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Abstract-Moore graphs are compact graphs. As interconnection networks, they would minimize 
communication costs. We show that K1, K2 and the Petersen graph are the only Moore graphs that 
belong to E2, that is, are optimal in average message passing density. We also show that E2 is closed 
under the Cartesian product (x) operation. On the basis of these findings, a new architecture is 

proposed. 
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The average message passing density is an important parameter in the study of interconnection 
networks. It is a measure of the traffic on the links of a network. It is expressed by the ratio 
ud/e, where od is the sum of the distances to all the vertices in the graph from a particular vertex 
(origin). The graphs considered are symmetric in that the choice of the origin does not alter od. 
Such graphs are called distance degree regular graphs [l]. 
DEFINITION 1. Let d(i, j) denote the distance between vertex i and j and let o denote the origin. 

A graph G = (V, E) belongs to &2 iff it satisfies gd = e, where 

(Td = c d(o, i) 
iEV 

and e is IEl. 

A value of U,j/e larger than 1 indicates congestion on the edges (inefficient), and a value less 
than 1 means that there are too many edges (not economic). A value of 1 is, therefore, optimal. 
We shall use E2 to denote the set of all graphs that are both economic and efficient in terms of 
layout, i.e., have the property gd = e. It is meaningful to talk about this property only in the 
context of distance degree regular graphs. The class of Generalized Petersen graphs has been 
studied in this regard. Among them, only P(4,l) and P(5,2) are in E2 (see [2]). Here, we inspect 
the class of Moore graphs [3] for this property. 

DEFINITION 2. A k-regular graph with diameter d having the maximum possible vertices is a 

Moore graph. Therefore, the Moore graph M = (VM, EM) has 

IV,,1 = 1-t k + k(k - 1) + k(k - 1)2 f.. . + k(k - l)d-l. 

The authors thank S. Kundu and B. Oporowski for several fruitful discussions and also L. Prasad and S. Bamakr- 
ishnan for their suggestions in the proof of Theorem 1. 
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It is important to search for graphs having this property, because such graphs would be good 

candidates for interconnection network topologies. We explore Moore graphs here because they 

have the additional trait of being very compact. In Moore graphs, as many vertices as possible 

are “squeezed” within a given degree and diameter. Such graphs are attractive as they minimize 

distances and reduce communication costs. Networks based on Moore graphs have been proposed. 

The hypercube of dimension 1 and dimension 2 and the Petersen graph are trivial examples 

of Moore graphs (Figure 1). Several interesting extensions of these graphs have been studied 

extensively in literature [4-71. 

We study the x (Cartesian product) operator, because extensions of several networks are based 

upon this operator. 

DEFINITION 3. Let G = (V,E) and G’ = (V’, E’) be two graphs. The Cartesian product G x G’ 

is defined as follows: The vertex set of G x G’ is the Cartesian product V x V’. The vertex (v, v’) 
is joined to (u, u’) in G x G’ iff {v’ = u’ A (v, u) E E V ‘u = u A (v’, u’) E E’}. 

However, the x operator does not preserve compactness, i.e., it is not necessary for G x G’ to 

be a Moore graph, even if G and G’ are. But, as we show later, the x operator does preserve the 

&2 property. Therefore, even though KI, K2 and the Petersen graph are the only Moore graphs 

in E2, the n-cube, the Hyper Petersen and the recursive Petersen graphs of all dimensions are 

in E2 (see [4,7,8]). 

. 

KI K2 

Figure 1. 

Petersen Graph 

THEOREM 1. K1, K2 and the Petersen graph are the only Moore graphs in &2. 

PROOF. For a k-regular Moore graph of diameter d, to belong to E2, the following two equations 

must be satisfied: 

1+ k + k(k - 1) + k(k - 1)2 + k(k - 1)s +. . . + k(k - 1)d-1 = 72, (1.1) 

k + 2k(k - 1) + 3k(k - 1)2 + . . 

By inspection, {d = 0, k = 0, n = 1; d = 1, k = 1, n = 2 

from (1.1) in (1.2), we get 

. + dk(k - l)d-1 = $ (1.2) 

} are trivial solutions. Substituting n 

k+2k(k-1)+3k(k-1)2+...+dk(k-l)d-1 = ;(l+k+k(k-l)+...+k(k-l)d-‘). (1.3) 

Dividing by k(k # 0) and a rearrangement of terms yields 

(k - 2d)(k - l)d-l + (k - 2(d - l))(k - l)d-2 +. .+ + (k - l)(k - 4) + k - 1 = 0. 

Let z E (k - 1). Then, 

(k - 2d) zd-l + (k - 2(d - 1)) gd-2 +. . . + z(k - 4) + k - 1 = 0, 

d-l d 

kxs”-2~i&‘+k-l=O, 
i=l i=2 

(1.4) 

(1.5) 

(1.6) 
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which yields, for z # l(k # 2), 

k(a: - 1) (z” - 1) - 2(X - l)(d + 1) xd + 2 (xd+l - 1) + (x - 1)2 = 0 

simplifying and solving which we get, for k > 2, 
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(1.7) 

Ck - ud-’ = (k - & - 2) + 2’ (1.8) 

Equation (1.8) h as a positive integer BBS only for {d = 2, k = 3, n = 10). Therefore, Equation 

(1.3) has solutions only for (k = 0, d = 0, n = 1; k = 1, d = 1, n = 2; k = 3, d = 2, n = 10). n 

THEOREM 2. E2 is closed over x. 

PROOF. Let Gi = (VI, El) and Gz = (VZ, &) be two arbitrary graphs. The vertices are labelled 1 

through ~1 (WI) and 1 through 212 (I&l), respectively. ei, e2, e denote the number of edges, 
and Udl, od2, od denote the total distance sums of Gi, G2, and Gi x Gs, respectively. Then, the 

vertices of Gi x Gz are 

{(%U) Iv E K,u E E4. (2.1) 

The number of edges in the final graph is [9] 

e = vie2 + usei. (2.2) 

Since, in the x operation, every vertex of Gr is replaced with G2 (or vice-versa, because x is 

commutative), there are 212 copies of Gi. Let v(i, j) denote the ith vertex in the jth copy of Gi. 

Therefore, 1 < i 5 wi and 1 5 j 5 v 2. Let v(oi, j) denote the origin in the jth copy of Gi. The 

total distances in all the copies from their respective origins is 

c cdl = “)Zodl- (2.3) 
VCV, 

Also, let ~(oi,o2) be the origin of Gi x G 2. Now, the distance of r~(oi,j) from w(oi,o2) has to be 

added to the sum of distances. The set ~(01, j) (1 5 j < ‘~2) forms G2, and therefore, the sum of 

distances of all v(oi,j) from ~(oi,o2) is a&. Since there are ~1 vertices in each of the 2)s copies 

of Gi, 

c cd2 = vulgd2. (2.4) 

VEVl 

Therefore, we have 

(Td = vi(T& + ‘@udi. 

Therefore, if Udi = ei and (Td2 = e2, it follows from (1) and (4) 

(2.5) 

ud = vlUd2 + ‘u2Udl = 11162 + w2ei = e. I 

COROLLARY 1. (E2, x, KI) is an abelian semigroup. 

PROOF. By Theorem 2, E2 is closed. x is associative 

element. 

and commutative [9]. Ki is the identity 

I 

The hypercube, the hyper Petersen graphs and the recursive Petersen graphs are, therefore, 
in E” (see [4,7,8]). It also obviously follows that I&‘] = 00. 

COROLLARY 2(a). If G1 has the property Udl < ei, then the Cartesian product Gi x E (E E E2) 

also has ud < e. 
PROOF. 

U,j = vie + ?&Udl < W1e + v2e1 = e. I 
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COROLLARY 2(b). If G has the property Ud > e, then 

has CTd > e. 
PROOF. 

S. IYENGAR 

the Cartesian product G x I(& E E2) also 

CTd = Vie + ?&!Udl > 211e t v2e1 = e. I 

From Theorems 1 and 2, it is clear that the Cartesian product of the Petersen graph with 

itself will have optimal average message passing density. We introduce and define the recursive 

Petersen architecture. 

DEFINITION 4. The recursive Petersen graph of dimension n, (n > 1) is the Cartesian product of 
the Petersen graph with itself (n - 1) times. The Petersen graph is a recursive Petersen graph of 

dimension 1. 

A recursive Petersen network of dimension 2 has 100 vertices, each of degree 6, and a diameter 

as low as 4. A dimension 3 recursive Petersen network has 1000 vertices, each of degree 9, and is 

of diameter 6. In addition, such networks of all dimensions have optimal average message passing 

density [8]. 
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