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Abstract 

To improve tracking control quality of the clutch actuator during the wet clutch engagement, models of the clutch 
actuator were established firstly, including the control cylinder model, flow equilibrium equation and pressure control 
model. Secondly, taking the clutch output speed as tracking target, the state space equation of the tracking control 
system was set up and the sliding mode controller (SMC) was designed. Finally, a simulation test was performed. The 
results show that a higher tracking accuracy as well as a better performance to resist disturbance can be achieved with 
the proposed sliding control method, compared to PI control. It was also shown that the exponent approaching sliding 
mode control can produce smaller chattering compared with the constant rate approaching sliding mode control. 
© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [CEIS 2011] 
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1. Introduction

Wet clutches are widely used in automatic transmission (AT), continuously variable transmission 
(CVT), dual-clutch transmission (DCT), etc. The control of wet clutches engagement plays a key role in 
vehicle automatic transmission. a

There are three main aspects concerning wet clutch engagement that include the optimization of the 
dynamic model of wet clutch, the improvement of clutch control strategy and the quality of wet clutch 
actuator tracking the engagement trajectory[1]. As wet clutches typically operate under varying 
conditions including the friction coefficient, wear and oil viscosity, the dynamics of wet clutches and their 
actuators are high non-linear [2]. It is very important to design a robust and precise control to meet the 
need of tracking the desired engagement trajectory, which is the key to realizing wet clutch control 
strategy and improving the performance of vehicle automatic transmission. 

PID control is often used in clutch engagement. Affected by time-varying parameters of the wet 
clutch system, the conventional PID control has poor robustness in adjusting control parameters [3]. 
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Moreover, the process of clutch engagement is very short, so some too complicated control methods are 
not applicative. The sliding mode control (SMC) has the advantages of strong robustness and simple 
algorithm, whose sliding mode has full invariance to the system parameter variations and external 
disturbances. So it is suitable for the tracking control of wet clutch engagement. 

2. Dynamic model of clutch actuator
Wet clutch engagement process can be divided into three stages. In the first stage the gap between the 

friction plates is to be eliminated. In the second stage, the oil pressure is increased gradually. In the third 
stage, the engagement process is finished and the pressure maintains a certain value.                 

Assuming that the distances between the friction plates have the same value h , the model of the clutch 
piston during clutch engagement is shown in Fig.1. 
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Fig.1. The clutch piston model during clutch engagement

In stage 1, while <px h , the clutch piston moves towards friction plates under the hydraulic pressure 
until =px h .The dynamic model of piston: 

0( )+ + + =&& &p p p p p p p pM x c x k x x F ,                                                       (1) 

where pM  is the sum of the mass of piston and drive disks, px  is the displacement away the initial 

position, 0px  is the initial displacement compressed on return spring, pc  is the viscous friction coefficient 

between the cylinder and piston, pk  is the stiffness of the clutch return spring. pF  is the force on piston 

that includes static pressure and dynamic pressure caused by centrifugal force.  

In stage 2 and stage 3, while px  achieves the maximum value h , the gap between the friction plates 

is eliminated. So the clutch motion equilibrium equation in those stages is 

0( )+ = −p p p clk x h F F ,                                                      (2) 

where clF  is the clutch reaction force on the piston. 
Ignoring oil leakage and oil temperature variation, the clutch cylinder fluid continuity equation[5]in 

the first stage of wet clutch engagement is 
0

β
+

− =& p p cy
c p p

A x V dp
Q A x

dt
,                                                           (3) 

where 
c

Q  is the input flow of the clutch cylinder, β  is the effective volume elastic modulus of 

hydraulic fluid, 0V  is the initial volume including clutch cylinder and oil feed lines.  

In stage 2 and stage 3, 0=&px , then the fluid continuity equation is 

max 0

β
+

= p p cy
c

A x V dp
Q

dt
.                                                                (4) 
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According to hydromechanics，the average flow through the inlet opening of the PWM valve is 

2( )
τ

ρ
−

= s cy
in d d

p p
Q C A ,                                                                 (5) 

where τ , dC ,
d

A are respective the duty cycle, the flow coefficient and the choke area of the PWM valve. 

s
p  is the system supply pressure. 

While the average flow through the outlet opening of the PWM valve is 

02( )
(1 )τ

ρ
−

= − cy
out d d

p p
Q C A .                                                            (6) 

where
0

p is the atmospheric pressure. 

Ignoring oil leakage and the resistance in oil pipes, the flow through the clutch cylinder can be 

considered as = −c in outQ Q Q .  So 
c

Q  can be written as 

0 0
0

2( ) 2( ) 2( )2
(1 ) ( )τ τ τ

ρ ρ ρ ρ
− − −

= − − = − + − −s cy cy cy
c d d d d d d s cy cy d d

p p p p p p
Q C A C A C A p p p p C A .        (7) 

As for the first stage during wet clutch engagement, combining Eqs.(3) and (7),the pressure control 
equation is  

0
0

0

2( )2
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−
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.                        (8) 

As for the second and the third stage during wet clutch engagement, combining Eqs.(4) and (7),the 
pressure control equation is

max

0
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.                          (9) 

When the system supply pressure sp  keeps constant, given 
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where 1K ， 2K and 3K  are all mathematical functions of cyp  and px .So Eqs. (8) and (9) are 
respectively denoted by：

1 2 3( , ) ( , ) ( , )τ= − −cy
cy p cy p cy p

dp
K p x K p x K p x

dt
,                                       (10) 

1 max 2 max( , ) ( , )τ= −cy
cy p cy p

dp
K p x K p x

dt
.                                           (11) 

3. Sliding mode controller for wet clutch tracking 

In this paper, a starting wet clutch for CVT vehicles is discussed. Taking the second stage and the 
third stage as examples, the simplified dynamic equations during clutch engagement are 

ω ω= − −&
e e e e e clJ T c T ,                                                          (12) 

ω ω= − −&
v v cl v v lJ T c T ,                                                          (13) 

where， eJ  is the equivalent mass moments of inertia of the engine output including flywheel, vJ  is 

the equivalent mass moments of inertia of the clutch output including the vehicle translational inertia, eω
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and vω  are the input shaft angular velocity and the output shaft angular velocity of clutch respectively, eT

is the equivalent torque of the engine, lT  is the equivalent torque of loads on the clutch output shaft, clT  is 

the friction torque transmitted by the wet clutch, ,e vc c  are the equivalent viscous damping coefficients of 

rotation.
In the case of vehicles that no oil pressure sensor is installed, it can not use the trajectory of pressure 

cyp directly. However, the output shaft angular velocity of clutch, vω , can be a indirect tracking objective 

for the reason that the vehicle speed has been measured .Given 1 ω= vx , 2 ω= &
vx ,combining Eqs.(11) and 

(13) ,brief writing *
1 max( , )cy pK p x , *

2 max( , )cy pK p x  as *
1( )cyK p  and *

2 ( )cyK p  respectively, the State space 

equation of the tracking control system is: 

1 2
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2 2 1 2( ( ) ( ))τ
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& v cl
cy cy
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x x

c K
x x K p K p

J J

                                                  (14) 

where =clK μ mzR ， μ  is the friction coefficient that is a function of the relative speed between the 
friction plates, z  is the number of the friction surface, mR  is the effective radius of the clutch discs. 

As mentioned above, the control trajectory of clutch actuator *
cyp  is obtained according to a certain 

control strategy for clutch engagement. The trajectory of ωv , *ωv ,can also be obtained according Eqs.(12) 
and (13).Given *

1 ω= vr , *
2 ω= &

vr and define tracking error 1 2[ , ]= Te e e ，where 1 1 1= −e x r , 2 2 2= −e x r  . 
So the differential equations of motion of deviation are: 
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                                     (15) 

Define switching surfaces[6] 1 2= +s ce e , the sliding surface equation   is 

1 2 =0+ce e ,                                                                            (16) 
where c ( c >0) is sliding surface coefficient, which is selected according Hurwitz stability criterion [6]. 

An exponent approaching is adapted to ensure the quality of normal movement, 

sgn( )ε= − −&s s ks ,                                                                      (17) 
where 0>k , 0ε > .If 0=k , Eq.(17) is the equation of constant rate approaching. 
Combining Eqs.(16) and (17),the sliding mode control law is 

*
2

1 2 2 2*
1

( )
[ sgn( ) ( ) ]

( )
τ ε= − − + − − − − &cl cyv v v

v v vcl cy

K K pJ c c
s ks c e r r

J J JK K p
.                    (18) 

4. Simulation results 

The simulation model is created using MATLAB/SIMULINK platform. According the simulation, 
the method of cross validation is adopted to select suitable sliding mode control parameters. For the 
exponent approaching SMC in this paper, c =20， ε =15000， k =4.5, the values of other parameters 
were given in [7]. 

Fig.2 shows the tracking results of SMC and PI control in ideal conditions without disturbances. 
Comparing two tracking results, it can be seen that both control methods can achieve high tracking 
accuracy. Although a small chattering, higher accuracy is obtained using SMC, with maximum absolute 
error(MAE) 0.83rad/s and relative error(RE) 0.81%, while 2.5rad/s and 2.1% respectively using PI. 
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The results with load variation are shown as Fig.3. It can be seen that SMC still achieves a good 
performance and it has better robustness compared with PI control. 

Fig.4 shows the result of tracking error using exponent approaching SMC and constant rate 
approaching SMC. It can be seen that the former has smaller chattering with a similar tracking accuracy 
compared with the latter. 
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Fig.2. Tracking results in ideal conditions     Fig.3. Tracking results with load variation           Fig.4. Tracking errors 

5. Conclusions

Trajectory tracking control of wet clutch engagement is the key to automatic transmission 
technology. In this paper, a detailed wet clutch hydraulic actuator model in there stages was presented. 
Taking into account a variety of complex non-linear factors, a sliding mode controller is designed. The 
simulation results show that the controller has high precision and powerful disturbance resistance and it is 
proved effective in wet clutch engagement controlling. Moreover, compared with constant rate 
approaching SMC, exponent approaching SMC can alleviate chattering. 
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