) ∈ F }. For a measurable

set H , we denote by 1H the characteristic function of H . For H ⊂ R, we set

T H (z) :=
z∫

0

1H (s)ds;

clearly, T H (·) is a Lipschitz function with T H (0) = 0.
We denote by G the image φ(E) by φ(·) of the “exceptional set” E introduced in (H2); recall that

E is closed, G is closed and meas(G) = 0. We denote by I a generic open interval in R \ E , and by J
its image φ(I) which is a generic open interval in R \ G . For all ε > 0, we choose an open set Gε ⊃ G
such that meas(Gε) < Const ×ε. We denote by Eε the open set φ−1(Gε) which contains E . When (H3)
holds, we can simply take Gε = Gε := {z ∈ R | dist(z, G) < ε}.

Now let us prove the representation property used in Definition 2.1.

Lemma 3.1. Let ϕθ (·) be the function defined by

ϕθ : z ∈ R 
→
z∫

0

θ(s)dϕ(s),

for a continuous non-decreasing function ϕ : R → R and a bounded piecewise continuous function θ : R → Rn.
Then there exists a Lipschitz continuous function ϕ̃θ : ϕ(R) → Rn such that for all z ∈ R,

ϕθ (z) = ϕ̃θ

(
ϕ(z)

)
.

Proof. If ϕ(z) = ϕ(ẑ), then the measure dϕ(s) vanishes between z and ẑ; thus ϕθ (z) − ϕθ (ẑ) =∫ z
ẑ θ(s)dϕ(s) is zero. Therefore ϕ̃θ is well defined. For all r, r̂ ∈ ϕ(R), ϕ̃θ (r) − ϕ̃θ (r̂) = ϕθ (z) − ϕθ (ẑ) =∫ z
ẑ θ(s)dϕ(s), where z ∈ ϕ−1(r), ẑ ∈ ϕ−1(r̂). Thus

∣∣ϕ̃θ (r) − ϕ̃θ (r̂)
∣∣ � ‖θ‖L∞

∣∣ϕ(z) − ϕ(ẑ)
∣∣ = ‖θ‖L∞|r − r̂|. �

Now, let us give a localized estimate of the gradient of w = φ(u).

Lemma 3.2. Let u be a bounded weak solution of (P). Then there exists a constant C depending on C(·) in (H9),
on ‖u‖L∞(Q T ) and on ‖b(u0)‖L1(Ω) , ‖ f ‖L1(Q ) such that for all Borel measurable set F ⊂ R,

I F (u) :=
∫∫

[u∈F ]

∣∣∇φ(u)
∣∣p =

∫∫
[w∈φ(F )]

|∇w|p � C VarF φ(·) = C meas
(
φ(F )

)
. (5)



288 B. Andreianov et al. / J. Differential Equations 247 (2009) 277–302
Proof. Without loss of restriction, one can assume that F is bounded; indeed, otherwise we can
replace F with F M := F ∩ [−M, M] and then pass to the limit as M → +∞ in inequality (5) written
for F M .

Set H = φ(F ), and note that T H (w) = T H (φ(u)) ∈ L p(0, T ; W 1,p
0 (Ω)) can be approximated by ad-

missible test functions in (2) of Definition 2.2; one has

∇T H (w) = ∇w1H (w) = ∇φ(u)1F (u),

and

∥∥T H (·)∥∥∞ �
∫
F

dφ(s) = VarF φ(·) = meas(H). (6)

Using this test function, with Remark 2.2 and the standard chain rule argument known as the
Mignot–Bamberger and Alt–Luckhaus formula (see, e.g., Alt and Luckhaus [1], Otto [35], Carrillo and
Wittbold [21]) we get

∫
Ω

B F (u)(T , ·) +
∫∫
Q T

ψ(u)T H
(
φ(u)

) +
∫∫
Q T

a(u,∇w) · ∇T H (w)

=
∫
Ω

B F (u0) +
∫∫
Q T

f T H (w) −
∫∫
Q T

f(u) · ∇T H
(
φ(u)

)
, (7)

where B F (z) = ∫ z
0 T H (φ(s))db(s). The last term is zero thanks to the boundary condition w|Σ = 0. In-

deed, because F is assumed bounded, f(·) is bounded on the support of T ′
H (φ(·)); thus by Lemma 3.1

there exists a Lipschitz continuous vector-valued function g(·) such that

z∫
0

f(s)dT H
(
φ(s)

) = g
(
φ(z)

)
.

Hence g ◦ w ∈ L p(0, T ; W 1,p
0 (Ω;RN )), so that one can apply the Green–Gauss formula to get

∫∫
Q

div

( w∫
0

f(s)dT H
(
φ(s)

)) =
T∫

0

∫
∂Ω

g(w) · ν = 0,

where ν is the exterior unit normal vector to ∂Ω . By definition of T H (·) and because φ(·) is non-
decreasing, dropping positive terms in the left-hand side of (7), by (H9) we infer

1

C(‖u‖L∞(Q T ))

∫∫
[u∈F ]

∣∣∇φ(u)
∣∣p �

∫∫
[w∈φ(F )]

a(u,∇w) · ∇w

�
(∥∥b(u0)

∥∥
L1(Ω)

+ ‖ f ‖L1(Q )

)∥∥T H (·)∥∥∞.

Hence the claim follows by (6). �
In the above proof, we have used two chain rule lemmas. Now we notice that both apply for

u(·) replaced with a “process function” μ(·,α), as in (D′ .1), provided that for a.e. α ∈ (0,1) one can
substitute
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u(t, x) :=
1∫

0

μ(t, x,α)dα

by μ(t, x,α) in the expression of the test function.

Lemma 3.3. Let (μ, w) satisfy (D′ .1), and S : R → R be a Lipschitz continuous function such that S(0) = 0.
Let ζ ∈ L∞(0, T ). Then

∫∫
Q T

1∫
0

f
(
μ(t, x,α)

) · ∇ S
(

w(t, x)
)
ζ(t)dt dx dα = 0.

Proof. By Lemma 3.1, there exists a Lipschitz vector-valued function g such that
∫ z

0 f(s)dS(φ(s)) =
g(φ(z)) for |z| � ‖μ‖L∞(Q T ×(0,1)) . We have

∫∫
Q T

1∫
0

f
(
μ(α)

)
dα · ∇ S

(
φ(u)

)
ζ =

∫∫
Q T

1∫
0

f
(
μ(α)

) · ∇ S
(
φ
(
μ(α)

))
dα ζ

=
∫∫
Q T

1∫
0

div

( μ(α)∫
0

f(s)dS
(
φ(s)

))
dα ζ

=
T∫

0

∫
Ω

divg(w)ζ =
T∫

0

∫
∂Ω

g(w) · νζ = 0

because for a.e. α ∈ (0,1), φ(μ(α)) ≡ φ(u) = w ∈ L p(0, T ; W 1,p
0 (Ω)). �

Lemma 3.4. Let Ω be a bounded domain of Rn, T > 0, Q T := (0, T ) × Ω , and 1 < p < +∞. Let g ∈ C(R;R).
Let b ∈ C(R;R) be non-decreasing. Set

B g(z) :=
z∫

0

g(s)db(s).

Let μ ∈ L∞(Q T × (0,1)); set u = ∫ 1
0 μ(α)dα. Assume that

g(u) ∈ L p(
0, T ; W 1,p

0 (Ω)
) ∩ L∞(Q T )

and, moreover,

g
(
μ(α)

) ≡ g(u).

Assume that

∂t

( 1∫
0

b
(
μ(α)

)
dα

)
∈ L p′(

0, T ; W −1,p′
(Ω)

) + L1(Q T )

and
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1∫
0

b
(
μ(α)

)
dα|t=0 = b(u0)

in the following sense:

∀ξ ∈ L p(
0, T ; W 1,p

0 (Ω)
)

such that ∂tξ ∈ L∞(Q T ) and ξ(T , ·) = 0,

T∫
0

〈
∂t

( 1∫
0

b
(
μ(α)

)
dα

)
, ξ

〉
= −

∫∫
Q T

1∫
0

b
(
μ(α)

)
dα ∂tξ −

∫
Ω

b(u0)ξ(0, ·).

Then for all ζ ∈ D([0, T )),

T∫
0

〈
∂t

( 1∫
0

b
(
μ(α)

)
dα

)
, g(u)ζ

〉
= −

∫∫
Q T

1∫
0

B g
(
μ(α)

)
dα ζt −

∫
Ω

B g(u0)ζ(0).

Proof (sketched). Note that the claim of Lemma 3.4 cannot be deduced directly from the usual
Mignot–Bamberger and Alt–Luckhaus chain rule lemma; the reason is that we cannot expect
∂tb(μ(α)) to belong to L p′

(0, T ; W −1,p′
(Ω))+ L1(Q T ) for a.e. α. But it suffices to reproduce the proof

(see, e.g., [21]) which is by discretization of ∂t(
∫ 1

0 b(μ(α))dα). Indeed, we have for a.e. t, t −h ∈ (0, T ),

1

h

( 1∫
0

b
(
μ(t,α)

)
dα −

1∫
0

b
(
μ(t − h,α)

)
dα

)
g
(
u(t)

)

=
1∫

0

1

h

(
b
(
μ(t,α)

) − b
(
μ(t − h,α)

))
g
(
μ(t,α)

)
dα,

and now we can reason separately for each α. Thus the arguments of [21] apply. �
4. Proof of L1 contraction and comparison principles

Now we turn to the proof of Theorem 2.1 and Remark 2.1. Most of the statements are standard. We
only notice that while proving Theorem 2.1(i), one obtains that b(μ) and ψ(μ) are independent of α;
since φ(μ) = w is independent of α by definition, one concludes that f(μ) ≡ f̃(b(μ),ψ(μ),φ(μ))

is also independent of α, thus the entropy process solution μ gives rise to the entropy solution
u = ∫ 1

0 μ(α)dα. This is the only point where the special structure of the dependency of f on u is
used.

The proof of Theorem 2.1 is essentially the same as in Carrillo and Wittbold [21]; it is based on
the techniques of Carrillo [20] and on hypothesis (H11) (notice that in the case φ = Id, one has E = ∅;
therefore (H11) reduces to the Carrillo–Wittbold hypothesis in this case). For Theorem 2.1(i), we also
need the adaptation of the Carrillo arguments to the framework of entropy process solutions. This
has been done by Eymard, Gallouët, Herbin and Michel [24], Michel and Vovelle [33] and Andreianov,
Bendahmane and Karlsen [6]. Therefore we only point out why hypothesis (H11) is sufficient for the
uniqueness of an entropy solution in the case of problem (P) with φ that can be not strictly increasing.

The role of hypothesis (H11) is to ensure that

lim sup
ε→0

∫∫
Q

∫∫
Q

1

ε

(
a(u,∇w) − a(û,∇ ŵ)

) · (∇w − ∇ ŵ)1[0<w−ŵ<ε] � 0, (8)
T T
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where

u =
1∫

0

μ(α)dα, w = φ(u), û =
1∫

0

μ̂(α)dα, ŵ = φ(û),

and (μ(t, x,α), w(t, x)) and (μ̂(s, y,α), ŵ(t, x)) are two entropy process solutions of (P). Here, fol-
lowing Kruzhkov [28], we have taken two independent sets of the variables (t, x) and (s, y).

We split the integration domain Q T × Q T into several pieces.
First, notice that a.e. on [w ∈ G] × Q T , we have ∇w = 0; thus the integrand in (8) is reduced to

a(û,∇ ŵ)∇ ŵ1[0<w−ŵ<ε] , which is non-negative. The same argument applies on Q T × [ŵ ∈ G].
To conclude the proof of (8), it remains to investigate the integrand in (8) on the set [w /∈ G] ×

[ŵ /∈ G]. Let us introduce Gε := {z ∈ R | dist(z, G) < ε}. For a.e. (t, x, s, y) ∈ [w /∈ G]× [ŵ /∈ G] we have:

(a) either w(t, x) and w(s, y) belong to the same connected component of R \ G;
(b) or (a) fails, but w(t, x) ∈ Gε \ G and ŵ(s, y) ∈ Gε \ G;
(c) or both (a) and (b) fail, but then |w(t, x) − ŵ(s, y)| � 2ε.

We split [w /∈ G] × [ŵ /∈ G] into disjoint union of sets Sa ∪ Sb ∪ Sc , according to which of the above
cases (a), (b), (c) takes place at (t, x, s, y) ∈ [w /∈ G] × [ŵ /∈ G]. On Sa , we use assumption (H11) and
infer that the integrand in (8) is lower bounded by

−max
{

C(r, s)
∣∣ |r|, |s| � ‖u‖∞

}(
1 + |∇w|p + |∇ ŵ|p)

1[0<w−ŵ<ε].

Because the 2(N +1)-dimensional Lebesgue measure of the set [0 < w − ŵ < ε] goes to zero as ε → 0,
the limit of the corresponding part of the integral in (8) is lower bounded by zero.

On Sb , we bound the integrand in (8) from below by − p
ε (|∇w|p + |∇ ŵ|p). Using Lemma 3.2 we

have, e.g.,

1

ε

∫∫
[w∈Gε\G]

∫∫
[ŵ∈Gε\G]

|∇w|p � C
meas(Gε)

ε

∫∫
1[ŵ∈Gε\G].

By the continuity of the Lebesgue measure and because
⋃

ε>0 Gε \ G = ∅, the measure of the set
[ŵ ∈ Gε \ G] tends to zero as ε → 0. Therefore, using assumption (H3), we deduce that the corre-
sponding part of the limit in (8) is non-negative.

Finally, on Sc the integrand in (8) is zero.
This ends the proof of (8).

5. A priori estimates

The following estimates are rather standard.

Lemma 5.1. Let (bn,ψn, φn,an, f̃n; un
0, fn), n ∈ N, be a sequence of data satisfying the assumptions of Theo-

rem 2.2. Assume that the corresponding limiting data (b,ψ,φ,a, f̃; u0, f ) are such that (H5) and (Hstr) hold.
Let un be an entropy solution of problem (Pn). Then there exists a constant M and a modulus of continuity

ω : R+ → R+ , such that for all n ∈ N,

(i) ‖un‖L∞(Q T ) � M;
(ii) the following quantities are all upper bounded by M:

∥∥φn(un)
∥∥

Lp(0,T ;W 1,p
0 (Ω))

,
∥∥φn(un)‖Lp(Q T ),

∥∥an
(
un,∇φn(un)

)∥∥
Lp′

(Q T )
,∥∥ψn(un)φn(un)

∥∥
L1(Q T )

,
∥∥Bn(un)

∥∥
L∞(0,T ;L1(Ω))

,

where Bn is defined in (1) with b, φ replaced by bn, φn;
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(iii) for all � > 0,

∫∫
Q T −�

∣∣φn
(
un(t + �, x)

) − φn
(
un(t, x)

)∣∣ � ω(�).

Proof. (i) First assume b(R) = R. Consider the function

M(t) := sup
n∈N

(∥∥bn
(
un

0

)∥∥
L∞(Ω)

+
t∫

0

∥∥ fn(τ , ·)∥∥L∞(Ω)
dτ

)
< +∞.

Then for any measurable choice of u(t, x) ∈ b−1
n (M(t)), u is an entropy supersolution of (Pn). Simi-

larly, u(t, x) ∈ b−1
n (−M(t)) is an entropy subsolution of (Pn). The comparison principle of Remark 2.5

ensures that a.e. on Q ,

−M(T ) � −M(t) � bn(un)(t, x) � M(t) � M(T ).

Now the assumption b(R) = R and the pointwise convergence of bn to b ensure the uniform L∞(Q T )

bound on un .
If b(+∞) < +∞, then (H5) ensures that any constant u ∈ ψ−1

n (‖ f +‖L∞(Q T )) is an entropy super-
solution of (Pn). As hereabove, the comparison principle and the pointwise convergence of ψn to ψ

(recall that ψ(+∞) = +∞) yield a uniform majoration of un . The case b(−∞) > −∞ is analogous.
(ii) We use the test function φn(un) in the weak formulation of (Pn). The duality product between

φn(un) ∈ L p(
0, T ; W 1,p

0 (Ω)
) ∩ L∞(Q T )

and

∂tbn(un) ∈ L p′(
0, T ; W −1,p′

(Ω)
) + L1(Q T )

is treated via the standard chain rule argument [1,21,35]. Using in addition the chain rule of
Lemma 3.3, the L∞ bound on un shown in (i), the uniform coercivity assumption (H9), and the obvi-
ous inequality Bn(z) � bn(z)φn(z), we obtain the inequality

∫
Ω

Bn
(
un(t, ·)) +

t∫
0

∫
Ω

(
ψn(un)φn(un) + c

∣∣∇φn(un)
∣∣p)

�
∫
Ω

bn
(
un

0

)
φn

(
un

0

) +
t∫

0

∫
Ω

fnφn(un)

with some c > 0 independent of n. Notice that the functions bn, φn are locally uniformly bounded
because they are monotone and converge pointwise to b, φ, respectively. Therefore the right-hand
side of the above inequality is bounded uniformly in n, thanks to (i) and to the uniform bounds on
the data un

0 and fn in L∞(Ω) and in L1(Q T ), respectively. The uniform estimate of the left-hand

side follows. We then estimate ‖φn(un)‖Lp(Q T ) by the Poincaré inequality; the (L p′
(Q T ))N bound on

an(un,∇φn(un)) follows from the growth assumption (H10).
(iii) Let � > 0. The weak formulation of (Pn) yields, for a.e. t, t + � ∈ (0, T ),

∫
Ω

(
bn(un)(t + �) − bn(un)(t)

)
ξ =

t+�∫
t

∫
Ω

[(−fn(un) + a
(
un,∇φn(un)

)) · ∇ξ − ψn(un)ξ + f ξ
]

for all ξ ∈ W 1,p
0 (Ω) ∩ L∞(Ω) (here and in the sequel, we drop the dependence on x in the notation).

We take ξ = φn(un(t + �)) − φn(un(t)) and integrate in t , then use the Fubini theorem which makes
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appear the factor � in the right-hand side; with the estimates of (i), (ii) and the uniform bounds on
the data, we deduce that∫∫

Q T −�

∣∣bn(un)(t + �) − bn(un)(t)
∣∣∣∣φn(un)(t + �) − φn(un)(t)

∣∣ � d|�|. (9)

Here d is a generic constant independent of n. In the sequel, denote by (rn)n a generic sequence
vanishing as n → ∞. Notice that by the Dini theorem, bn, φn converge to b, φ, respectively, uniformly
on compact subsets of R. By (i), it follows that we can replace bn, φn in (9) by b, φ, provided that a
term rn is added to the right-hand side of (9).

Now notice that assumption (Hstr) implies that φ̃ := φ ◦ b−1 is a continuous function. Let M be the
L∞ bound for un in (i). Let π be a concave modulus of continuity of φ̃ on [−M, M], Π be its inverse,
and Π(r) = rΠ(r). Let π be the inverse of Π . Note that π is concave, continuous, π(0) = 0. Denote
v = b(un)(t + �) and y = b(un)(t). We have

∫∫
Q T −�

∣∣φ̃(v) − φ̃(y)
∣∣ =

∫∫
Q T −�

π
(
Π

(∣∣φ̃(v) − φ̃(y)
∣∣)) � |Q T −�|π

(
1

|Q T −�|
∫∫

Q T −�

Π
(∣∣φ̃(v) − φ̃(y)

∣∣)).

Since |φ̃(v) − φ̃(y)| � π(|v − y|), we have Π(|φ̃(v) − φ̃(y)|) � |v − y| and

Π
(∣∣φ̃(v) − φ̃(y)

∣∣) = Π
(∣∣φ̃(v) − φ̃(y)

∣∣)∣∣φ̃(v) − φ̃(y)
∣∣ � |v − y|∣∣φ̃(v) − φ̃(y)

∣∣
≡ ∣∣b(un)(t + �) − b(un)(t)

∣∣∣∣φ(un)(t + �) − φ(un)(t)
∣∣.

Therefore the estimate (9) (with bn, φn and d� replaced by b, φ and d� + rn , respectively) implies

∫∫
Q T −�

∣∣φ(un)(t + �) − φ(un)(t)
∣∣

� |Q T −�|π
(

1

|Q T −�|
∫∫

Q T −�

∣∣un(t + �) − un(t)
∣∣∣∣φ(un)(t + �) − φ(un)(t)

∣∣)

= |Q T −�|π
(

1

|Q T −�|�
)

� dπ(d� + rn),

and finally, replacing φ with φn we get

∫∫
Q T −�

∣∣φn
(
un(t + �, x)

) − φn
(
un(t, x)

)∣∣ � dπ(d� + rn) + rn. (10)

Now using the fact that rn → 0 as n → ∞ and the fact that for all fixed n ∈ N, the left-hand side of
(10) tends to zero as � → 0, we deduce the claim of (iii). �
6. Proof of the general continuous dependence property

In this section, we prove Theorem 2.2. First notice that the uniform estimates of Lemmas 5.1
and 3.2 apply. It follows that there exists a (not relabelled) subsequence (un)n such that

• wn := φn(un) converges strongly in L1(Q T ) and a.e. on Q T to a function w;
• wn converges weakly in L p(0, T ; W 1,p

0 (Ω));
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• χn := a(un,∇wn) converges weakly in L p′
(Q T ) to some limit χ ;

• un converges to μ : Q T × (0,1) → R in the sense of the nonlinear weak-� convergence (3).

Denote u(·) = ∫ 1
0 μ(·,α)dα. Thanks to the uniform L∞ bound on un and to the uniform conver-

gence of φn to φ on compact subsets of R, we can identify the limit of wn(·) with
∫ 1

0 φ(μ(α, ·))dα;
moreover, φ(μ(α, ·)) is independent of α ∈ (0,1), because the convergence of φ(un) to w is actually
strong. Thus w, φ(u) and φ(μ(α)) coincide. We also identify the limit of ∇wn with ∇w , because the
two functions coincide as elements of D′ .

The following lemma permits to deduce strong convergence of un to u on the set [u /∈ E] (recall
that E is assumed to be closed).

Lemma 6.1. Let φn(·) be a sequence of continuous non-decreasing functions converging pointwise to a contin-
uous function φ(·). Assume φ(·) is strictly increasing on R \ E. Let I be an open interval contained in R \ E,
and φn(un) → φ(u) a.e. on Q . Then un → u a.e. on [u ∈ I].

Proof. Let I = (a,b) and choose I ′ = (a′,b′) with a < a′ < b′ < b. Introduce δ > 0 by

δ := min
{
φ(a′) − φ(a),φ(b) − φ(b′)

}
.

Notice that by the Dini theorem, the convergence of φn(·) to φ(·) is uniform on all compact subset
of R. Thus for all ε > 0, there exists N ∈ N such that for all n > N , ‖φn − φ‖C([a,b]) < ε/2. With ε = δ,
it follows that for all n sufficiently large, φn(b)−φ(b′) = φn(b)−φ(b)+φ(b)−φ(b′) > −δ/2+ δ = δ/2,
and similarly, φ(a′) − φn(a) > δ/2. By the monotonicity of φn(·),φ(·),

max
u∈I ′, z/∈I

∣∣φn(z) − φ(u)
∣∣ = max

{
φn(b) − φ(b′),φ(a′) − φn(a)

}
> δ/2.

Hence if u(t, x) ∈ I ′ and if |φn(un(t, x)) − φ(u(t, x))| < δ/2, we have un(t, x) ∈ I . Next, for all ε > 0
there exists N ∈ N such that |φn(un(t, x)) − φ(u(t, x))| � ε/2 for all n > N . We conclude in particular
that for a.e. (t, x) ∈ [u ∈ I ′], one has un ∈ I for all n large enough.

Thus for all ε < δ, for a.e. point of [u ∈ I ′] there exists N ∈ N such that at this point one has, for
all n > N ,

∣∣φ(un) − φ(u)
∣∣ �

∣∣φ(un) − φn(un)
∣∣ + ∣∣φn(un) − φ(u)

∣∣
� ‖φn − φ‖C([a,b]) + ε/2 � ε.

Therefore φ(un) converges to φ(u) a.e. on [u ∈ I ′]. Since φ(·) is continuously invertible on I , one also
has un → u a.e. on [u ∈ I ′]. Since I is open and I ′ � I is arbitrary, the claim of the lemma follows. �

Now we start to identify χ with a(u,∇w). First, according to Remark 1.2, a(u,∇w) = 0 a.e. on the
set [u ∈ E] = [w ∈ G]. Using Lemma 3.2, we now deduce that also χ = 0 on this set.

Lemma 6.2. Let χ be the weak L p′
(Q T ) limit of the sequence

χn = an
(
un,∇φn(un)

)
,

and let wn = φn(un) converge to w = φ(u) a.e. Then χ = 0 a.e. on [u ∈ E]. Moreover, χn converges strongly
to zero in L1([u ∈ E]).

Proof. Since 1[u∈E] ∈ L∞(Q T ) ⊂ L p(Q T ), by the definition of the weak convergence, the function
χ1[u∈E] ≡ χ1[w∈G] is the weak (L p′

(Q T ))N limit of χn1[w∈G] . For all ε > 0, choose an open set
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Gε ⊃ G of measure less than ε. Because wn → w a.e. and Gε is an open neighbourhood of G , we
have

[u ∈ E] = [w ∈ G] = R ∪
( ⋃

N∈N

[w ∈ G, wn ∈ Gε ∀n � N]
)

,

where meas(R) = 0. Since

([w ∈ G, wn ∈ Gε ∀n � N])N∈N

is an increasing collection of sets, the corresponding sequence of measures converges to meas([w ∈ G])
as N → ∞, by the continuity of the Lebesgue measure. Because

meas
([w ∈ G]) � meas

([w ∈ G, w N ∈ Gε]
)
� meas

([w ∈ G, wn ∈ Gε ∀n � N]),
we conclude that meas([w ∈ G, wn /∈ Gε]) tends to zero as n → ∞. Now by the Hölder inequality,

‖χn1[w∈G]‖L1(Q ) =
∫∫

[w∈G]

∣∣an(un,∇wn)
∣∣

�
∫∫

[wn∈Gε]

∣∣an(un,∇wn)
∣∣ +

(∫∫
Q T

∣∣an(un,∇wn)
∣∣p′) 1

p′
× (

meas
([w ∈ G, wn /∈ Gε]

)) 1
p .

For all fixed ε > 0, the last term tends to zero as n → ∞, thanks to the boundedness of the sequence
an(un,∇wn) in L p′

(Q T ). The first term in the right-hand side converges to zero as ε → 0 uniformly
in n; indeed, by (H9) and by Lemma 3.2, it is majorated by 1

c meas(Gε) � ε/c.
It follows that χ1[u∈E] = 0 a.e. on Q T , which ends the proof. �
Now we use the Minty–Browder argument to identify χ with a(u,∇w) on the sets [u ∈ I], for all

open I ⊂ R \ E . A crucial role is played by Lemma 3.3, which permits us to pass to the limit in the
product

fn(un) · ∇wn

of two weakly converging sequences.
We proceed in the classical way, but use the test functions T J (w) (at the limit) and T J (wn) (before

the passage to the limit), where J = φ(I) and

T J (z) :=
z∫

0

1 J (s)ds

is the truncation function that localizes the values of the solution to the interval I . Notice that we can
assume that ∇T J (wn) converges to ∇T J (w) weakly in (L p(Q T ))N . Indeed, the sequence (T J (wn))n

is bounded in L p(0, T ; W 1,p
0 (Ω)), hence (up to a subsequence) it converges to a limit; this limit is

identified with T J (w) since wn converges to w in L1(Q T ), and T J is Lipschitz continuous. Now let
us give the details.
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We first pass to the limit into the weak formulation of (Pn) (see Remark 2.2), getting

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t

( 1∫
0

b
(
μ(α)

)
dα

)
+ div

( 1∫
0

f
(
μ(α)

)
dα

)
+

1∫
0

ψ
(
μ(α)

)
dα = divχ + f

in L p′(
0, T ; W −1,p′

(Ω)
) + L1(Q T ),

1∫
0

b
(
μ(α)

)
dα|t=0 = b(u0)

(11)

in the same sense as in Remark 2.2. Take ζ ∈ D([0, T )). Because w = φ(u) ≡ φ(μ(α)) for a.e.
α ∈ (0,1), using Lemma 3.4 we have

T∫
0

〈
∂t

( 1∫
0

b
(
μ(α)

)
dα

)
, T J

(
φ(u)

)
ζ

〉
= −

∫∫
Q T

1∫
0

B J
(
μ(α)

)
dα ∂tζ −

∫
Ω

B J (u0)ζ(0) (12)

with B J (z) := ∫ z
0 T J (φ(s))db(s). Define similarly Bn

J (z) := ∫ z
0 T J (φn(s))dbn(s). By the standard chain

rule lemma of [1,21,35] we get

T∫
0

〈
∂tbn(un), T J

(
φn(un)

)
ζ
〉 = −

∫∫
Q T

Bn
J (un)∂tζ −

∫
Ω

Bn
J

(
un

0

)
ζ(0). (13)

One shows easily that Bn
J converges to B J uniformly on compact subsets of R, because of (4). In

particular, Bn
J (u0) converge to B J (u0) in L1(Ω). Moreover, the nonlinear weak-� convergence of un to

μ yields

lim
n→+∞

∫∫
Q T

Bn
J (un)∂tζ =

∫∫
Q T

1∫
0

B J
(
μ(α)

)
dα ∂tζ.

Thus the left-hand side of (12) coincides with the “n → +∞ limit” of the left-hand side of (13).
Similarly, the nonlinear weak-� convergence of un to μ permits to conclude that

∫∫
Q T

1∫
0

ψ
(
μ(α)

)
dα T J

(
φ(u)

)
ζ =

∫∫
Q T

1∫
0

ψ
(
μ(α)

)
T J

(
φ
(
μ(α)

))
dα ζ

= lim
n→+∞

∫∫
Q T

ψn(un)T J
(
φn(un)

)
ζ.

Now let us take the test functions T J (wn)ζ and T J (w)ζ in the weak formulation of (Pn) and in
(11), respectively. Without loss of restriction, we can assume that t = T is a Lebesgue point of∫ 1

0 B J (μ(α))dα. Using the above calculations and Lemma 3.3, then letting ζ(t) converge to 1[0,T )(t)
we deduce the equality

∫∫
Q T

χ · ∇T J (w) = lim
n→∞

∫∫
Q T

an(un,∇wn) · ∇T J (wn). (14)
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Lemma 6.3. Assume that for all ξ ∈ RN , an(·, ξ) converge to a(·, ξ) uniformly on compact subsets of an open
interval I ⊂ R\ E. With the notation and assumptions above, one has χ = a(u,∇w) a.e. on [u ∈ I] = [w ∈ J ].

Proof. Take an arbitrary function ζ̃ ∈ (L p(Q T ))N such that ζ̃ = 0 a.e. on [w /∈ J ]. Take λ ∈ R. Set
ζ = ∇T J (w) + λζ̃ ; we have ζ = 0 a.e. on [w /∈ J ]. By the classical Minty–Browder argument, consid-
ering ±λ ↓ 0 one concludes that χ = a(u,∇w) a.e. on [w ∈ J ], provided the following relations can
be justified:

∫∫
Q T

χ · (∇T J (w) − ζ
)
� lim inf

n→∞

∫∫
Q T

an(un,∇wn) · (∇T J (wn) − ζ
)

� lim inf
n→∞

∫∫
Q T

an(un, ζ ) · (∇T J (wn) − ζ
)

= lim inf
n→∞

∫∫
Q T

a(u, ζ ) · (∇T J (wn) − ζ
)

=
∫∫
Q T

a(u, ζ ) · (∇T J (w) − ζ
)
. (15)

Now we justify (15). Because (14) holds and ∇T J (wn) converges to ∇T J (w) weakly in (L p(Q T ))N ,
the first inequality and the last equality in (15) are clear.

The second inequality comes from the monotonicity of an(un, ·). Indeed, by the choice of ζ ,

∫∫
[w /∈ J ]

an(un,∇wn) · (∇T J (wn) − ζ
) =

∫∫
[w /∈ J , wn∈ J ]

an(un,∇wn) · ∇wn

� 0 =
∫∫

[w /∈ J ]
an(un, ζ ) · (∇T J (wn) − ζ

)
,

because an(·,0) ≡ 0. Further, since J is open and wn → w a.e. on Q T , as in the proof of Lemma 6.2
we have meas([w ∈ J , wn /∈ J ]) → 0 as n → ∞. On [w ∈ J , wn ∈ J ] we have an(un,∇wn) =
an(un,∇T J (wn)), and (H8) applies. On [w ∈ J , wn /∈ J ] the terms with ∇T J (wn) are zero; finally,
as in the proof of Lemma 6.2, the integrals

∫∫
[w∈ J , wn /∈ J ]

an(un,∇wn) · ζ and
∫∫

[w∈ J , wn /∈ J ]
an(un, ζ ) · ζ

both tend to zero, by the equi-integrability argument.
It remains to justify the last but one equality in (15). Thanks to Lemma 6.1, we have un → u a.e. on

[w ∈ J ] = [u ∈ I]. In particular, a.e. on [u ∈ I] one has un ∈ I for sufficiently large n. Using the locally
uniform on I convergence of an(·, ξ) to a(·, ξ), we conclude that an(un, ζ ) converges to a(u, ζ ) a.e. on
[u ∈ I]. By (H10) and the Lebesgue dominated convergence theorem, (15) follows. �

Finally, notice that thanks to (D′ .1) and Remark 1.2, we have a(μ,∇w) ≡ a(u,∇w). The identifica-
tion of χ thus being complete, from (11) we readily conclude that (μ, w) verifies (D′ .2).

Now we can pass to the limit in the entropy inequalities corresponding to (Pn) and deduce (D′ .3).
Because regular boundary entropy pairs (η±

c,ε,q
±
c,ε) can be approximated by convex combinations of

semi-Kruzhkov pairs, we have the analogue of (D′ .3) for un with (η±
c ,q±

c ) replaced by (η±
c,ε,q

n,±
c,ε )

(with q
n,±
c,ε converging to q±

c,ε uniformly on compact subsets of R).
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Consider the third term in (D′ .3). We have

lim
n→∞

∫∫
Q T

(
η±

c,ε

)′
(un)an(un,∇wn) · ∇ξ

= lim
n→∞

( ∫∫
[w∈G]

+
∫∫

[w /∈G]

)(
η±

c,ε

)′
(un)∇ξ · an(un,∇wn). (16)

By Lemma 6.2 and because (η±
c,ε)

′(un)∇ξ are bounded uniformly in n, the first term converges to
zero; also notice that

0 =
∫∫

[w∈G]

(
η±

c,ε

)′
(u)∇ξ · a(u,∇w)

because a(u,∇w) = a(u,0) = 0 a.e. on [w ∈ G]. By Lemma 6.1, we have un → u a.e. on [w /∈ G]; by
the dominated convergence theorem, we infer that (η±

c,ε)
′(un)∇ξ converges to (η±

c,ε)
′(u)∇ξ strongly

in L p([w /∈ G]). Because also χn = an(un,∇wn) converges to χ = a(u,∇w) weakly in L p′
([w /∈ G]),

the second term in the right-hand side of (16) converges to∫
[w /∈G]

(
η±

c,ε

)′
(u)∇ξ · a(u,∇w).

The passage to the limit as ε → 0 in the other terms in (D.3) is straightforward, using the uniform
boundedness of (un)n and the nonlinear weak-� convergence property (3). At the limit, we conclude
that (D′ .3) also holds. Thus (μ, w) is an entropy process solution of (P).

Now by the result of Theorem 2.1(i), (μ, w) gives rise to an entropy solution

u =
1∫

0

μ(α)dα

of (P). By (3) (with F = Id), we conclude that (un)n possesses a subsequence that converges in
L∞(Q T ) weak-� to u; we have already shown that the corresponding subsequence φn(un) converges
to φ(u) in L1(Q T ).

Moreover, b(μ(α)) and ψ(μ(α)) are in fact independent of α. By Theorem 2.1(iii), we also have
the uniqueness of b(u) and ψ(u) such that u is an entropy solution of (P). By the well-known result of
the nonlinear weak-� convergence (see, e.g., Hungerbühler [26]), it follows that the whole sequences
(bn(un))n and (ψn(un))n converge to b(u) and ψ(u), respectively, in measure on Q T and in L1(Q T ).

This ends the proof of Theorem 2.2.

Remark 6.1. In the case assumption (H5) is dropped, in order to deduce that u is an entropy process
solution, along with the assumption (Hstr) one needs

– a growth restriction on f̃ of the following kind: there exists a function M ∈ C(R+;R+) and a
function L with lim

z→+∞ L(z)/z = 0 such that for all r ∈ R,

∣∣f̃(b(r),φ(r),ψ(r)
)∣∣ � M

(∣∣b(r)
∣∣)L

(∣∣φ(r)
∣∣p +

r∫
0

φ(s)db(s) + ψ(r)φ(r)

)
;

– the same growth restriction with |f̃(b(r),φ(r),ψ(r))| replaced with |b(r)| and with |ψ(r)|.
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Indeed, these inequalities make it possible to use the nonlinear weak-� convergence framework with-
out the uniform L∞ bound on (un)n (see Ball [8] and Hungerbühler [26]).

7. Proof of Theorem 2.3

In this section, we prove Theorem 2.3. The uniqueness claim was shown in Theorem 2.1; also
notice that the continuous dependence result under the structure assumption (Hstr) was shown in
Theorem 2.2. Let us first prove the existence claim.

(i) First, consider the case where assumption (Hstr) is fulfilled. Consider an approximation of (P)
by regular problems (Pn) with data (bn,ψ,φn,a, f̃; u0, f ) such that the assumptions of Theorem 2.2
are fulfilled, and bn, [bn]−1, fn, φn, [φn]−1 are Lipschitz continuous on R. Using classical methods (cf.
Alt and Luckhaus [1], Lions [30]), one shows that there exists a weak solution un ∈ L p(0, T ; W 1,p

0 (Ω))

to the problem (Pn) in the sense

∂tbn(un) + div f̃n(un) + ψ(un) = div a
(
un,∇φn(un)

) + f

in L p′
(0, T ; W −1,p′

(Ω)) + L1(Q T ), with initial data

bn(un)|t=0 = bn(u0).

In addition, un verifies the entropy formulation (D′ .3), obtained along the lines of Carrillo [20]. By
Theorem 2.2, we conclude that there exists an entropy solution of (P).

To prove existence without the structure condition (Hstr), we use the particular multi-step approx-
imation approach of Ammar and Wittbold [4] (see also Ammar and Redwane [3]). We replace b by
bk := b + 1

k Id and ψ , by ψm,n := ψ + 1
n Id+ − 1

m Id− . The result of (i) for the corresponding problem
(Pk

m,n) is already proved.
There exists a function uk

m,n , constructed by means of the nonlinear semigroup theory (see, e.g.,

[12]), such that bk(uk
m,n) is the unique integral solution to the abstract evolution problem associated

with (Pk
m,n) (here and below, we refer to Ammar and Wittbold [4], Ammar and Redwane [3] for

details). One then shows that uk
m,n coincides with the unique entropy solution of (P k

m,n), the existence

of this entropy solution being already shown. Further, the whole set (uk
m,n)k,m,n verifies the uniform

a priori estimates of Lemmas 5.1, 3.2.
We then pass to the limit in uk

m,n in the following order: first k → +∞, then n → +∞, m → +∞.
While letting k → +∞, we use the fact that ψ−1

m,n is Lipschitz continuous. The fundamental esti-
mates for the semigroup solutions permit to show that ψm,n(um,n) are uniformly continuous on (0, T )

with values in L1(Ω); thus we get the strong precompactness of (uk
m,n)k in L1(Q T ). Thus, up to a

subsequence, uk
m,n converge to um,n which is an entropy solution of problem (Pm,n) corresponding to

the data (b,ψm,n, φ,a, f̃; u0, f ).
Finally, we use the inequalities um+1,n � um,n � um,n+1 which follow readily form the comparison

principle of Theorem 2.1(ii). The monotonicity argument yields the strong convergence of um,n . Now
the whole scheme of the proof of Theorem 2.2 applies with considerable simplifications, because no
nonlinear weak-� convergence arguments are not needed. Passing to the limit in um,n , we conclude
that the limit u is an entropy solution of the original problem (P). This ends the existence proof.

(ii) Existence for the limit data (u0, f ) is now shown and we can apply Theorem 2.1(ii). Then
we deduce the L1(Q T ) convergence of b(un),ψ(un) to b(u),ψ(u), respectively. The convergence of
φ(un) to φ(u) in L1(Q T ) follows by hypothesis (H′

str) and because our assumptions imply the uniform
L∞(Q T ) bound on un .

The remaining claim of the strong (L p(Q T ))N convergence of ∇φ(un) is a rather standard part of
the Minty–Browder trick. The argument is based upon the proof of Theorem 2.2. Because we already
have the strong compactness of (φ(un))n , we can bypass the hypothesis (Hstr) and deduce that the L∞
weak-� limit û of un is an entropy solution of (P) with the data (u0, f ). In particular, the (L p′

(Q T ))N

weak limit χ of a(un,∇φ(un)) is equal to a(û,∇φ(û)). Now notice that by Theorem 2.1(iii), under
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the structure condition (H′
str) we also have the uniqueness of φ(u) such that u is an entropy solution

of (P); moreover, by Remark 1.2, we also have the uniqueness of a(u,∇φ(u)) such that u is an entropy
solution of (P). Thus χ coincides with a(u,∇φ(u)), so that (14) now reads as

∫∫
Q T

a
(
u,∇φ(u)

) · ∇φ(u) = lim
n→∞

∫∫
Q T

an(un,∇wn) · ∇φ(un). (17)

It follows by the weak convergences of ∇φ(un) and of a(un,∇φ(un)) that

lim
n→∞

∫∫
Q T

(
a
(
u,∇φ(u)

) − a
(
un,∇φ(un)

)) · (∇φ(u) − ∇φ(un)
) = 0. (18)

Notice that a.e. on the set [u ∈ E], ∇φ(un) converges to 0 = ∇φ(u), by Lemma 6.2 and by the co-
ercivity assumption (H9). On the set [u /∈ E], we can use Lemma 6.1 to replace a(u,∇φ(u)) with
a(un,∇φ(u)) in the above formula (18). Using the uniform monotonicity assumption (H′

8), we can
now conclude that the convergence of ∇φ(un) to ∇φ(u) holds a.e. on Q T .

Separating again the sets [u ∈ E] and [u /∈ E], we deduce that the sequence of non-negative func-
tions a(un,∇φ(un)) · ∇φ(un) converges to a(u,∇φ(u)) · ∇φ(u) a.e. on Q T . Together with (17), this
implies that a(un,∇φ(un)) · ∇φ(un) also converge to a(u,∇φ(u)) · ∇φ(u) in L1(Q T ); in particular,
they are equi-integrable on Q T . The coercivity assumption (H9) now implies the equi-integrability on
Q T of the functions |∇φ(un)|p . Combining this argument with the a.e. convergence of ∇φ(un), we de-
duce our claim from the Vitali theorem. The (L p′

(Q T ))N convergence of a(un,∇φ(un)) to a(u,∇φ(u))

follows in the same way.

8. Well-posedness for the doubly nonlinear elliptic problem

We first notice that the well-posedness result for the degenerate elliptic problem

(S)

{
ψ(u) + div f̃

(
ψ(u),φ(u)

) − div a
(
u,∇φ(u)

) = s in Ω,

u = 0 on ∂Ω

(H′
5) s ∈ L∞(Ω) and ψ(R) = R

follows from Theorem 2.3, upon setting b ≡ 0, f (t, ·) ≡ s(·) and arbitrarily prescribing u0. The defini-
tion of an entropy solution of (S) can also be formally obtained from Definition 2.2.

Let us notice that the analogue of the general continuous dependence property of Theorem 2.2
holds without any additional structure condition:

Theorem 8.1. Let (ψn, φn,an, f̃n; s), n ∈ N, be a sequence which converges to (ψ,φ,a, f̃; s) in the following
sense:

• ψn, φn converge pointwise to ψ,φ respectively;
• f̃n,an converge to f̃,a, respectively, uniformly on compacts;
• sn converges to s in L1(Ω).

Assume that (ψ,φ,a, f̃; s) and (ψn, φn,an, f̃n; sn) (for each n) satisfy the hypotheses (H1), (H6)–(H11), and
(H′

5), and, moreover, that the functions C in (H9), (H10), and (H11) as well as the L∞(Ω) bound in (H′
5) are

independent of n. We denote by (Sn) the analogue of problem (S) corresponding to the data and coefficients
(ψn, φn,an, f̃n; sn).

Assume that φ satisfies the technical hypotheses (H2), (H3).
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Let un be an entropy solution of problem (Sn). Then the functions un converge to an entropy solution u of
(S) in L∞(Ω) weakly-�, up to a subsequence. Furthermore, the functions φn(un) converge to φ(u) in L p(Ω)

up to a subsequence, and the whole sequence ψn(un) converges to ψ(u) in L1(Ω).

The proof of Theorem 8.1 is contained in the one of Theorem 2.2, because the L p(Ω) bound on
∇wn is sufficient for the strong precompactness of wn .
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