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Abstract Apicularen A and the known vacuolar-type (H+)-
ATPase (V-ATPase) inhibitor bafilomycin A1 induced apoptosis
of RAW 264.7 cells, while apicularen B, an N-acetyl-glucosa-
mine glycoside of apicularen A, was far less effective. Apicularen
A inhibited vital staining with acridine orange of the intracellular
organelles of RAW 264.7 cells, inhibited the ATP-dependent
proton transport into inside-out microsome vesicles, and inhib-
ited the bafilomycin A1-sensitive ATP hydrolysis. The IC50 val-
ues of the proton transport were 0.58 nM for apicularen A,
13 nM for apicularen B, and 0.95 nM for bafilomycin A1. Fur-
thermore, apicularen A inhibited the bafilomycin A1-sensitive
ATP hydrolysis more potently than apicularen B. F-ATPase
and P-ATPase were not inhibited by apicularen A. We concluded
that apicularen A inhibits V-ATPase, and thus induces apoptosis
in RAW 264.7 cells.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The cytostatic macrolide apicularens A and B have been iso-

lated from a variety of strains of the myxobacterial genus

Chondromyces (i.e., C. apiculatus, C. lanuginosus, C. pedicula-

tus, and C. robustus) [1], and the total synthesis of apicularen

A has recently been reported [2]. Structurally, apicularen A

features a trans-hydroxypyran with a salicylic acid residue

within a 10-membered lactone, which bears a highly unsatu-

rated enamide side chain (Fig. 1A). This natural product is

usually found with varying amounts of its glycoconjugate with
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N-acetyl glucose, apicularen B (Fig. 1A). Apicularen A is re-

ported to be highly cytostatic in human cancer cells, including

ovarian, prostate, lung, kidney and cervix cancer cells, leuke-

mia cells, histocytic cell lines, and most importantly, the mul-

ti-drug-resistant cell line KB-VI, with IC50 values ranging

between 0.227 and 22.7 nM, while apicularen B is distinctly

less cytostatic than apicularen A, with IC50 values of between

0.317 and 1.8 lM [1,3]. The chemical structures of apicularens

A and B resemble those of salicylihalamide A and lobatamide

B (Fig. 1B and C). These compounds including salicylihala-

mide B, lobatamides A, C, D, E and F, CJ-12950, CJ-13357,

and oximidines I and II are classified as benzolactone enamides

[4]. It is reported that salicylihalamide A, lobatamides A–F

and oximidines I and II commonly inhibit mammalian vacuo-

lar-type (H+)-ATPase (V-ATPase) with IC50 values in the or-

der of nM [4]. Therefore, it was speculated that apicularens

A and B also inhibit V-ATPase.

We previously reported that apicularen A but not apicularen

B at 10 and 100 nM induced apoptosis in RAW 264.7 cells, a

mouse leukemia monocytic cell line, as evidenced by the for-

mation of a DNA ladder, the increase in the percentage of

sub-G1 cells and annexin V-binding cells, and the activation

of caspase [5]. In addition, apoptosis of HL-60 cells, a human

leukemia cell line, was also induced by apicularen A [6]. Con-

sequently, we suggested that apicularen A is a candidate for an

anti-leukemic drug. However, the mechanism for the induction

of apoptosis by apicularen A remains to be elucidated. V-ATP-

ase plays an important role in the regulation of the activity in

organelles of the central vacuolar system, and the internal

acidification of intracellular compartments such as lysosomes,

endosomes, Golgi complexes, and secretary granules has been

suggested to play a critical role in the mechanism of cell sur-

vival [7]. The V-ATPase inhibitors bafilomycin A1 [8] and con-

canamycin A [9], which are structurally different from these

benzolactone enamide class compounds, induce apoptosis in

several kinds of cancer cells [10,11]. Therefore, we speculated

that the apicularen A-induced apoptosis of RAW 264.7 cells

might be induced by inhibition of V-ATPase. In addition to

the treatment of cancer, V-ATPase inhibitors hold consider-
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Chemical structures of apicularens A and B (A), salicylihala-
mide A (B) and lobatamide B (C).
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able promise for the treatment of a number of other diseases,

including diabetes, Alzheimer’s disease, cardiovascular disor-

ders, and osteoporosis [12–14]. This study was aimed at clari-

fying whether apicularen A inhibits V-ATPase to explain the

mechanism of action of apicularen A for the induction of

apoptosis in RAW 264.7 cells.
2. Materials and methods

2.1. Reagents
Apicularen A (2,4-heptadienamide,N-[(1E)-3-[(3S,5R,7R,9S)-3,4,5,

6,7,8,9,10-octahydro-7,14-dihydroxy-1-oxo-5,9-epoxy-1H-2-benzoxa-
cyclododecin-3-yl]-1 propenyl]-, (2Z,4Z)-(9CI)) and apicularen B
(2,4-heptadienamide,N-[(1E)-3-[(3S,5R,7R,9S)-7-[[2-(acetylamino)-2-
deoxy-b-DD-glucopyranosyl]oxy]-3,4,5,6,7,8,9,10-octahydro-14-hydroxy-
1-oxo-5,9-epoxy-1H-2-benzoxacyclododecin-3-yl]-1 propenyl]-, (2Z,
4Z)-(9CI)) were purified from culture medium of Chondromyces api-
culatus JW 184 according to the method described by Jansen et al.
[3]. The compounds isolated were identified by a comparison of spec-
tral data (NMR, IR, UV) and [a]D using authentic compounds, and
the purity of each isolated compound was confirmed to be more than
99%. Bafilomycin A1 was purchased from Wako Pure Chemical Inc.,
Osaka, Japan. These drugs were dissolved in dimethyl sulfoxide
(DMSO) and added to the cell culture medium.

2.2. Cell culture
RAW 264.7 cells (RIKEN Gene Bank, Tsukuba, Japan), a mouse

leukemia monocytic cell line, were cultured in Eagle’s minimal essential
medium (Nissui Seiyaku, Tokyo, Japan) containing 10% fetal bovine
serum (FBS, Dainippon Pharmaceutical, Osaka, Japan) and 1% non-
essential amino acid solution (Sigma Chemical Co., St. Louis, MO,
USA). A431 cells (RIKEN Gene Bank), a human epidermal carcinoma
cell line, were cultured in Dulbecco’s modified Eagle’s medium (Nissui
Seiyaku) containing 10% FBS. The cells were incubated at 37 �C under
5% CO2–95% air.

2.3. Analysis of morphological changes of nuclei
RAW 264.7 cells (1 · 106 cells) were incubated for 24 h at 37 �C in

2 ml of medium. The cells were then washed three times with medium,
and further incubated for 24 h at 37 �C in the presence or absence of
apicularen A (100 nM), apicularen B (100 nM) or bafilomycin A1

(100 nM). After incubation, the cells were washed with phosphate-buf-
fered saline (PBS), fixed with methanol and stained with Hoechst dye
33258 (Molecular Probes, Eugene, OR, USA) (100 lg/ml in PBS) for
10 min. The stained cells were observed under a fluorescence micro-
scope (IX70, Olympus, Tokyo, Japan).

2.4. Detection of mitochondrial membrane potential by flowcytometry
RAW 264.7 cells (1 · 106 cells) were incubated for 24 h at 37 �C in

2 ml of medium. The cells were then washed three times with medium,
and further incubated for 24 h at 37 �C in the presence or absence of
apicularen A (100 nM), apicularen B (100 nM) or bafilomycin A1

(100 nM). After incubation, the cells were washed three times with
PBS, scraped off the plate and stained using a DePsipher� Kit (Trev-
igen Inc., Gaithersburg, MD, USA). Subsequently, the intensities for
green fluorescence (FL1; a maximal emission at 530 nm) and red fluo-
rescence (FL2; a maximal emission at 590 nm) were analyzed by flow-
cytometry using FACScan (Becton Dickinon, San Jose, CA, USA),
and the percentage of the cells with decreased mitochondrial mem-
brane potential (Dwm) was calculated.

2.5. Detection of V-ATPase by Western blotting
RAW 264.7 cells and A431 cells were sonicated for 15 s on ice in a

sample buffer (62.5 mM Tris, pH 6.8, 6 M urea, 10% glycerol, 2% so-
dium dodecylsufate (SDS), 0.00125% bromophenol blue and 5%
mercaptoethanol) using a Handy Sonic Disrupter (Tomy Seiko Co.,
Tokyo, Japan) and incubated for 15 min at 65 �C. After centrifugation
at 15000 · g and 4 �C for 5 min, an aliquot of the supernatant was
loaded on a 7.5% SDS–polyacrylamide gel. After electrophoresis, the
gel was transferred onto a nitrocellulose membrane (Schleicher &
Schuell GmbH, Dassel, Germany). Immunoblotting for V-ATPase
was carried out using the antibody to the C subunit of V-ATPase
(V-ATPase C (N-20), Santa Cruz Biotechnology Inc., Santa Cruz,
CA, USA). As an internal control, actin was detected using a goat
anti-actin polyclonal antibody (actin (I-19), Santa Cruz Biotechnology
Inc.). The membrane was incubated for 3 h at 4 �C with biotinylated
anti-goat IgG (Vector Laboratories, Buringame, CA, USA). The reac-
tion products were incubated for 30 min at room temperature with
Vectastatin ABC reagent (Vector Laboratories) and visualized using
the Chemiluminescence Detection System (Western Lightning Chemi-
luminescence Reagent Plus, Perkin–Elmer Life Sciences, Boston, MA,
USA). The membrane was exposed to Kodak X-Omat AR film (East-
man Kodak, Rochester, NY, USA).
2.6. Vital staining with acridine orange
Cells were incubated for 24 h at 37 �C in a glass bottom dish (Non-

Coat 35 mm dish, Matsunami Glass, Tokyo Japan). After three washes
with medium, cells were incubated for 4 h at 37 �C in medium contain-
ing apicularen A, apicularen B or bafilomycin A1. The cells were then
washed three times with Hanks’ solution, and incubated for 10 min at
37 �C in Hanks’ solution containing acridine orange (very high purity,
Polysciences Inc., Warrington, PA, USA) at a concentration of 5 lg/ml
[15]. After being washed with Hanks’ solution, the cells were observed
with a laser-scanning confocal microscope (LSM510META, Olympus)
under fluorescence emission at 568, 579, 589, 600, 611, 632 and 643 nm
with excitation at 488 nm.
2.7. Proton transport assay using microsome vesicles prepared from

mouse peritoneal macrophages
Eight-week-old ddY male mice (Nihon SLC, Hamamatsu, Japan)

were injected intraperitoneally with 2 ml of a 3% thioglycolate medium
(Difco, Detroit, MI, USA). After 4 days, peritoneal macrophages were
harvested by peritoneal lavage with 6 ml Hanks’ balanced salt solution.
The cells were washed twice with PBS, and were homogenized at 4 �C
using a Dounce homogenizer (20 strokes) in a buffer (5 mM Tris, pH
7.0, 250 mM sucrose, 1 mM EGTA, 1 mM KHCO3 and 1 mM dithio-
threitol). After an initial centrifugation (1000 · g for 5 min at 4 �C), the
supernatant was centrifuged at 6000 · g for 15 min at 4 �C. The result-
ing supernatant was centrifuged at 42000 · g for 30 min at 4 �C and
the final pellet, a microsomal fraction, was stored at �80 �C.

Proton transport by the isolated macrophage microsome was as-
sayed in a dual wavelength spectrophotometer (UV-3000, Shimadzu,
Kyoto, Japan) by measuring uptake of acridine orange in a reaction
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medium (10 mM bis-Tris-propane, pH 7.0, 10 lM acridine orange,
150 mM KCl, 2 mM MgCl2, 1 lM valinomycin and 5 lg/ml oligomy-
cin) [16]. The reaction was initiated by adding ATP (final concentra-
tion 1 mM). Different concentration of test compounds were added
10 min before the addition of ATP. Proton transport was monitored
by measuring absorption change of acridine orange at 492–540 nm
(an index of the amount of acridine orange in a reaction medium).
The initial rate of change in the absorbance of acridine orange was
used for the calculation of IC50 values.
2.8. Determination of ATP hydrolysis activity by V-, F- and P-ATPases
Hydrolysis of ATP by V-ATPase was determined by the bafilomy-

cin A1-sensitive assay method. The microsome fraction prepared
from mouse peritoneal macrophages (3.7 lg protein) was incubated
for 30 min at 37 �C in 1 ml of the reaction buffer (10 mM HEPES–
Tris, pH 7.0, 1 mM ATP, 5 mM MgCl2, 50 mM KCl, 5 lM valino-
mycin, 5 lM nigericin, 1 mM orthovanadate, 10 lg/ml oligomycin,
10 mM NaN3, 1 mM levamisole and 10 mM NaF) in the presence
or absence of 10 nM apicularen A, apicularen B or bafilomycin A1.
The reaction was stopped by the addition of 2 ml of the ice-cold stop
solution containing 3.6% ammonium molybdate and 12% perchloric
acid. Then, 6 ml of n-butyl acetate was added, mixed vigorously
and the mixture was centrifuged at 1500 · g for 10 min. Inorganic
phosphate in the supernatant was measured from the absorbance at
350 nm.

For the determination of F-ATPase, mouse liver mitochondria was
prepared according to the method described Wlodawer et al. [17] from
9-week-old ddY mice (Nihon SLC). Hydrolysis of ATP by F-ATPase
was determined by the oligomycin-sensitive assay method. The mito-
chondria fraction prepared from mouse liver (0.13 lg protein) was
incubated for 30 min at 37 �C in 1 ml of the reaction buffer (10 mM
HEPES–Tris, pH 7.0, 1 mM ATP, 5 mM MgCl2, 50 mM KCl, 5 lM
valinomycin, 5 lM nigericin, 1 mM orthovanadate, 10 nM bafilomycin
Fig. 2. Effects of apicularen A, apicularen B and bafilomycin A1 on morpholo
of apicularen A (B), apicularen B (C) or bafilomycin A1 (D) each at 100
fluorochome Hoechst dye 33258. The bar represents 50 lm. The inset in ea
represents 5 lm.
A1, 1 mM levamisole and 10 mM NaF) in the presence or absence of
10 nM apicularen A, apicularen B or 0.1 lg/ml of oligomycin A. Inor-
ganic phosphate released was determined as described above.

For the determination of P-ATPase, rabbit stomach mucus mem-
brane microsome fraction was prepared according to the method de-
scribed by Wolosin and Forte [18] from 13-week-old Japanese white
rabbits (Nihon SLC). Hydrolysis of ATP by P-ATPase was determined
by the orthovanadate-sensitive assay method. The stomach mucus
microsome (0.21 lg protein) was incubated for 30 min at 37 �C in
1 ml of the reaction buffer (150 mM Tris–HCl, pH 7.4, 1 mM ATP,
2 mM MgCl2, 100 lM valinomycin, 20 mM KCl) in the presence or
absence of 10 nM apicularen A, apicularen B or 10 lM of sodium
orthovanadate according to the method described by Yoda and Hokin
[19]. Inorganic phosphate released was determined as described above.
The mice and rabbits were treated in accordance with the procedures
approved by the Animal Ethics Committee of the Graduate School
of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
3. Results and discussion

On treatment with apicularen A at 100 nM, the condensa-

tion of nuclei and chromatin, a morphological change charac-

teristic of apoptosis [20], was observed at 24 h (Fig. 2B), while

apicularen B at 100 nM had no such effect (Fig. 2C). The spe-

cific V-ATPase inhibitor bafilomycin A1 [7] at 100 nM also in-

duced morphological changes in the nuclei at 24 h (Fig. 2D).

The inset in each panel in Fig. 2 shows a magnified nucleus.

These morphological changes in nuclei at 24 h were also ob-

served at 10 nM of apicularen A and bafilomycin A1, but

not at 1 nM (not shown in Fig. 2). In accordance with the mor-
gical changes of nuclei. After incubation in the presence or absence (A)
nM for 24 h at 37 �C, the cells were stained with the DNA-specific
ch panel represents a typical magnified nucleus. The bar in the inset



Fig. 4. Detection of V-ATPase in RAW 264.7 cells and A431 cells. The
cells were sonicated in a sample buffer, centrifuged at 15000 · g and
4 �C for 5 min, and 5 lg protein of the supernatant was loaded on a
7.5% SDS–polyacrylamide gel. After electrophoresis, the C subunit of
V-ATPase and actin were detected by Western blotting, respectively.
Lane 1: RAW 264.7 cells and lane 2: A431 cells.
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phological changes of nuclei on treatment with apicularen A

(100 nM) for 24 h, disruption of the mitochondrial membrane

potential was observed at 24 h in cells treated with apicularen

A (100 nM) (Fig. 3A and B). In addition, as reported previ-

ously, the percentage of annexin V-positive cells and propi-

dium iodide-negative cells at 24 h was increased by

apicularen A (100 nM) [5]. The percentage of early apoptotic

cells (annexin V-positive and propidium iodide-negative cells)

and necrotic cells (annexin V-positive and propidium iodide-

positive cells) was increased time-dependently by apicularen

A at 100 nM (data not shown). In contrast, apicularen B at

100 nM had no effect on the mitochondrial membrane

potential (Fig. 3A and B). On the other hand, the V-ATPase

inhibitor bafilomycin A1 at 100 nM also disrupted the mito-

chondrial membrane potential (Fig. 3A and B). At 10 nM, api-

cularen A and bafilomycin A1 induced disruption of the

mitochondrial membrane potential, but no significant change

was observed at 1 nM (not shown in Fig. 3). The potency of

apicularen A for the induction of apoptosis was almost the

same as that of bafilomycin A1. Induction of apoptosis in

RAW 264.7 cells by bafilomycin A1 has already been reported

[21]. Previously, we reported that apicularen A induces apop-

tosis of RAW 264.7 cells as evidenced by the formation of a

DNA ladder, an increase in the percentage of sub-G1 cells

and annexin V-binding cells, and the activation of caspase

[5]. The morphological changes in nuclei (Fig. 2) and the

disruption of mitochondrial membrane potential (Fig. 3) by

apicularen A further support our previous findings that apicu-

laren A induces apoptosis in RAW 264.7 cells more potently

than apicularen B [5].

By Western blotting analysis using an antibody to the C sub-

unit of V-ATPase, we examined whether RAW 264.7 cells have

V-ATPase. V-ATPase is composed of a peripheral V1 domain
Fig. 3. Effects of apicularen A, apicularen B and bafilomycin A1 on the mi
incubated for 24 h at 37 �C in 2 ml of medium. The cells were then washed th
presence (+) or absence (�) of apicularen A, apicularen B or bafilomycin A1 e
PBS, scraped off the plate and stained using a DePsipher� Kit. Subsequen
530 nm) and red fluorescence (FL2; a maximal emission at 590 nm) were
decreased mitochondrial membrane potential (Dwm) in the lower right quadra
S.E.M. shown by vertical bars. Statistical significance: *** P < 0.001 vs. the n
having 8 subunits (A–H) responsible for ATP hydrolysis, and

an integral Vo domain having 5 subunits (a, d, c, c 0 and c00)

responsible for proton translocation [22]. The C subunit of

V-ATPase, the molecular weight of which is 42 kDa, is an aux-

iliary subunit with ubiquitous expression [23,24]. As shown in

Fig. 4, a band for the C subunit of V-ATPase was detected in

RAW 264.7 cells. The band was also detected in A431 cells

which have been reported to have V-ATPase as determined

by vital staining with acridine orange [15,25]. These results

indicate that RAW 264.7 cells also have V-ATPase. V-ATPase

has been identified in cellular organelles belonging to the cen-

tral vacuolar system [22], and are the most probable cause of

the acidity in the central vacuolar system. The internal acidifi-

cation of intracellular compartments has been suggested to

play a critical role in the mechanism of cell survival [7]. Inhibi-

tion of V-ATPase by bafilomycin A1 [8] and concanamycin A

[9] induced apoptosis in several kinds of cancer cells [10,11],
tochondrial membrane potential. RAW 264.7 cells (1 · 106 cells) were
ree times with medium, and further incubated for 24 h at 37 �C in the

ach at 100 nM. After incubation, the cells were washed three times with
tly, the intensities for green fluorescence (FL1; a maximal emission at
analyzed by flowcytometry (A), and the percentage of the cells with
nt was calculated (B). Values are the means from four samples with the
on-stimulated control.



Fig. 5. Vital staining with acridine orange. RAW 264.7 cells were incubated for 4 h at 37 �C in medium containing apicularen A at 0 nM (A), 10 nM
(B) and 100 nM (C), apicularen B at 100 nM (D), and bafilomycin A1 at 100 nM (E). A431 cells were incubated for 4 h at 37 �C in medium containing
apicularen A at 0 nM (F) and 100 nM (G). The cells were then stained with acridine orange for 10 min, washed with Hanks’ solution, and observed
with a laser-scanning confocal microscope. Each bar indicates 10 lm.
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and caspase-3 is activated during the process of apoptosis in-

duced by concanamycin A in B cell hybridoma HS-72 cells

[11].

Incubation of RAW 264.7 cells with acridine orange stained

intracellular organelles in orange fluorescence (Fig. 5A). Acri-

dine orange is an acidophilic weak base and taken up by living

cells and accumulates in acidified compartments [15,25,26]. In

cells, fluorescence of acridine orange is green at low concentra-

tions, but changes to orange at high concentrations [15,25].

Upon treatment with apicularen A at 10 and 100 nM for 4 h,

the orange fluorescence in the intracellular organelles was al-

most completely diminished (Fig. 5B and C, respectively),

however, apicularen A at 1 nM had no effect (not shown in

Fig. 5). The effect of apicularen A at 10 and 100 nM on the vi-

tal staining was observed even 2 h after incubation (not shown

in Fig. 5). Treatment with the V-ATPase inhibitor bafilomycin

A1 at 100 nM for 4 h also decreased the orange fluorescence in

the intracellular organelles in RAW 264.7 cells (Fig. 5E). The

dose–response analysis in the vital staining with acridine or-

ange revealed that apicularen A was almost as potent as bafilo-

mycin A1 (not shown in Fig. 5). Also in A431 cells, treatment

with apicularen A at 100 nM for 4 h decreased the orange fluo-

rescence (Fig. 5F and G). It is reported that the V-ATPase

inhibitors bafilomycin A1 and concanamycin F decreased the

orange fluorescence in A431 cells [15,25]. Recently, Huss

et al. [27] have shown that the acidity of lysosomes in PtK2

cells was decreased by apicularen A at 110 nM using the acido-

tropic reagent LysoTracker. According to Yoshimori et al.

[15], bafilomycin A1 decreased the orange fluorescence almost

completely at 1 lM in A431 cells, while it reduced partially at

10 nM and almost completely at 100 nM in BNL CL.2 cells, a

mouse normal embryonic liver cell line, indicating that the re-

sponse to bafilomycin A1 seems to differ with the type of cell.

In a cell-free system, bafilomycin A1 inhibited V-ATPase at

much lower concentrations than cell culture system; the IC50

values were 0.04 nM for a human kidney cortex membrane

preparation, 0.36 nM for a human liver membrane prepara-
Fig. 6. Effects of apicularens A and B and bafilomycin A1 on ATP-
dependent protone transport using microsome vesicles. Protone
transport was assayed by monitoring absorption changes of acridine
orange at 492–540 nm (an index of the amount of acridine orange in
the buffer). The initial rate of change in the absorbance of acridine
orange was used for calculation of the IC50 value. Apicularen A (closed
circle), apicularen B (open circle) or bafilomycin A1 (open square) was
added 10 min before the addition of ATP. Values are the means from
triplicate determinations with the S.E.M. shown by vertical bars.
tion, and 0.06 nM for a human osteoclastic tumor cell mem-

brane preparation [4]. In our cell culture system, the IC50

value of bafilomycin A1 and apicularen A in RAW 264.7 cells

and A431 cells was estimated to be between 1 and 10 nM.

However, in the cell-free system using the inside-out micro-

some vesicles prepared from mouse peritoneal macrophages,

the IC50 values for ATP-dependent proton transport into the
Fig. 7. Effects of apicularens A and B on V-, F- and P-ATPases.
Effects of apicularens A and B on ATP hydrolysis activity were
determined in the bafilomycin A1-sensitive assay system for V-ATPase
using mouse peritoneal macrophage microsome (A), the oligomycin A-
sensitive assay system for F-ATPase using mouse liver mitochondria
(B), and the orthovanadate-sensitive assay system for P-ATPase (H+,
K+-ATPase) using rabbit stomach mucus membrane microsome (C).
ATPase activity is expressed as lmol Pi/mg protein/min. Values are the
means with S.E.M. shown by vertical bars. Statistical significance:
** P < 0.01, *** P < 0.001 vs. the control group.
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vesicles were 0.58 nM for apicularen A, 0.95 nM for bafilomy-

cin A1 and 13 nM for apicularen B (Fig. 6), indicating that the

concentration required for the inhibition of V-ATPase is less in

the cell-free system than in the cell culture system. Based on the

IC50 values for the ATP-dependent proton transport into the

vesicles, apicularen A is more potent than bafilomycin A1

and about 20 times more potent than apicularen B. The differ-

ence in the IC50 value between the cell-free system and the cell

culture system might be due to the difference in the assay sys-

tem; in the cell culture system, a higher concentration of the

inhibitor might be necessary to penetrate the cells and inhibit

the V-ATPase. To further confirm that apicularens A and B in-

hibit V-ATPase, we analyzed the effect of apicualrens A and B

on ATP hydrolysis activity in the V-ATPase inhibitor bafilo-

mycin A1-sensitive assay system. As shown in Fig. 7A, apicu-

laren A inhibited Pi release from ATP to the same extent with

that by bafilomycin A1 at 10 nM, while apicularen B at 10 nM

showed less inhibitory activity than apicularen A. Apicularens

A and B did not inhibit Pi release from ATP by rat liver mito-

chondrial F-ATPase, which was inhibited by the F-ATPase

inhibitor oligomycin A at 0.1 lg/ml (Fig. 7B). In addition, api-

cularens A and B at 10 nM did not inhibit Pi release from ATP

by rabbit stomach mucus membrane P-ATPase, which was

inhibited by the P-ATPase inhibitor sodium vanadate at

10 lM (Fig. 7C). These findings further supported that apic-

ualrens A and B specifically inhibit V-ATPase; the potency

of apicularen A is higher than that of apicularen B. Recently,

Huss et al. [27] have reported that apicularens A and B inhibit

V-ATPase purified from the midgut of the tobacco hornworm,

Manduca saxta, with IC50 values at 20–60 nM. Taken together,

apicularens A and B inhibit mammalian V-ATPase and worm

V-ATPase.

In culture of RAW 264.7 cells, our findings indicated that

apicularen A inhibited V-ATPase, thus the pH in the intracel-

lular organelles was increased and the uptake of acridine or-

ange into the cellular organelles was decreased, resulting in

a change from orange fluorescence to green fluorescence. In

contrast, apicularen B at 100 nM had no effect on the vital

staining of acridine orange in RAW 264.7 cells (Fig. 5D) or

A431 cells (not shown in Fig. 5) although it has a benzolac-

tone enamide core, suggesting that apicularen B exhibits very

little inhibitory activity toward V-ATPase in the cell culture

system. These findings suggested that apicularen A inhibits

V-ATPase, as does bafilomycin A1, much more potently than

apicularen B, and thus inhibits the vital staining with acridine

orange in the intracellular organelles. Less cytostatic activity

of apicularen B than apicularen A is also reported in human

cancer cell lines [1]. The weaker biological activity of apicula-

ren B than apicularen A might be explained by the glycosyla-

tion of apicularen A. For example, the glycosylation of

isoflavones reduced the inhibitory effect of isoflavones on

12-O-tetradecanoylphorbol 13-acetate-induced prostaglandin

E2 production in rat peritoneal macrophages [28]. The very

weak inhibitory activity of apicularen B toward vital staining

with acridine orange compared with that of apicularen A

(Fig. 5) was consistent with the effect on morphological

changes in nuclei (Fig. 2C) and the mitochondrial membrane

potential (Fig. 3A and B). Our findings suggested that the

inhibition of V-ATPase participates in apicularen A-induced

apoptosis in RAW 264.7 cells. Previously, Huss et al. [29] re-

ported that the pleomacrolidic type V-ATPase inhibitors

bafilomycin A1 and concanamycin A bind to subunit c in
the V0 domain of V-ATPase, while salicylihalamide, a V-ATP-

ase inhibitor having a benzolactone enamide core, did not

block the binding of concanamycin A to the subunit c. Re-

cently, they have reported that apicularen A also did not bind

to subunit c [27]. Xie et al. [30] also reported that salicylihala-

mide A inhibits V-ATPase through a mechanism distinct from

bafilomycin A1. Therefore, the mechanism of action of apicu-

laren A for the inhibition of V-ATPase seems to differ from

that of the pleomacrolidic type V-ATPase inhibitors bafilomy-

cin A1 and concanamycin A.

We conclude that apicularen A inhibits V-ATPase in RAW

264.7 cells, thus inducing the apoptosis of RAW264.7 cells.

The potency of apicularen A for the inhibition of V-ATPase

is greater than that of bafilomycin A1 and apicularen B as

determined by ATP-dependent proton transport into inside-

out microsome vesicles.
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