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ABSTRACT We present a rate equation model for the TGF-b pathway in endothelial cells together with novel measurements.
This pathway plays a prominent role in inter- and intracellular communication and subversion can lead to cancer, fibrosis vascular
disorders, and immune diseases. The model successfully describes the kinetics of experimental data and also correctly predicts
the behavior in experiments where the system is perturbed. A novel method in this context, simulated tempering, is used to fit the
model parameters to the data. It provides an ensemble of high quality solutions, which are analyzed with clustering methods and
display a hierarchical structure highlighting distinct parameter subspaces with biological interpretations. This analysis
discriminates between different biological mechanisms to achieve a transient signal from a sustained TGF-b input, where one
mechanism is to use a negative feedback to turn the signal off. Further analysis in terms of parameter sensitivity reveals that this
negative feedback loop in TGF-b signaling renders the system global robustness. This sheds light upon the role of the Smad7
protein in this system.

INTRODUCTION

General considerations

Mathematical modeling of signal transduction networks

using rate equations is increasingly attracting attention as a

powerful tool (see, e.g., (1–5)). It is used to simulate the

kinetics of large signaling networks, where one cannot only

rely on biological intuition. In such studies, the aim is to

identify and shed light on the role of key components and

modules. Furthermore, such approaches allow for predicting

quantities not yet measured.

Rate equation modeling involves three major steps:

1. Specify the components and their interactions and set up

the system of equations.

2. Find values for the kinetic parameters from experimental

estimates or by fitting the model to experimental kinetic

data.

3. Analyze the behavior of the model for extracted param-

eter values.

Step 2 often presents the main limitation for a pathway

modeling approach. The systems tend to have many para-

meters where only a few (if any) have values that represent

reliable estimates from experiments. Also, the experimental

kinetic data is typically not sufficient to constrain the

parameter values to a single optimal solution, and multiple

parameter sets can explain the available data. We address this

problem by consistently looking at ensembles of parameter

sets, where these sets subsequently are clustered with

unsupervised methods, providing explanatory insights into

the data and related biological interpretations.

A novel tool in this context is developed to deal with the

optimization of parameters, simulated tempering (ST), which

has previously been used to map out thermodynamical

properties of protein-folding models (6,7). As with any other

Monte Carlo method, ST naturally provides ensembles of

solutions rather than single ones, subject to analysis by

standard clustering techniques.

In this article, we apply the rate equation methodology to

the Transforming Growth Factor b (TGF-b) pathway in

endothelial cells. The members of the TGF-b superfamily are

responsible for many different biological functions, in-

cluding proliferation, differentiation, apoptosis, embryonic

development, and wound healing. Perturbations in the TGF-

b pathway have been detected in several human diseases,

most notably in many forms of cancer, and in fibrotic diseases

of the liver, the kidney, and the lung (8). This pathway is not

too large for modeling, since there are a sufficient number of

measurements available to infer the value of the parameters

available. Neither is it small enough to use visual inspection

or a simple ON/OFF language as means to draw conclusions

about its dynamics and function. We compare the models

both to existing data (9,10) and to novel measurements first

presented here. The experiments consist of kinetic (time-

course) measurements after TGF-b stimulation under differ-

ent conditions: untreated cells and three cases in which

different components of the pathway have been perturbed.

Two of the experiments are used to fit the model parameters

and the other two are left as ‘‘blind test’’ experiments. In

addition, we predict the response of the system when varying

the ligand dosage. Thus, we develop a predictive model that

is tested against existing data. Furthermore, we make testable

predictions for further experiments. We also identify, among

other things, a feedback loop (Smad7) as important for

explaining all data sets used and for the stability of the model.
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To our knowledge, this is the first time the TGF-b pathway

including regulatory aspects is approached with dynamical

models. Recently, Vilar et al. (5) presented a detailed recep-

tor model for TGF-b signaling, and we will discuss how this

model relates to our simplified receptor description.

The TGF-b pathway in endothelial cells

The TGF-b signaling pathway in endothelial cells (see Fig.

1 for a simplified layout) is triggered by the TGF-b protein,

which acts as a ligand, by binding to and activating a

heteromeric complex of type I and type II serine/threonine

kinase receptors. The type I receptor acts downstream of the

type II receptor and the signal is propagated inside the cell as

the activated receptor complex is internalized and binds to

and phosphorylates a protein of the Smad family, called

receptor-regulated Smads or R-Smads (11–13). The R-Smads

include Smad1, Smad2, Smad3, Smad5, and Smad8. The

phosphorylated R-Smads can form complexes with Smad4,

also referred to as Co-Smad (11,12). These complexes move

into the nucleus where they regulate the transcription of

target genes. There is also an inhibitory effect generated by

the inhibitory-Smads (I-Smads), Smad6, and Smad7 (11,12).

The I-Smads negatively regulate the TGF-b signaling

pathway by binding to the receptors and compete with

R-Smads for receptor interaction, by recruiting ubiquitin

ligase to activated receptor complexes and thereby target

the receptor for proteasomal degradation or by recruiting

phosphatases (PP1-a) that inactivate the type I receptor by

dephosphorylation (12–14).

In most cell types, TGF-b signaling is mediated via the

type I receptor activin receptor-like kinase 5 (ALK5). In

endothelial cells, it is also mediated by the similar ALK1

kinase. Endothelial cells make up the endothelium, a single

layer of flattened cells, which are responsible for the for-

mation connective tissues such as blood cells, blood vessels,

etc. Since neovascularization plays a rate-limiting step in

cancer progression, research has frequently been focused on

endothelial cells (15).

The two receptor proteins ALK1 and ALK5 give rise to

two distinct pathways, which in turn induce opposite cellular

functions. The TGF-b/ALK5 pathway induces the phos-

phorylation of Smad2 and Smad3 whereas the TGF-b/ALK1
pathway is responsible for the phosphorylation of Smad1

and Smad5. Moreover, ALK5 inhibits migration and prolif-

eration while ALK1 stimulates these processes (9).

The phosphorylated R-Smads also display different behav-

iors in endothelial cells. It has been shown in Valdimarsdottir

et al. (10) that the negative regulation of Smad1/5 is de-

pendent on some newly synthesized protein and that Smad7

is induced by TGF-b/ALK1 signaling but unaffected by the

TGF-b/ALK5 signaling. An interpretation of this would be

that in endothelial cells, TGF-b induced activated Smad1/5,

together with Smad4, activates the production of Smad7. The

effect of Smad7 on the two pathways is also different. It has

been shown to inactivate the ligand-bound ALK1 receptor. It

can target the activated receptor for an ubiquitin-ligase-

dependent degradation (14,16). Smad7 can also recruit a

phosphatase (PP1-a) to the activated ALK1 receptor and

thus inhibiting further phosphorylation of Smad1/5 (10). It

has been shown that only high levels of Smad7 have an

inhibitory effect on phosphorylated Smad2 (10). This leads

to the conclusion that Smad7 negatively regulates the

phosphorylation of both Smad1/5 and Smad2 but the

strength of the latter interaction is much weaker.

The putative TGF-b-induced negative feedback from

Smad7 is an interesting aspect of the pathway. What is its

purpose? If it is merely to shut off the ALK1 pathway, could

this not be controlled by simpler means, such as in the form

of creation and degradation? These are two main questions

investigated in our computational analysis of the pathway.

MATERIALS AND METHODS

Use of experimental data

Relative concentration levels for phosphorylated Smad1 (PSmad1) and

phosphorylated Smad2 (PSmad2) are estimated from Western blot analysis.

The time-course data sets are from five different experiments after TGF-b

stimulation, and both novel and existing measurements are used. The data

sets consist of:

I. A nonperturbed experiment (control), where the cells are only stim-

ulated with TGF-b. This new experiment is described below.

II. Cells that are treated with the protein synthesis inhibitor cyclo-

hexamide, which is modeled by completely blocking all protein pro-

duction (10).

FIGURE 1 The TGF-b pathway in endothelial cells. The ligand, TGF-b,

binds to the receptors ALK1 or ALK5, and induces phosphorylation of

Smad1/5 and Smad2, respectively, which in turn form complexes with

Smad4. These complexes move into the nucleus where they control gene

expression. Smad7 expression is induced during this process and negatively

regulates the ALK1 pathway. (In the calculations we have also allowed for a

negative regulation on the ALK5 pathway which is not shown here.)
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III. Cells that are treated with the proteasome inhibitor MG-132, which is

modeled by removing the proteasomal degradation of all proteins (10).

IV. Cells that are treated with the phosphatase inhibitor orthovanadate,

which is modeled by removing the phosphatases from the model (10).

V. An additional nonperturbed experiment, where the dose-response of

phosphorylated Smad1 and Smad2 is measured by varying the amount

of TGF-b (9).

In Experiments I–IV, the concentrations are measured at times 0, 45, 90,

120, 180, and 240 min after TGF-b addition. To investigate the early

dynamics of the pathway, we have also performed additional measurements

of Experiment I at times 0, 5, 15, 30, 45, 60, and 120. The dose-responses, in

Experiment V, are measured after 45 min only. The doses in this experiment

varied from 0 to 5 ng/ml in six steps.

There are many possible ways to fit the model to experimental data, many

of which display nonbiological behavior. To reduce the number of possible

solutions, we fit to more than one set of experimental data. For detailed

studies, we use Experiments I, II, and V for this calibration, whereas the

others are used as blind-test experiments. In this way, the predictive power

of our approach is tested. We also permute the experiments used for

calibration to investigate the effects of such alterations.

Details of new measurements

Kinetics of TGF-b3 induced Smad2 phosphorylation versus
TGF-b3 induced Smad1/5 phosphorylation

Mouse embryonic endothelial cells were stimulated with 1 ng/ml TGF-b3

for different time points before lysis, fractionated by 6% SDS-PAGE and

blotted. As a positive control, 293-cell lysate transfected with either Smad2/

constitutively active ALK5 (PS2) or Smad1/constitutively active ALK1

(PS1) was used. The filters were incubated with phospho-Smad2 or

phospho-Smad1 antibodies; detection was performed by enhanced chemo-

luminescence.

Ligands and cells and Western blot analysis

Recombinant TGF-b3 was obtained from K. Iwata (OSI Pharmaceuticals,

Melville, NY). All assays were performed with both ligands with essentially

the same results. Recombinant BMP6 was a gift from Dr. K. Sampath (Curis,

Cambridge, MA). Mouse embryonic endothelial cells were cultured and

Western blot analysis was performed as described in Goumans et al. (9) and

shown in Fig. 4 C below.

The model

Our aim is to develop a model versatile enough to be able to explain current

data for the TGF-b pathway in endothelial cells and where the perturbation

experiments described above can be naturally implemented. At the same

time, each individual reaction step should be described as simply as possible

to keep the number of parameters low. To this end, we model the TGF-b

pathway as described in Table 1 (see also Fig. 1). All reactions are assumed

to be reversible and constant production and degradation of all the

nonphosphorylated proteins are allowed for.

Receptor dynamics

We only include the Type I receptors that are explicitly activated by TGF-b,

and do not include receptor internalization and recycling (Fig. 2). This

simplistic description of the receptor dynamics can be compared with a

recently introduced, rather detailed model for the TGF-b receptors, which

takes into account phenomena such as receptor recycling and trafficking (5).

This detailed model is capable of describing different kinds of receptor

responses to extracellular ligand concentrations depending on the situation at

hand. We demonstrate that, regardless of the simplifications, our receptor

model behaves strikingly similarly to the more complicated model of Vilar

et al. (5), at least as long as only one ligand of the TGF-b superfamily is

present (see Supplementary Material for details). An explanation for this

similarity is that, although our simplistic receptor model has far fewer

parameters, it does include variants of the parameters pinpointed as the most

important ones by Vilar et al. (5), which are determining the ratio of

degradation of the unbound compared to the activated receptor.

Phosphorylation and complex formation

The activated receptors catalyze the phosphorylation of the R-Smads

(Smad1, Smad2), which is described by a Michaelis-Menten formalism.

PSmad1 and PSmad2 can form complexes with Smad4, and the complex

including PSmad1 can move into the nucleus and induce Smad7 production.

We assume a constant volume difference between the cytoplasm and nucleus,

which can be integrated into model parameters and a nucleus concentration

unit, and hence the volumes are not explicitly introduced in the model.

Feedback inhibition

As described above, Smad7 has an inhibitory effect on the signal. This is

modeled by recruitment of the phosphatase PA (PB) to the activated ALK1

(ALK5), which leads to an inactivation of the receptor. Since an ubiquitin

ligase-dependent degradation of the activated receptor leads to a similar

inactivation behavior, we do not account for this process explicitly in the

model.

Formalism

The reactions in Table 1 are implemented with standard rate equations using

deterministic ordinary differential equations (Table 2). This assumes an

ample amount of molecules involved and not to rare events. These

conditions are very likely satisfied in the TGF-b case. For all reactions we

use mass action or Michaelis-Menten enzyme kinetics. The complete set of

equations is given in Table 2. As an example, the equation for Smad1

concentration is given by

d½Smad1�
dt

¼ p2 � p2p3½Smad1�

1 p17½PSmad1� � p15½Smad1�½TA1�
p16 1 ½Smad1� ; (1)

which can be deduced from rows i and l in Table 1 (see Fig. 1). [X] denotes

the concentration of molecule X and the p-values are kinetic parameters. We

have chosen to use the parameterization rð1� 1
l ½X�Þ for the production and

degradation terms where r and l correspond to the production rate and the

equilibrium level for the production/degradation terms, respectively. These

equilibrium levels are also used as initial concentrations in the simulations.

Computational procedures

We use a general computational procedure that can be divided into

calibration and analysis (see Fig. 3). In the calibration part, we extract

parameter value sets that describe experimental data well, which results in an

ensemble of solutions. The calibration consists of two parts:

1. Optimization, where the parameters are adjusted for the model to fit the

experimental data.

2. Filtering, where good solutions from the optimization procedure are

evaluated against other experimental knowledge.

These procedures require multiple simulations of the model, where the

result of the numerical integration of the ordinary differential equations
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(ODEs) is compared with the experimental data. In the analysis part, we

investigate the behavior of the solutions following from the calibration step.

As a first step, the solutions are grouped by clustering. The resulting

subgroups are further evaluated by examining the group-averaged behavior.

In a validation step, the solution behavior is compared with blind-test

experiments, where the predictive power of the solutions is investigated.

Also, we analyze how robust the solutions are with respect to perturbation of

the parameters.

Solving the system of ordinary differential equations

The efficiency of the differential equation solver is extremely important

since this is where most computational time is spent, in particular since the

equations are often stiff. We use a procedure that adaptively switches

between two methods to minimize the computational load:

1. Fifth-order Runge-Kutta method, where the step size is varied to keep

the local truncation error constant, using an embedded fourth-order

method to estimate the truncation error; and

2. The Rosenbrock method, which is an implicit method that uses the same

kind of step-size control as Method 1, but is more efficient in the regions

of parameter space where the ODEs become stiff.

Both methods are described in Press et al. (17) and initial parameter values

and other details in this procedure can be found in the Appendix.

Calibration

In the optimization procedure, we estimate the parameters of the model by

fitting to experimental data. After each solution to the ODEs in the iterative

process, the K parameters p¼ (p0,. . .,pK�1) are adjusted such that the model

should more accurately describe the experimental data. The latter consist of

N discrete time points t1; t2; . . . tN for each experiment. As error measure, the

quadratic difference is used,

RðpÞ ¼ 1

N

1

M
+
tN

t¼t1

+
M

i¼1

ðxiðt; pÞ � xx̃xiðtÞÞ2; (2)

where xi(t, p) and xx̃xiðtÞ denote model points and experimental points,

respectively, and the index i denotes the different molecules (M in total). We

TABLE 1 The different reactions in the TGF-b pathway model, where pi (i ¼ 0,1,. . .,32) are the rate constants

; E*
p0

p0p1

ALK1 ðaÞ ; E*
p2

p2p3

Smad1 ðiÞ

; E*
p4

p4p5

Smad4 ðbÞ ; E*
p6

p6p7

Smad2 ðjÞ

; E*
p8

p8p9

ALK5 ðcÞ ; E*
PS14N

ðp11 ;p12Þ

p10

Smad7 ðkÞ

TGFb1ALK1 E*
p13

p14

TA1 ðdÞ
Smad1 E*

TA1
ðp15 ;p16Þ

p17

PSmad1 ðlÞ

PSmad11 Smad4 E*
p18

p19

PS14 ðeÞ
Smad2 E*

TA5
ðp22 ;p23Þ

p24

PSmad2 ðmÞ

TGFb1ALK5 E*
p20

p21

TA5 ðfÞ PSmad21 Smad4 E*
p25

p26

PS24 ðnÞ

PA 1TA1 E*
Smad7
P27

p28

TA1P ðgÞ PS14 E*
p29

p30

PS14N ðoÞ

PB 1TA5 E*
Smad7
P31

p32

TA5P ðhÞ

Reactions with the symbol ; model production and degradation. In reactions (k), (l), and (m), Michaelis-Menten dynamics is used.
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use two experiments in the optimization procedure, and the sum of the two R
values is used as error measure. To find good approximate solutions to

global minima for Eq. 2, one can use Monte Carlo methods like simulated

annealing (18). Here, we employ a related but more powerful method,

simulated tempering (ST) (6,7), where the fictitious temperature is a

dynamic variable, and the system is always kept at equilibrium for the

different temperatures. Solutions are obtained by ‘‘quenching’’ from the

lowest temperature to T¼ 0 corresponding to a local search. The underlying

idea is to scan sizable parts of the solution space at different high

temperatures and regularly visit low temperature solutions. In a sense, this

optimization method corresponds to simulated annealing with multiple

random starts and it yields ensembles of solutions rather than single ones.

The details of the ST implementation are found in the Appendix.

To further restrict the behavior of solutions included in the analysis, we

select solutions from the optimization step to correctly describe the dosage

Experiment V. We run the model for different dosages of TGF-b and

calculate a measure similar to R (see Appendix for details). Finally, a small

subset of these solutions is removed based on an overfitted behavior. (Note

that a small number—four—of the solutions display a high-order behavior in

the simulations. Although these solutions do get a good R-value, the behavior
does not fit the experiments well if the concentration levels are assumed to

interpolate smoothly between the measurements. These solutions are

removed by inspection, but could have been removed by, e.g., using a

criteria of not allowing for multiple peaks. If these solutions are included in

the analysis, they cluster with the group not using the feedback. The group

behavior is not altered significantly, but the sensitivity and the variation in the

predictions are slightly increased.)

Solution properties

To investigate properties and interior structures of the solution space, we use

three different methods:

1. Hierarchical clustering.

2. K-means clustering.

3. Principal component analysis (PCA).

Before this analysis, the data is preprocessed to obtain a distribution for each

parameter with mean of 0 and standard deviation of 1 (for details on the

implementation, see the Appendix).

Robustness

A common method used to analyze the robustness of a system is to use the

derivatives of the molecule concentrations, xi(t, p), with respect to the

different parameters, p, as a direct measurement of the sensitivity of the

system (20). We define a sensitivity vector according to

sj [
pj

M
+
M

i¼1

+
N

k¼1

1

xiðtk;pÞ
@xiðtk;pÞ
@pj

jp0
� �2 !1=2

; (3)

where the derivative is approximated by a simple finite-difference approx-

imation, using 1% parameter variations.

RESULTS

Calibration

First, we generate an ensemble of solutions from fitting to the

control (I) and cyclohexamide (II) experiments. Good

solutions are selected with the criteria R , 0.01 yielding

;200 solutions. As can be seen from Fig. 4, these solutions

fit both experiments well. Hence the parameterization form is

appropriate and the optimization method efficient. Next, we

select for those solutions that at the same time successfully

describe the saturated behavior at different TGF-b dosages

(Experiment V). An ensemble of 38 solutions pass this

filtering step (see Fig. 5), from which four are removed based

on an overfitting criteria (see end of Calibration, above). The

remaining 34 solutions are used for further investigations.

Solution properties

Individual parameter values vary considerably in the

calibration solution set, most with ranges of several orders

of magnitude. To analyze the homogeneity of the solutions

we cluster the ensemble of parameter sets using different

clustering algorithms and distance measures. The result for

hierarchical clustering with a Pearson correlation distance

measure is shown in Fig. 6 A, where two main groups can be

identified. K-means clustering with K ¼ 2 also results in a

similar grouping. Fig. 6 B shows the K-means result

projected onto the two main directions from a principal

component analysis. As will be shown in a more detailed

analysis, the two groups of solutions define two very distinct

biological interpretations of how the PSmad1 signal is made

transient in the case of a sustained TGF-b input: All the

group-2 solutions use the putative Smad7 feedback loop,

while the solutions of group 1 do not. This division of the

solutions is very robust to a variety of settings in the clus-

tering algorithms. Occasionally, a small set of the solutions

emerge as outliers, and two of the solutions also end up in

different clusters depending on method (compare Fig. 6, A
and B). Although our analysis does not depend upon the

FIGURE 2 Simplified receptor model. The ligand TGF-

b binds to a type I receptor (ALK1 or ALK5) and forms an

active complex that mediates the signal via the phospho-

rylation of R-Smads. The active receptors are inactivated

by Smad7, which recruits phosphatases to the active

receptors. We also allow for a constant production and

degradation of the inactive receptors.
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assignment of these two solutions, we choose not to include

them in the further analysis. The parameter values for these

32 solutions are provided in Supplementary Material.

We also performed clustering on a subset of the solutions

that do not correctly describe the dose-response experiment,

but still satisfy R , 0.01. In this case, we get equivalent

results, with two distinct groups with the same difference in

biologically interpretable behavior with one group using the

Smad7 feedback loop, whereas the other group does not

(data not shown).

Prediction

The solutions that were clustered were chosen to accurately

predict the dosage experiment (Fig. 5). To further analyze the

predictive power of the two defined ensembles of solutions

we have performed two blind-test experiments: Cells treated

with the proteasome inhibitor MG-132 (III) and phosphatase

inhibitor orthovanadate (IV), respectively. In Fig. 7, the

model predictions from group 1 and group 2 are shown and

compared with experiments, again for levels of PSmad1 and

PSmad2. As can be seen, the PSmad2 levels are not affected

significantly in either of the perturbed systems as compared

to the control experiment (Fig. 4 A). This behavior is

accurately predicted by both groups of solutions. In the MG-

132 experiment (see Fig. 7 A), the PSmad1 signal still

appears transient although the peak is broadened in time.

Both groups of solutions predict a transient PSmad1 signal

very similar to the behavior of the control experiment in this

case. This lack of broadening of the peak for all solutions is

discussed in more detail below, where we do optimization on

control and MG-132.

It is in the PSmad1 behavior in the orthovanadate exper-

iment (see Fig. 7 B) where the predictions from two groups

distinctly differ. In this case, group 1 predicts a transient

PSmad1 signal very similar to the behavior in the control

experiment, whereas group 2 predicts a more sustained signal

TABLE 2 Model equations of the TGF-b pathway

dA1

dt
¼ p0ð1� p1A1Þ � p13TbA1 1 p14T1

dS1

dt
¼ p2ð1� p3S1Þ � p15T1S1

p16 1 S1

1 p17P1

dS4

dt
¼ p4ð1� p5S4Þ � p18P1S4 1 p19P14 � p25P2S4 1 p26P24

dS2

dt
¼ p6ð1� p7S2Þ � p22T1S2

p23 1 S2

1 p24P2

dA5

dt
¼ p8ð1� p9A5Þ � p20TbA5 1 p21T5

dS7

dt
¼ p11P14

p12 1P14

� p10S7

dP1

dt
¼ p15T1S1

p16 1 S1

� p17P1 � p18P1S4 1 p19P14

dP14

dt
¼ p18P1S4 � p19P14 � p29P14 1 p30P14N

dP14N

dt
¼ p29P14 � p30P14N

dP2

dt
¼ p22T1S2

p23 1 S2

� p24P2 � p25P2S4 1 p26P24

dP24

dt
¼ p25P2S4 � p26P24

dT1

dt
¼ p13TbA1 � p14T1 � p27S7PAT1 1 p28T1P

dT5

dt
¼ p20TbA5 � p21T5 � p31S7PBT5 1 p32T5P

dPA

dt
¼ �p27S7PAT1 1 p28T1P

dPB

dt
¼ �p31S7PBT1 1 p32T1P

dT1P

dt
¼ p27S7PAT1 � p28T1P

dT5P

dt
¼ p31S7PBT5 � p32T5P

The abbreviations used are: Si ¼ [Smadi] i ¼ 1, 2, 4, 7; A1 ¼ [ALK1]; A5 ¼
[ALK5]; Tb ¼ [TGFb]; P1 ¼ [PSmad1]; P2 ¼ [PSmad2]; T1 ¼ [TA1]; T5 ¼
[TA5]; T1P ¼ [TA1P]; T5P ¼ [TA5P]; PA ¼ [phosphatase A] (responsible

for the inhibition of the ALK1 pathway); and PB ¼ [phosphatase B]

(responsible for the inhibition of the ALK5 pathway).

FIGURE 3 Flowchart of the calibration and validation process. Solutions

are found in two steps; optimization followed by an independent test of the

solutions against dose response tests. The solutions surviving these two steps

are then clustered, which results in two distinct groups displaying different

behavior. Group 1 does not use the Smad7 feedback loop whereas group

2 does. The numbers on the right-hand side show the number of solutions

in the different steps.
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in closer agreement with the experimental values. This exper-

iment (and model perturbation) mainly affects the feedback

from Smad7 by disabling the phosphatase to inactivate the

activated ALK1 receptor, and the behavior of group 1 in this

case indicates that these solutions do not use the feedback

loop.

It should be noted that these experiments are quite crude

and may affect the cells in ways not feasible to include in our

model, which is restricted to the molecules directly involved

in the TGF-b pathway. A much more direct experiment for

model prediction would be to perturb a single specific

molecule included in the model, e.g., silencing Smad7 by an

siRNA knockdown. The predicted PSmad1 and PSmad2

behaviors for the two groups when Smad7 is silenced are

shown in Fig. 8. This is particularly interesting since the two

solution groups exhibit very different behaviors. Again, the

unchanged PSmad1 behavior of group 1 shows that these

solutions do not need the Smad7 feedback to achieve a

transient signal. The prediction for the feedback model is

dependent on the assumption that Smad7 is the I-Smad

active in endothelial cells, which is based on experiments.

Smad6 could potentially also be active although there is no

FIGURE 4 (Left panel) Experimental

data from Western blot analysis for the

control experiment (A) and the cyclohex-

amide experiment (B) (adapted from (10)).

(C) Additional measurements of the control

experiment to illuminate the early behavior

of the pathway. (Middle panel) An average

area intensity in the inverted image is used

as a measure of relative concentration

levels. These are given relative to the actin

level measured in the cell, and normalized

to a maximal value equal to 1 (see Appen-

dix for details). (Right panel) Simulation

results. Concentrations of PSmad1 and

PSmad2 as functions of time for the control

experiment (A) and cyclohexamide-treated

systems (B) (Experiments I and II in

Materials and Methods). The curves with

error bars correspond to averages and

standard deviations for the ensemble of

model solutions resulting from fitting to the

data (227 solutions in total).
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data for Smad6 behavior in endothelial cells. In other cell

types, Smad6 has been shown to be more moderately and

transiently induced by TGF-b compared to Smad7 (21,22).

A fair assumption would be that if Smad6 is induced in en-

dothelial cells its behavior would resemble the Smad7 behav-

ior, which would lead to similar behavior for a model including

Smad6 in all previous experiments but not for the Smad7

knockdown experiment. Instead, the effect of Smad7 knock-

down would be less pronounced in such a feedback model.

Robustness

To further illuminate differences between the two groups of

solutions, we computed the sensitivity as defined in Eq. 3. In

Fig. 9, the sensitivity of the two groups are shown, where the

summed derivatives of PSmad1 and PSmad2 with respect to

the parameters for Experiments I and II are displayed. It is

clear that the group using the Smad7 feedback loop (group 2)

is more robust than the other group. A Wilcoxon two-sample

test on the measure +
j
sj for the solutions in the two

groups gives a p-value ,10�6. The largest difference is

found in the parameters governing the production and

degradation of Smad1 and Smad4 (parameters p2–p5). This
indicates that group 1 uses Smad1 and Smad4 production

and degradation to achieve the transient PSmad1 signal

instead of using the negative feedback of Smad7. It is indeed

very interesting that the transient signal can be achieved by a

FIGURE 5 Dose-response model predictions of PSmad1 (A) and PSmad2

(B) concentrations, respectively. Doses scaled to the one used for the

experiments in Fig. 4. Also shown are the corresponding measurements

taken after 45 min (adapted from (9)). The 1, n, and the 3 symbols refer

to the experimental data points after 45 min for 0.025, 1.0, and 5.0 ng/ml,

respectively. The time series show the corresponding predictions from the

ensemble with standard deviations.

FIGURE 6 (A) Hierarchical clustering analysis of the solutions deter-

mined from Experiments I and II (see Fig. 4) subject to the constraints that

R, 0.01 and that the dose experiments in Fig. 5 are well predicted (see text).

The left branch (group 1) corresponds to solutions where the Smad7

feedback loop is not used, while the right branch (group 2) uses the Smad7

feedback loop. (B) Results from PCA with the grayscale referring to the

groups found in the K-means clustering. The group on the left is group

1 (shaded) and the one on the right is group 2 (solid). The crosses are the two
cluster centers found by K-means clustering using a squared Euclidean

metric. The arrows refer to the two solutions where the clustering algorithms

disagree; these solutions have been left out in the further analysis.

TGF-b Pathway Model 4375

Biophysical Journal 91(12) 4368–4380



pathway with fewer molecular players, but it appears that the

drawback for the cells would be that the levels and

production/degradation rates for the Smad1 and Smad4

need to be tightly regulated to achieve a robust signal

behavior. In contrast to this, the group that uses the Smad7

feedback shows a low sensitivity in respect to Smad4 levels

(p4,p5), and more or less no sensitivity at all to Smad1 levels

(p2,p3). This latter fact, and the lack of sensitivity toward

changes of the Michaelis-Menten constant in the phospho-

rylation step (p16), indicates that the Smad1 levels are

saturated. A more detailed look at the parameter values and

Smad1 levels reveals that all solutions in group 2 indeed

have saturated levels of Smad1 (data not shown), which

hence can be regarded as a prediction of the model using

Smad7 feedback.

Group 1 is insensitive to perturbations in all parameters

directly included in the Smad7 feedback pathway (p10–p12,
p27, p28, p31, p32), which agrees with the conclusion that the

feedback is not used by these solutions. Group 2, on the other

hand, shows some sensitivity in these parameters except for

the parameters included in the Smad7 feedback on the

activated ALK5 receptor (p31, p32). Neither of these solution
ensembles make use of a Smad7 feedback for regulating

PSmad2 levels, and this part of the network could have been

left out of the model, at least for explaining the current

experiments (compare to (10)).

The most sensitive parameters in group 2 are p1, p9, p15,
p17, p22, and p24, and group 1 is about equally sensitive to

these parameters. These parameters govern the initial ALK1

and ALK5 levels (p1, p9), as well as the rates of phospho-

rylation and dephosphorylation of Smad1 (p15, p17) and

Smad2 (p22, p24). The early PSmad1 and PSmad2 kinetics

and (at least partly) the entire PSmad signal are also

dependent on these parameters. Hence, it is expected that the

fitting to our kinetic PSmad1 and PSmad2 data is sensitive to

these parameters. A final note is that although the ALK1 and

ALK5 levels are important, the production and degradation

rates are not (p0, p9). A more detailed look at the parameter

levels show that these rates are low (data not shown), and it

appears that it is the initial values that are important for the

model to explain data.

Permuting the experiments for the calibration

To further analyze the model behavior we also permuted the

experiments used for calibration. We used combinations

including the control experiment in the calibration part

since this is the only experiment where all the parameters

FIGURE 7 (A) Data and model predic-

tions of PSmad1 and PSmad2 concentra-

tion when the cells are treated with the

proteasome inhibitor MG-132, which is

modeled by removing the proteasomal

degradation of all proteins (Experiment

III). The solutions used are those of group

1 and group 2, as defined by the clustering

(see Fig. 6). (B) Data and model predictions

of PSmad1 and PSmad2 concentrations

when the cells are treated with the phos-

phatase inhibitor orthovanadate, which is

modeled by removing the phosphatases

(Experiment IV), with the same grouping

as in panel A. The time series show the

predictions from the two ensembles with

standard deviations. All data are adapted

from Valdimarsdottir et al. (10).
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are present. Also, here we applied the dose experiment as

a filtering step after optimization. The two additional

calibration sets used were optimization on control (I) and

MG-132 (III), and on control (I) and orthovanadate (IV)

experiments. The new parameter sets are presented in a

PCA-plot in Fig. 10 together with the previously defined

parameter sets.

When optimization is performed on control and orthova-

nadate, the extracted solutions behave very similarly to the

ones extracted from optimization on control and cyclo-

hexamide (see Supplementary Material, Fig. S4). All these

solutions use the Smad7 feedback in the process of

truncating the PSmad1 signal, which is expected since the

optimization includes the orthovanadate experiment, which

mainly affects the feedback. Also, the robustness analysis on

this new data set shows a very similar pattern as for the

previously defined Group 2 (data not shown).

In the case of optimizing against the control and MG-132,

the optimization procedure works less efficiently. Among the

solutions provided by the algorithm, only a very few resulted

in R , 0.01 and among those, none passed the filtering step

against the dose experiment (see Appendix for details). The

parameter sets from this case provided in Fig. 10 are

FIGURE 8 Predictions of PSmad1 and PSmad2 concentrations when

silencing Smad7 using the solutions of group 1 and 2, respectively, as

defined by the clustering (see Fig. 6). The time series shows the predictions

from the two ensembles with standard deviations.

FIGURE 9 Sensitivity analysis using derivatives of the PSmad1 and

PSmad2 concentration with respect to the different parameters of the model.

The sensitivity measure (Eq. 3) is represented on the y axis, where Group 1 is

above the x axis (positive direction upwards) and Group 2 is below the x axis
(positive direction downwards). Group 2, which uses the Smad7 feedback

loop, is found to be more robust than Group 1. The figure shows group

averages with estimated errors.

FIGURE 10 PCA plot of solutions found when different experiments are

used for optimization. The straight line separates the ones that are using the

Smad7 feedback loop (right) from those that do not (left) (see Supplemen-

tary Material, Fig. S4).
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solutions with R , 0.015, which pass the dose experiment

filter. These solutions show an average behavior for the

PSmad1 lying in between the experimental curves for control

and MG-132, and with very small change in behavior when

protein degradation is removed (see Supplementary Mate-

rial, Fig. S4). None of the parameter sets use the Smad7

feedback, and therefore these provide a poor prediction of

the orthovanadate experiment, while the predictive power

is small for the cyclohexamide experiment since the behavior

is very spread out. An interesting note is that this appar-

ent conflict for explaining the MG-132 together with the

other experiments can be used to direct improvements for

the model. This is illustrated by a slight adjustment of the

model perturbation for the MG-132 experiment where a

decreased inactivation of the activated receptors is included

(simulating reduced ubiquitin-dependent degradation), which

leads to an improved behavior (see Supplementary Material,

Fig. S5).

CONCLUSIONS AND OUTLOOK

We have developed a mathematical model for the TGF-b
pathway in endothelial cells and introduced novel compu-

tational procedures for finding and analyzing robust models.

This system was chosen given its paramount importance in

diseases like cancer and in developmental processes, even

though the information about concentrations, reaction rates,

and other parameters is scarce. To cope with the latter, we

generate an ensemble of solutions rather than a single one

when fitting to the data. This also means that we are less

sensitive to noise and, as it turned out, we are able to identify

different solution categories with associated biological

interpretations. We use different kinetic data sets by varying

conditions including knockdowns. Some of the data sets

already exist and others are newly generated and are pre-

sented here for the first time. Having access to kinetic data

under different conditions enables us to fit models to a subset

of these and use the remaining sets for blind-test evaluations.

Our results can be summarized as follows:

With efficient ODE solvers and a powerful optimization

method, simulated tempering (ST), good solutions are

found to the calibration sets.

The calibrated solutions are found to well reproduce

blind-test experiments, including those in which the

external dosage is varied.

The resulting solutions are analyzed with unsupervised

clustering methods. Two clusters emerge—one in

which the Smad7 feedback loop is employed, and

another in which it is not. The group using the Smad7

feedback is better at predicting the blind-test experi-

ments.

The robustness is investigated with a gradient method. It

is found that the solutions corresponding to the cluster

using the Smad7 feedback loop are less sensitive to

parameter perturbations, indicating that a role for this

loop is to provide robustness to the system.

Permutation of the experiments used for optimization

resulted in similar solution sets, but also highlighted

the MG-132 experiment as somewhat conflicting for

the model to solve. This can be used to direct im-

provements of the model, which is indicated by sim-

ulations adjusting the interpretation of the MG-132

experiment.

In our robustness analysis we have investigated how the

dynamical levels of different PSmads change for different

parameter perturbations. The PSmads represent the signal

through the pathway, but perhaps a more biologically

relevant measure is the robustness in cell response. Hence,

in the future one should augment the PSmad concentration

measurements with downstream gene expression data and

perform an integrated analysis. In this context, one should

also include the effects from cross talk with neighboring

pathways that are part of the TGF-b family.

Very recently, a detailed model for receptor dynamics was

introduced in the context of the TGF-b pathway (5). It does

not target endothelial cells specifically, but presents a

detailed study of receptor dynamics including internalization

and a specific inactivation of the ligand-bound receptor com-

plex by degradation. This model is sufficient to explain a tran-

sient signal for PSmad2 after sustained TGF-b stimulation.

To relate this to our more simplistic receptor model, not

explicitly including receptor recycling, we showed that our

receptor model has as versatile activation pattern when a sin-

gle ligand is presented to the receptor. The behavior of PSmad1

in endothelial cells when treated with cyclohexamide is to

extend the signal, while the same treatment in HaCaT cells

has been shown to shorten the PSmad2 signal (23). Although

the detailed receptor model predicts a shortened activation at

cyclohexamide treatment (see Supplementary Material, Fig.

S1) in full agreement with the PSmad2 data, our full pathway

model can indeed explain the PSmad1 behavior in cyclo-

hexamide-treated endothelial cells.

From the behavior of our different solution groups, we

argue for a model where there exists a feedback from TGF-b
induced Smad7 to repress the PSmad1 activation. This is

based on indications from several experiments, which are all

reproduced by the feedback model. Needless to say, a more

distinct test of this model would be to perform a dedicated

knockdown experiment for Smad7, which is currently in

progress in siRNA experiments targeting Smad7. In this

context, the importance of Smad6 in endothelial cells also

needs to be investigated.

Our approach is not restricted to systems where all

parameter values can be experimentally estimated. Rather, it

allows for several solutions to solve a problem, and can

account for similarities in behavior of highly conserved

modules such as the TGF-b pathway, although quantitative

details differ. In this study we are confined to experimental
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data which has not been calibrated to units of concentration.

This lack of knowledge propagates to our parameters. Also,

the measurements are restricted to a few components, and we

have therefore chosen a simplistic description of some of the

reactions. Hence, we have focused on relevant biological

behavior of the measured molecules for different conditions

and not attempted to evaluate parameter values with respect

to biologically reasonable ones, which would have been

dependent on further assumptions. Additional experiments,

which provide quantitative estimates of parameters and con-

centration levels, are important and will constrain the solu-

tion space for the models. On the other hand, we demonstrate

that the models, can pinpoint experiments that will provide

maximal information given the current knowledge, and the

combination of experiments and modeling provides an ef-

fective methodology for an increased understanding of

highly complex biological networks.

APPENDIX

Experimental data

All the experimental data originate from Western Blot Analysis, where we

measure the average intensity in a square on the inverted blot-images and use

these intensities as a relative measure of concentration. As it turns out, the

size of the square has only a marginal effect on the estimated concentration

levels. The concentrations are normalized with the actin level measured in

the cell, which is fairly constant throughout the time series. Finally, the

concentrations are normalized to give a maximum value of 1 for both

PSmad1 and PSmad2.

Solving the systems of ODEs

In Table 2 we show the system of ODEs used in our calculations, in which

the following assumptions are made in the calibration process:

1. The TGF-b level is constant throughout the time series.

2. At t ¼ 0, we have

P1ð0Þ ¼ T1ð0Þ ¼ P2ð0Þ ¼ P14ð0Þ ¼ P24ð0Þ
¼ T1ð0Þ ¼ T5ð0Þ ¼ T1Pð0Þ ¼ T5Pð0Þ ¼ 0: (A1)

3. The system is in equilibrium at t ¼ 0 (for zero TGF-b level), which with

Eq. A1 leads to

A1ð0Þ ¼ 1=p1; S1ð0Þ ¼ 1=p3; S4ð0Þ ¼ 1=p5;

S2ð0Þ ¼ 1=p7; A5ð0Þ ¼ 1=p9:
(A2)

The ODEs are solved using mainly the fifth-order Runge-Kutta method, but

in stiff regions of parameter space we switch to the Rosenbrock method

using an adaptive procedure. For details on the ODE solvers, see Press et al.

(17).

Parameter estimation

For generating ensembles of solutions we use simulated tempering, where

configurations are generated for different fictitious temperatures Tj and the

system is allowed to move between the different Tj-values. In other words, at

a given Monte Carlo step, one updates the system by swapping configu-

rations of the systems, or alternatively trading two temperatures. The method

amounts to simulating the joint probability distribution

Pðp; jÞ} expð2gj2RðpÞ=TjÞ; (A3)

where the ‘‘energy’’ R(p) is the error measure of Eq. 2 with its system

parameters p ¼ ðp1; . . . ; pK). The algorithm parameters gj govern the

weights pj of the different temperatures, Tj. The latter are chosen according

to

Tj ¼ TminðTmax=TminÞðj21Þ=ðJ21Þ
; j ¼ 1; 2; . . . ; J; (A4)

where we used J ¼ 20, T1 ¼ Tmin ¼ 0.0025, and T20 ¼ Tmax ¼ 0.005. We

want to spend roughly the same amount of time on each of the temperatures,

and thus have to choose our gj-values accordingly, i.e., we want to choose

our g9j-values such that the weights, pj, are equal for all j. This is done

through trial simulations in a two-step process. First we calculate rough

estimates of the average ‘‘energy’’ at each temperature, ÆRæj and put g20 ¼ 0

and gj21 ¼ gj 2 ÆRæj(1/Tj21 2 1/Tj). In the next step, we perform longer

simulations to obtain good estimates of the weights pj; the uniform

distribution is then obtained by replacing gj with gj 1 ln pj (7).

The parameters are updated one at a time with pi / rpi, where r is a

multiplicative factor (r¼ 1.1 is used) and in 50% of the cases we set r/1=r.

At T¼ Tmin, r is allowed to vary freely in the range r 2 [1:2] individually for

each parameter, to keep the acceptance ratio above 50%. Updates are

accepted according to Eq. A3. For each K number of attempted parameter

updates, K being the number of parameters, we attempt one update to an

adjacent temperature Tj61 with a probability also governed by Eq. A3.

The performance of the algorithm is displayed in the table below showing

the number of simulations it takes on average to find a minimum (middle

panel) and the percentage of these minima having R, 0.01 (right panel) for

each of the three sample permutations. These results can be compared with for

example (24) where different optimization algorithms including simulated

annealing are compared. The poor performance on the control1MG-132 set

is discussed in the text and in the Supplementary Material (see Table 3).

Calibration

In the first step we merely select for solutions p satisfying R(p) , 0.01. In

the second step we also require the solutions to display the saturating

behavior observed in Experiment V. This is achieved by only considering

solutions p* satisfying

1

N

1

M
+
5:0

C¼2:5

+
tN

t¼t1

+
M

i¼1

ðxðCÞi ðt; p�Þ2xð1Þi ðt;p�ÞÞ2 , e; (A5)

where x
ðCÞ
i ðt;p�Þ denotes the concentration of molecule i at time t given

the parameters p* and an initial concentration of TGF-b of C ng/ml. For

the cutoff value e we found e ¼ 0.05 to be appropriate.

Implementation

The calibration framework as well as the robustness analysis are

implemented in C11. For the two clustering methods, K-means and

TABLE 3

Sample No. of simulations R , 0.01

Control1cyclohexamide 38,919 6 5872 32.9%

Control1orthovanadate 26,783 6 4707 25.6%

Control1MG-132 33,374 6 3326 1.4%
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hierarchical clustering, and for the PCA, we used MatLab implementations

(The MathWorks, Natick, MA) corresponding to the MatLab functions

dendrogram, kmeans, and princomp, respectively.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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