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The one-dimensional fractional derivative Maxwell model (e.g. Palade, et al., Rheol. Acta
35 (1996) 265), of importance in modeling the linear viscoelastic response in the glass
transition region, has been generalized in Palade, et al., Internat. J. Engrg. Sci. 37 (1999)
315, to objective three-dimensional constitutive equations (CEs) for both fluids and solids.
Regarding the rest state stability of the fluid CE, in Heibig and Palade, J. Math. Phys. 49
(2008) 043101, we gave a proof for the existence of weak solutions to the corresponding
boundary value problem. The aim of this work is to achieve the study of the existence and
uniqueness of the aforementioned solutions and to present smoothness results.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Fractional derivative constitutive equations (CEs) have been found to accurately predict, among others, the stress relax-
ation of viscoelastic fluids in the glass transition and glassy (high frequency) states. The experimental behavior of storage
G ′ and loss G ′′ moduli (obtained upon using the time–temperature superposition principle – see [30,36]) of a linear, nar-
row molecular weight series of polybutadienes is exceptionally well predicted by linearized fractional derivative models as
can be reckoned from [31]. Polybutadienes are of utter importance for the tire industry, for manufacturing certain solid
propergols, etc. Similar excellent agreements between frequency sweep experimental data obtained on other polymers (e.g.
polystyrenes) and theoretical predictions of linear fractional derivative models are reported in [12,19,25].

The object of study is the below given objective, fractional derivative viscoelastic (incompressible) fluid constitutive
equation (CE) (see [32])

S(t) + λαF(t)

{ t∫
−∞

μ1(t − τ )F−1(τ )
�
S (τ )

[
F−1(τ )

]T
dτ

}
F(t)T

= GλβF(t)

{ t∫
−∞

μ2(t − τ )F−1(τ )A1(τ )
[
F−1(τ )

]T
dτ

}
F(t)T (1.1)
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Function S is the (objective) stress tensor and
�
S its objective upper convected derivative defined by (with D/Dt denoting

the material derivative and L the velocity gradient; see for example [16,28,46]):

�
S= DS

Dt
− LS − SLT (1.2)

Function F is the strain gradient and A1 = ∇u + (∇u)T = L + LT is the first Rivlin–Ericksen tensor. The model parameters
are such that 0 < λ, 0 < α < β < 1. μ1,2(t) are two memory kernels given by:

μ1(t − τ ) = (t − τ )−α

Γ (1 − α)
, μ2(t − τ ) = (t − τ )−β

Γ (1 − β)
(1.3)

The stability of the rest state is now investigated using the linearized theory. As shown in [32] and [15], it is first assumed
that the stress tensor S = O (ε) and the deformation gradient F(t) = 1 + εJ(t) + O(ε2). Since L = ḞF−1 (see for example [16,
17,28]), L = O (ε). Hence the velocity u = O(ε), and the first Rivlin–Ericksen tensor A1 = O (ε) as well. Therefore, keeping
only terms of O (ε), within the linear response theory Eq. (1.1) reduces to:

S(t) + λα

t∫
−∞

μ1(t − τ )
∂S(τ )

∂τ
dτ = Gλβ

t∫
−∞

μ2(t − τ )A1(τ )dτ (1.4)

Next, assume the fluid is contained in a bounded volume Ω ⊂ R3 whose boundary ∂Ω is sufficiently smooth, and set in
motion at t = 0. The CE in Eq. (1.4) then takes the form:

S(t) + λα

t∫
0

μ1(t − τ )
∂S(τ )

∂τ
dτ = Gλβ

t∫
0

μ2(t − τ )A1(τ )dτ (1.5)

The above may be re-written in condensed form using the Caputo operators Dα
t and I1−β

t as:

S(t) + λα Dα
t S = Gλβ I1−β

t A1 (1.6)

where for an absolutely continuous function f : R+ → C:

Dα
t f (t) = 1

Γ (1 − α)

t∫
0

f ′(τ )

(t − τ )α
dτ (1.7)

and for f ∈ L1
loc(R+),

I1−β
t f (t) = 1

Γ (1 − β)

t∫
0

f (τ )

(t − τ )β
dτ (1.8)

As shown in [32,15], investigating the stability of the rest state is tantamount to studying the existence and the unique-
ness of solutions to the following initial boundary value problem (IBVP):

∂u

∂t
= −∇p + ∇ · S (1.9a)

S + λα Dα
t S = Gλβ I1−β

t A1, A1 = ∇u + (∇u)T (1.9b)

∇ · u = 0, in [0,+∞[ × Ω, Ω ⊂ R3 (1.9c)

u = 0, in [0,+∞[ × ∂Ω (1.9d)

u(t = 0) = u0, S(t = 0) = S0 (1.9e)

In the above system of equations we assume that u : [0,+∞[ × Ω → R3, ∇ · u0 = 0, p : [0,+∞[ × Ω → R, S : [0,+∞[ ×
Ω → M3,3(R), 0 < α < β < 1. Denote δ = β − α > 0.

A change of variables on (x, t) can be performed to eliminate the CE parameters λ and G (see [15]). This is carried
out only for convenience; in no way the generality of this paper results is shrinked down. Therefore, from now on assume
λ = G = 1.

At this stage recall that an existence result for the initial boundary value problem given in Eqs. (1.9) was presented
in [15]. The present paper, which is a continuation of [15], is organized as follows:
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• Section 2 presents the weak formulation of the boundary value problem.
• Section 3 is devoted to proving the existence and uniqueness of the solutions. We further on use the existence theorem

obtained in [15] to state a general existence and uniqueness result.
• Section 4 deals with the functional framework within which the solution continuity at t = 0 is proved.
• Section 5 presents the proof of the solution continuity at t = 0.
• Section 6 contains results on the solution smoothness.

2. Weak formulation of the IBVP

All time-depending functions involved in the current stability analysis, save for when stated otherwise, are causal func-
tions (i.e. set equal to zero on R−). Hence the convolution in time is simply ( f ∗ g)(t) := ∫ t

0 f (s)g(t − s)ds.
We first present the weak formulation of the boundary value problem Eqs. (1.9): find u ∈ C 0([0,+∞[, L2(Ω)3) ∩

L1
loc(R+, H1

0(Ω)3), ∇ · u = 0, [S]i j ∈ C 0(]0,+∞[, L2(Ω) ∩ L1
loc(R+, L2(Ω))), i, j = 1,2,3, such that for any test-functions

∀θ ∈ (H1
0(Ω))3, ∇ · θ = 0, ∀a ∈ (D(Ω))3, ∀ψ ∈ C ∞

00 ([0,+∞[), where C ∞
00 ([0,+∞[) denotes the space of C ∞ class func-

tions that vanish in a neighborhood of +∞, the following equations hold true:

ψ(0)

∫
Ω

u0(x) · θ(x)dx +
+∞∫
0

∫
Ω

u(t,x) · θ(x)ψ ′(t)dx dt =
+∞∫
0

∫
Ω

(
S(t,x):∇θ(x)

)
ψ(t)dx dt (2.1)

−
+∞∫
0

∫
Ω

ψ(τ )

Γ (1 − α)τα
[S0]i j(x)[a] j(x)dx dτ −

+∞∫
0

+∞∫
τ

∫
Ω

ψ ′(t)
Γ (1 − α)τα

[S]i j(t − τ ,x)[a] j(x)dx dt dτ

+
+∞∫
0

∫
Ω

[S]i j(t,x)[a] j(x)ψ(t)dx dt

= − 1

Γ (1 − β)

+∞∫
0

t∫
0

∫
Ω

ψ(t)

(t − τ )β

{
(∇ · a)[u]i + [u · ∇a]i

}
(τ ,x)dx dτ dt (2.2)

Summation over repeated indices is understood in Eqs. (2.1) and (2.2) above.
We now detail the functional framework. Let V = {h ∈ (H1

0(Ω))3 s.t. ∇ · h = 0} be the Hilbert space endowed with the
inner product:

〈f|g〉V =
3∑

i, j=1

∫
Ω

∂ f i

∂x j

∂ gi

∂x j
(x)dx (2.3)

and denote ‖ ‖V the corresponding norm.
The closure of V in (L2(Ω))3 is denoted by H , the later space being endowed with the inner product:

〈f|g〉H =
3∑

i=1

∫
Ω

f i gi(x)dx (2.4)

with ‖ ‖H being the corresponding norm. Let 0 < λ1 � λ2 � · · ·λn � · · · −→
n→+∞+∞ and wi ∈ V , i ∈ N∗ , be the eigenvalues

and the corresponding eigenfunctions of the Stokes operator in H , i.e.:

∀φ ∈ V , 〈wk|φ〉V = λk〈wk|φ〉H , where ‖wk‖H = 1 (2.5)

3. The solution existence and uniqueness

To prove the solution uniqueness, we first eliminate S from Eqs. (2.1) and (2.2).
Denote L := { f ∈ L1

loc(R+) s.t. ∃M > 0, so that f e−Mt ∈ L1(R+)} ⊂ L1
loc(R+). Next, let f ∈ L1

loc,R+(R). For any a ∈ R and
α ∈ ]0,1[, define Dα

t,a f by:

〈
Dα

t,a f ,ϕ
〉 = 1

Γ (1 − α)

[
−a

+∞∫
0

ϕ(τ )

τα
dτ −

+∞∫
0

f (t)

( +∞∫
0

ϕ′(t + τ )

τα
dτ

)
dt

]
(3.1)

for any test function ϕ ∈ D(R).
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Observe that Dα
t,a f ∈ D ′(R). Moreover, for any f ∈ L , one easily sees that for x � M , e−xt Dα

t,a f ∈ S ′(R).
The hat (̂ ) notation to be used below stands for the usual Laplace transform.

Proposition 3.1. Let f ∈ L . Then, for ∀s ∈ C, with Re(s) large enough, one has D̂α
t,0 f (s) = sα f̂ (s).

Proof. Let M > 0 such that e−Mt f ∈ L1(R+). For any s ∈ C, Re(s) � M and ϕ(t) = e−st , Eq. (3.1) – still valid for this particular
choice of ϕ(t) = e−st /∈ D(R) – gives:

〈
Dα

t,0 f , e−st 〉 = − 1

Γ (1 − α)

+∞∫
0

f (t)

( +∞∫
0

−ses+τ

τα
dτ

)
dt (3.2)

As
∫ +∞

0
e−sτ

τα dτ = Γ (1−α)

s1−α , for Re(s) � M > 0 one gets:

D̂α
t,0 f (s) = 〈

Dα
t,0 f , e−st 〉 = − s

Γ (1 − α)

+∞∫
0

e−st f (t)Γ (1 − α)sα−1 dt = sα f̂ (s) � (3.3)

The following classical result (see [7]) is stated here within our functional framework. Recall first that (see also Eqs. (14)
and (15) in [15]):

W0(t) = sin(απ)

π

+∞∫
0

e−rtrα−1

r2α + 2rα cos(απ) + 1
dr, t � 0 (3.4)

Eα(t) = sin(απ)

π

∞∫
0

rαe−rt

r2α + 2rα cos(απ) + 1
dr, t > 0 (3.5)

Proposition 3.2. Let F ∈ L . Then, for any a ∈ R and any α ∈ ]0,1[, the equation

Dα
t,a f + f = F (3.6)

has a unique solution f ∈ L , given by f = Eα ∗ F + aW0 .

Proof. Existence: Assume F ∈ C 1(R+). Then, f = Eα ∗ F + aW0 is a solution of Eq. (3.6) (cf. [7]). Now, if one assumes
that F ∈ L , then there exists (Fn)n∈N∗ , Fn ∈ C 1(R+) such that Fn −→

n→+∞ F in L1
loc(R+). Since Eα ∈ L1

loc(R+), then fn =
Eα ∗ Fn + aW0 −→

n→+∞ Eα ∗
(t)

F + aW0 in L1
loc(R+). Hence the equation Dα

t,a fn + fn = Fn , for n → +∞, becomes Dα
t,a f + f = F .

We must next show that f ∈ L . Notice first that ‖aW0‖∞ � |a|W0(0). Therefore aW0 ∈ L . Denote g = e−Mt F ; choose
M > 0 so that e−Mt F ∈ L1(R). Then |Eα ∗

(t)
F | = | ∫ t

0 Eα(t − s)eMs g(s)ds| � eMt[Eα ∗
(t)

g]. Since g ∈ L1(R+), and Eα ∈ L1(R+),

then Eα ∗ g ∈ L1(R+). Finally Eα ∗ F ∈ L and f = Eα ∗ F + aW0 ∈ L .
Uniqueness: Let f , g ∈ L be two solutions of Eq. (3.6). Then Dα

t,0( f − g) + ( f − g) = 0, from which it follows that

(sα + 1) f̂ − g(s) = 0, for Re(s) large enough. Therefore f̂ − g(s) = 0, thus f = g . �
We shall use the following result to prove the uniqueness property:

Lemma 3.1. For any g ∈ L , I1−β
t g ∈ L .

Proof. Since g ∈ L , there exists G ∈ L1(R+) and M > 0 such that g = Ge−Mt . Therefore, for t � 0 a.e., |I1−β
t g(t)| �

K | ∫ t
0

g(t−u)

uβ du| � K
∫ t

0 |G(t − u)| e−M(t−u)

uβ du � K e−Mt(|G| ∗ uβe−Mt). Now, G ∈ L1(R+), uβe−Mt ∈ L1(R+) leads to (|G| ∗
uβe−Mt) ∈ L1(R+). Therefore, |I1−β

t g(t)| � eMt H(t), with H ∈ L1(R+), which gives I1−β
t g ∈ L . �

Making use of Proposition 3.2 and Lemma 3.1, we get:

Corollary 3.1 (Solution uniqueness). Let u0 ∈ H and S0 ∈ L2(Ω)9 . The system of Eqs. (2.1)–(2.2) has at most one solution that
belongs to the functional space F := {(u,S) ∈ [C 0(R+, H) ∩ L1

loc(R+, V )] × C 0(]0,+∞[, L2(Ω)9), such that ‖∇u‖L2(Ω)9 ∈
L , ‖S‖L2(Ω)9 ∈ L }.
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Proof. Let (u,S) ∈ F be a solution to Eqs. (2.1)–(2.2). For any test function ϕ ∈ D(Ω)9, as a consequence of Eq. (2.2) and
of the fact that u ∈ L1

loc(R+, V ), one has

Dα
t,〈S0|ϕ〉L2(Ω)9

〈S|ϕ〉L2(Ω)9 + 〈S|ϕ〉L2(Ω)9 = I1−β
t

(〈A1|ϕ〉L2(Ω)9

)
(3.7)

However, |〈S|ϕ〉L2(Ω)9 | � ‖S‖L2(Ω)9‖ϕ‖L2(Ω)9 . Since ‖S‖L2(Ω)9 ∈ L and ‖∇u‖L2(Ω)9 ∈ L , we infer that 〈S|ϕ〉L2(Ω)9 ∈ L ,

and 〈A1|ϕ〉L2(Ω)9 ∈ L . Now Lemma 3.1 implies I1−β
t 〈A1|ϕ〉L2(Ω)9 ∈ L , and Proposition 3.2 leads to

〈S|ϕ〉L2(Ω)9 = Eα ∗ I1−β
t

(〈A1|ϕ〉L2(Ω)9

) + 〈S0|ϕ〉L2(Ω)9 W0

= ρ ∗ 〈A1|ϕ〉L2(Ω)9 + 〈S0|ϕ〉L2(Ω)9 W0 (3.8)

Notice that Eq. (3.8) still holds true for ϕ ∈ L2(Ω)9.
Let θ ∈ V , ψ ∈ C+∞

00 ([0,+∞[). We deduce from (3.8) and (2.1) that:

ψ(0)

∫
Ω

u0(x) · θ(x)dx +
+∞∫
0

∫
Ω

u(t,x) · θ(x)ψ ′(t)dx dt

= −
+∞∫
0

(
ρ ∗ 〈A1|∇θ〉L2(Ω)9 + 〈S0|∇θ〉L2(Ω)9 W0

)
(t)ψ(t)dt (3.9)

We search for u ∈ L1
loc(R+, V ). In this case, for almost every t > 0, u can be expressed as

u(t) =
+∞∑
q=1

αq(t)wq (3.10)

the series being convergent in V . It follows, by taking θ = wk and ψ ∈ D(]0,+∞[) in Eq. (3.9), that α′
k = −λk(ρ ∗ αk) −

bk
√

λk W0, with bk := ∫
Ω

(S0 : ∇wk)(x)dx, the equality holding true in D ′(]0,+∞[). Recall that αk = 〈u|wk〉H ∈ C 0(R+). As
W0 ∈ C 0(R+), then necessarily αk ∈ C 1(R+). However (cf. [15]), the Cauchy’s initial value problem

α′
k(t) = −λk(ρ ∗ αk)(t) − bk

√
λk W0(t) (3.11a)

αk(0) = α0
k (3.11b)

has a unique solution in C 1(R+). The uniqueness of the solution u is thus proved, and that of S follows. �
We now state an existence and uniqueness result. Denote C 0

b (R∗+, V ) := {u ∈ C 0(R∗+, V ) s.t. supt�1 ‖u(t)‖V < +∞}. The
functional space C 0

b (R∗+, L2(Ω)9) is defined in a similar way.

Theorem 3.1 (First existence and uniqueness theorem). Let u0 ∈ H, S0 ∈ L2(Ω)9 . Then the boundary value problem given by the
system of Eqs. (2.1)–(2.2) has a unique solution

(u,S) ∈ [
C 0(R+, H) ∩ C 0

b

(
R∗+, V

) ∩ L1
loc(R+, V )

] × [
C 0

b

(
R∗+, L2(Ω)9) ∩ L1

loc

(
R+, L2(Ω)9)] (3.12)

Moreover, u(0) = u0 .

Proof. The existence of at least one solution

(u,S) ∈ [
C 0(R+, H) ∩ C 0(R∗+, V

) ∩ L1
loc(R+, V )

] × [
C 0(R∗+, L2(Ω)9) ∩ L1

loc

(
R+, L2(Ω)9)]

follows from Theorem 8.4 in [15].
It remains to be proved that the solution (u,S) obtained in [15] satisfies

sup
t�1

∥∥u(t)
∥∥

V + sup
t�1

∥∥S(t)
∥∥

L2(Ω)9 < +∞ (3.13)

This is essentially contained in the arguments presented in [15]. Indeed, since u ∈ C 0(R+, V ), we write u =∑+∞ αk(t)wk , t > 0. From Eq. (125) in [15] one gets
k=1
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λk
∣∣αk(t)

∣∣2 � M

{[(
1

tδ/2
+ 1

t1−δ/2

)2

+ (tλ1/(2−δ)

k )2(1−δ/2)

t2(1−δ/2)
e−2γ tλ1/(2−δ)

k

]∣∣α0
k

∣∣2

+
(

1

t2(1−δ)
+ (tλ1/(2−δ)

k )2(1−δ)

t2(1−δ)
e−2atλ1/(2−δ)

k

)
|bk|2

}
(3.14)

In the above, δ = (α − β) ∈ ]0,1[, a > 0, γ > 0, and α0
k = 〈u0|wk〉H . Clearly u0 ∈ L2(Ω)3, S0 ∈ L2(Ω)9 implies that∑+∞

k=1 |α0
k |2 < +∞ and

∑+∞
k=1 |bk|2 < +∞. Hence

‖u‖2
V =

+∞∑
k=1

λk
∣∣αk(t)

∣∣2 � M

tinf(δ,2−2δ)
−→

t→+∞ 0 (3.15)

and u0 ∈ C 0
b (R∗+, V ).

We use the equation that defines S given right below (see Eq. (137) in [15]). Then:

‖S‖L2(Ω)9 � M

[ +∞∑
k=1

λk
∣∣ρ ∗ αk(t)

∣∣2 + ∣∣W0(t)
∣∣‖S0‖L2(Ω)9

]
(3.16)

From (3.4) we see that∣∣W0(t)
∣∣ −→

t→+∞ 0 (3.17)

Moreover (see Eq. (130) in [15])

λk
∣∣ρ ∗ αk(t)

∣∣2 � M

[(
1

tδ
+ (tλ1/(2−δ)

k )δ

tδ
exp

[−atλ1/(2−δ)

k

])∣∣α0
k

∣∣2 +
(

1

t2ε
+ exp(−2at)

)
|bk|2

]
, ε > 0, a > 0

Hence

+∞∑
k=1

λk
∣∣αk(t)

∣∣2 � M

tinf(δ,2ε)
, for t � 1 (3.18)

Finally (see (3.16)–(3.18)): ‖S‖L2(Ω)9 −→
t→+∞ 0.

It follows that S ∈ C 0
b (R∗+, L2(Ω)9). The existence of at least one solution belonging to the functional space of (3.12) is

thus proved.
The uniqueness of such a solution results from Corollary 3.1 and from the fact that[

C 0(R+, H) ∩ C 0
b

(
R∗+, V

) ∩ L1
loc(R+, V )

] × [
C 0

b

(
R∗+, L2(Ω)9) ∩ L1

loc

(
R+, L2(Ω)9)] ⊂ F �

4. Functional spaces

In order to prove the continuity of the (u,S) at t = 0 we recall several classical functional spaces (see also [23] and [44]).
Denote εk = ∇wk√

λk
, k ∈ N∗ . Let Π : L2(Ω)9 → L2(Ω)9 be the orthogonal projection operator of L2(Ω)9 onto

[Vect(εk)k∈N∗ ]⊥ , θ � 0.
For any f ∈ L2(Ω)9, denote ‖f‖2

Dθ
:= ∑+∞

q=1 λθ
q |〈f|εq〉L2(Ω)9 |2 + ‖Π(f)‖2

L2(Ω)9 . Let Dθ := {f ∈ L2(Ω)9 s.t. ‖ f ‖Dθ < +∞}.

For any f,g ∈ Dθ , denote 〈f|g〉Dθ := ∑+∞
q=1 λθ

q 〈f|εq〉L2(Ω)9 〈g|εq〉L2(Ω)9 +〈Π(f)|Π(g)〉
L2(Ω)9 . The functional space (Dθ , 〈 | 〉Dθ )

is a Hilbert space.
For any f ∈ H , let ‖f‖2

Hθ
:= ∑+∞

q=1 λθ
q |〈f|wq〉H |2. Next, let Hθ := {f ∈ H, ‖f‖Hθ < +∞}. For any f , g ∈ Hθ , 〈 f |g〉Hθ :=∑+∞

k=1 λθ
q 〈 f |wk〉H 〈g|wk〉H . As the sequence (wk)k∈N∗ is complete in L2(Ω)9, the functional space (Hθ , 〈 | 〉Hθ ) is a Hilbert

space.
Remark that, for any 0 � θ � θ ′ � 1 � θ ′′ , one has:

H = H0 ←↩ Hθ ←↩ Hθ ′ ←↩ H1 = V ←↩ Hθ ′′ (4.1)

L2(Ω)9 = D0 ←↩ Dθ ←↩ Dθ ′ ←↩ D1 ←↩ Dθ ′′ (4.2)

The above injections are dense; use of them will be often made from now on.
The following �θ spaces are closely related to the Dθ ones. Let P : L2(Ω)9 → L2(Ω)9 be the orthogonal projection

operator from L2(Ω)9 onto [⋃+∞{εk,ε
T }]⊥ .
k=1 k
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Let θ ∈ R. For any element f ∈ L2(Ω)9, denote

‖f‖2
�θ

=
+∞∑
q=1

λθ
q

∣∣〈f|εq〉L2(Ω)9

∣∣2 +
+∞∑
q=1

λθ
q

∣∣〈f|εT
q

〉
L2(Ω)9

∣∣2 + ∥∥P (f)
∥∥2

L2(Ω)9 (4.3)

For any θ � 0, �θ := {f ∈ L2(Ω)9 s.t. ‖f‖�θ < +∞}. The functional space �θ endowed with the inner product defined as:
∀f ∈ �θ , ∀g ∈ �θ ,

〈f|g〉�θ =
+∞∑
q=1

λθ
q〈f|εq〉L2(Ω)9〈g|εq〉L2(Ω)9 +

+∞∑
q=1

λθ
q

〈
f|εT

q

〉
L2(Ω)9

〈
g|εT

q
〉
L2(Ω)9 + 〈

P (f)|P (g)
〉
L2(Ω)9 (4.4)

is a Hilbert space.
For any θ < 0, let �θ denote the topological dual space of �−θ , i.e. �θ = (�−θ )

′ . The space �θ is the completion of
(L2(Ω)9,‖ ‖�θ ). Next, note that whenever 0 � γ � γ̃ , the following injections L2(Ω)9 = �0 ←↩ �γ ←↩ �γ̃ are dense. It re-
sults that �−γ̃ ←↩ �−γ = (�γ )′ ←↩ (L2(Ω)9)′ � L2(Ω)9 = �0 ←↩ �γ ←↩ �γ̃ , invoking the fact that L2(Ω)9 and (L2(Ω)9)′
are isomorphic to each other.

Next, for any f ∈ H1
0(Ω)9, one has:

‖f‖2
�1

=
+∞∑
q=1

λq
∣∣〈f|εq〉L2(Ω)9

∣∣2 +
+∞∑
q=1

λq
∣∣〈f|εT

q

〉
L2(Ω)9

∣∣2 + ∥∥P (f)
∥∥2

L2(Ω)9

=
+∞∑
q=1

∣∣〈∇ · f|wq〉L2(Ω)3

∣∣2 + ∣∣〈∇ · fT |wq
〉
L2(Ω)3

∣∣2 + ∥∥P (f)
∥∥2

L2(Ω)3

� K‖f‖2
H1

0(Ω)9 (4.5)

due to the Poincaré’s inequality. Consequently H1
0(Ω)9 ↪→ �1 and the restriction r : �′

1 → H−1(Ω)9, such that T
r�→ T |H1

0(Ω)9

is continuous.

Lemma 4.1. Let θ ∈ R+ .

(a) The sequence (εk)k∈N∗ is orthogonal in Dθ . Moreover, ‖εk‖Dθ = λ
θ/2
k .

(b) The sequence (εT
k )k∈N∗ is orthogonal in Dθ .

(c) The sequence (εk + εT
k )k∈N∗ is orthogonal in Dθ , and ‖εk + εT

k ‖Dθ = (1 + λθ
k )1/2 .

(d) The sequence (wk)k∈N∗ is orthogonal in Hθ , and ‖wk‖Hθ = λ
θ/2
k .

(e) Let f ∈ L2(Ω)9 . Denote f = ∑+∞
k=1 akεk + ∑+∞

k=1 bkε
T
k + P (f). Then:

‖f‖2
�−θ

=
+∞∑
k=1

λ−θ
k

(|ak|2 + |bk|2
) + ∥∥P (f)

∥∥2
L2(Ω)9 .

Proof. Observe that (cf. Eq. (2.5)) for any (k,q) ∈ N∗2:

〈εk|εq〉L2 = 〈wk|wq〉L2 = δkq (4.6)

On the other hand, since ∇ · wk = 0,

〈
εk|εT

q

〉
L2 =

∑
i, j

∫
Ω

∂(wk)i

∂x j
(x)

∂(wq) j

∂xi
(x)dx =

∫
Ω

(∑
i

∂(wk)i

∂x j
(x)

)(∑
j

∂(wq) j

∂xi
(x)

)
dx = 0 (4.7)

Hence 〈
εk|εT

q

〉
L2 = 0 (4.8)

The statements (a) to (e) result from Eqs. (4.6)–(4.8). �
Except for the injection H2k ↪→ H2k(Ω)3 (see below), the following description of the spaces will not be used in this

paper.
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Let first θ ∈ [0,1].
Let Λ : V → H , such that Λ(

∑
k∈N∗ akwk) = ∑

k∈N∗ ak
√

λkwk . Then, for any (u,v) ∈ V 2, 〈Λu|Λv〉H = 〈u|v〉V , and Hθ =
D(Λθ ) = [V , H]1−θ , where [V , H]1−θ stands for the holomorphic interpolation of spaces V and H , and D(Λθ ) for the

domain of Λθ . Denote H0
0(Ω) ≡ L2(Ω). Let the canonical injection H

i
↪→ H0

0(Ω)3 and V
i|V
↪→ H1

0(Ω)3 be its restriction.

Then Hθ = [V , H]1−θ

i|[V ,H]1−θ
↪→ [H1

0(Ω)3, H0
0(Ω)3]1−θ ↪→ Hθ

0(Ω)3 (the last continuous injection ↪→ boils down to an
equality = whenever θ �= 1/2). Let now γn denote the normal-trace application. It is well known that H = {u ∈
H0(Ω)3, s.t. ∇ · u = 0, γn(u) = 0}. From the preceding arguments it results that we have the continuous injection
Hθ ↪→ H ∩ Hθ

0(Ω)3 = {u ∈ Hθ
0(Ω)3, s.t. ∇ · u = 0, γn(u) = 0}, with the space H ∩ Hθ

0(Ω)3 being endowed with the Hθ
0(Ω)3

topology.
Let now θ ∈ N∗ .
As quoted on p. 106 in [44], H2 = D(Λ2) = H2(Ω)3 ∩ V . Also, invoking Agmon–Douglis–Nirenberg’s Theorem as stated

on p. 832 in [8], leads to H2k = D(Λ2k) ↪→ H2k(Ω)3 ∩ V , k ∈ N∗ . Here H2k(Ω) are classical Sobolev spaces.

5. The continuity of the solution (u,S) at t = 0

From now on (u,S) denotes the solution to Eqs. (2.1)–(2.2), with initial data (u0,S0) ∈ H × L2(Ω)9 (see Theorem 3.1).
In order to prove continuity results we recall several representation formulas for u and S. First, functions αk , k ∈ N∗ , are
defined by Eqs. (3.11a)–(3.11b). Equivalently, for x ∈ R+ (see [15]),

αk(t) = 1

2π

[
lim

A→+∞

+A∫
−A

Tλk (x + iy)e(x+iy)t dy α0
k − lim

A→+∞

+A∫
−A

(Tλk w)(x + iy)e(x+iy)t dy
√

λkbk

]
(5.1)

with Tμ(s) = s1−β (sα+1)

s2−β (sα+1)+μ
, w(s) = 1

s1−α(sα+1)
, μ ∈ R+ , s ∈ C − R− , and α0

k = 〈u0|wk〉H , bk = ∫
Ω

(S0 : ∇wk)(x)dx.

Notice that Eq. (5.1) is given in [15] only for x � M . The general result (x ∈ R+) follows from a simple use of the Cauchy
formula; details are omitted. Regarding function S, recall the following formula from [15]:

S =
+∞∑
k=1

(ρ ∗ αk) ⊗ (∇wk + ∇T wk
) + W0 ⊗ S0 (5.2)

Notation h = f ⊗ g means h(x, y) = f (x)g(y). As quoted in [15], the series in (5.2) converges in C 0(R∗+, L2(Ω)9) and in

L2
loc(R+, L2(Ω)9). Here ρ = Eα ∗ t−β

Γ (1−β)
, and 0 < ρ(t) � kt−δ (see [15]), δ = β − α.

The following estimate will give the continuity at t = 0 of (u,S).

Lemma 5.1. For any μ0 > 0, ∃M > 0, such that ∀(x, t) ∈ (R+)3 × R+ , and ∀μ � μ0 , we have:

lim
A→∞

∣∣∣∣∣
+A∫

−A

Tμw(x + iy)e(x+iy)t dy

∣∣∣∣∣ �
+∞∫

−∞

∣∣(Tμw)(iy)
∣∣ dy � M

μ1/(2−δ)
(5.3)

Proof. Whenever y > 0, |(Tμw)(iy)| = 1
|y|δ

1
|μ+(yeiπ/2)2−δ+(yeiπ/2)2−β | . Therefore,

∣∣μ + (
yeiπ/2)2−δ + (

yeiπ/2)2−β ∣∣ �
∣∣Im[

μeiπ(β−2)/2 + y2−δeiπα/2 + y2−β
]∣∣

�
∣∣−μ sin(πβ/2) + y2−δ sin(πα/2)

∣∣
� μ sin(πβ/2) − y2−δ sin(πα/2)

� Kμ, for y � μ1/(2−δ) (5.4)

The constant K = sin(πβ/2) − sin(πα/2) > 0 is independent of μ. Moreover,∣∣μ + (
yeiπ/2)2−δ + (

yeiπ/2)2−β ∣∣ �
∣∣Im[

μ + (
yeiπ/2)2−δ + (

yeiπ/2)2−β]∣∣
= ∣∣y2−δ sin(π − πδ/2) + y2−β sin(π − πβ/2)

∣∣
= ∣∣y2−δ sin(πδ/2) + y2−β sin(πβ/2)

∣∣
� K y2−δ, for y � μ

1/(2−δ)

0 (5.5)
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From the above estimates we infer that:

+∞∫
0

∣∣(Tμw)(iy)
∣∣ dy =

μ1/(2−δ)∫
0

dy

yδ|μ + (yeiπ/2)2−δ + (yeiπ/2)2−β | +
+∞∫

μ1/(2−δ)

dy

yδ|μ + (yeiπ/2)2−δ + (yeiπ/2)2−β |

�
μ1/(2−δ)∫

0

K

μyδ
dy +

+∞∫
μ1/(2−δ)

K

yδ y2−δ
dy

� M

μ1/(2−δ)
(5.6)

A similar estimate can be obtained for
∫ 0
−∞ |(Tμw)(iy)|dy. Combining these results achieves the proof. �

Denote, δ = β − α, ω = δ/(2 − δ) and notice that 0 < ω < δ < 1. From now on we shall sometimes write αk(u0,S0)

instead of αk; of course αk is linear w.r.t. initial data (u0,S0). Most of the following estimates are already proved in [15],
save for those derived from Lemma 5.1.

Proposition 5.1. Let u0 ∈ H, S0 ∈ L2(Ω)9 . Then exists ∃M > 0, such that, ∀t ∈ R+ and ∀k ∈ N∗ ,

(i) |αk(t)|2 � M(|α0
k |2 + λ−ω

k |bk|2);

(ii) λk|αk(t)|2 � M(
|α0

k |2
t2−δ + |bk|2

t2−2δ );
(iii) for any μ ∈ [0,1] and any τ ∈ [0,1],

∣∣αk(t)
∣∣2 � M

( |α0
k |2

λ
μ
k tμ(2−δ)

+ |bk|2
λ
τ+(1−τ )ω
k t2τ (1−δ)

)
(iv) for any μ ∈ [0,1] and any τ ∈ [0,1],

λk|ρ ∗ αk|2(t) � M

( |α0
k |2

λ
μ−1
k tμ(2−δ)+2(δ−1)

+ |bk|2
λ

−(1−τ )(1−ω)

k t−2(1−τ )(1−δ)

)

Proof. (i) Since αk is linear with respect to (u0,S0), we have, by Eq. (121) in Theorem 8.1 in [15] and Eq. (5.1):

∣∣αk(u0,S0)
∣∣2 � 2

∣∣αk(u0,0)
∣∣2 + 2

∣∣αk(0,S0)
∣∣2 � M

(∣∣α0
k

∣∣2 +
∣∣∣∣∣

+∞∫
−∞

(Tλk w)(iy)eiyt dy
√

λkbk

∣∣∣∣∣
2)

(5.7)

Invoking Lemma 5.1 we get

∣∣αk(u0,S0)
∣∣2 � M

(∣∣α0
k

∣∣2 + |bk|2λk

λ
2(2−δ)

k

)
(5.8)

which gives (i).
(ii) Estimate (ii) is obtainable right away from Eq. (122) in Theorem 8.1 in [15], with MT instead of M . The proof that M

can be chosen independently of T is deferred until Corollary 6.1 in Section 6. Hence we take here M independent of T and
proceed further on.

(iii) Notice first that (ii) above gives

∣∣αk(u0,0)
∣∣2

(t) �
M|α0

k |2
λkt2−δ

(5.9)

and ∣∣αk(0,S0)
∣∣2

(t) � M|bk|2
λkt2−2δ

(5.10)

Next, combining Eqs. (5.9) and (5.8) with S0 = 0 on one hand, and Eqs. (5.10) and (5.8) with u0 = 0 on the other, making
further use of Eq. (5.7) leads to estimate (iii).
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(iv) Since 0 � ρ(t) � K/tδ , estimate (iii) gives√
λk|ρ ∗ αk|(t) �

√
λk

(
ρ ∗ |αk|

)
(t) � M

( √
λk|α0

k |
λ
μ/2
k tμ(2−δ)/2+δ−1

+
√

λk|bk|
λ

[τ+ω(1−τ )]/2
k tτ (1−δ)+δ−1

)
from which (iv) is obtained. �

In order to work on spaces Hθ and Dγ , we need to reformulate Proposition 5.1. Let [ ]+ denote the positive part of a
real number.

Lemma 5.2. Let u0 ∈ H, S0 ∈ L2(Ω)9 , and 0 � γ � θ � γ + 1. Then ∃M > 0, so that ∀t � 0,

(i) λθ
k

∣∣αk(t)
∣∣2 � M

(
λθ

k

∣∣α0
k

∣∣2 + |λk|γ |bk|2
t2(1−δ)[(θ−γ −ω)/(1−ω)]+

)

(ii) λ
γ
k

〈
λk

∣∣ρ ∗ αk(t)
∣∣2

(t)
〉
� M

(
λθ

k

∣∣α0
k

∣∣2
tδ(θ−γ −ω)/ω + λ

γ
k |bk|2

)
Proof. (i) Assume 0 � γ � θ � γ + ω. Multiplying (i) of Theorem 5.1 by λθ

k leads to λθ
k |αk(t)|2 � A[λθ

k |α0
k |2 + λθ−ω

k |bk|2].
Since mink�1 λk > 0 and θ − ω � γ , one gets λθ

k |αk(t)|2 � M[λθ
k |α0

k |2 + λ
γ
k |bk|2].

Assume now that 0 � γ + ω � θ � γ + 1. Use part (iii) of Theorem 5.1 with μ = 0 and τ = θ−γ −ω
1−ω ∈ [0,1]. A simple

calculation leads to τ + (1 − τ )ω = τ (1 − ω) + ω = (θ − γ − ω) + ω = θ − γ . Henceforth,∣∣αk(t)
∣∣2 � M

(∣∣α0
k

∣∣2 + |bk|2
λ

θ−γ
k t2(1−δ)(θ−γ −ω)/(1−ω)

)

which leads to (i).
(ii) Assume 0 � γ � θ � γ + 1. Letting μ = γ − θ + 1 ∈ [0,1] and τ = 1 in part (iv) of Lemma 5.1, gives μ(2 − δ) +

2(δ − 1) = (γ − θ)(2 − δ) + δ = −δ(θ − γ − ω)/ω. Hence

λk|ρ ∗ αk|2(t) � M

( |α0
k |2

λ
γ −θ

k t−δ(θ−γ −ω)/ω
+ |bk|2

)
which gives (ii). �

As a consequence, we have:

Corollary 5.1. Let 0 � γ � θ � γ + 1, u0 ∈ Hθ , S0 ∈ Dγ . Then u ∈ C 0(R∗+, Hγ +1). In addition:

(a) Whenever 0 � γ � θ � γ + ω, u ∈ C 0(R+, Hθ ), and S ∈ C 0(R∗+, Dγ ); moreover, u(0) = u0 .
(b) Whenever 0 � γ + ω � θ , u ∈ C 0(R+, Hγ +ω), and S ∈ C 0(R+, Dγ ); moreover, u(0) = u0 and S(0) = S0 .

In both cases, for any t � 0,∥∥u(t)
∥∥

Hθ
� M

(
‖u0‖Hθ + ‖S0‖Dγ

t(1−δ)[(θ−γ −ω)/(1−ω)]+

)
(5.11)∥∥S(t)

∥∥
Dγ

� M
(
tδ(θ−γ −ω)/(2ω)‖u0‖Hθ + ‖S0‖Dγ

)
(5.12)

Proof. We first prove that u ∈ C 0(R∗+, Hγ +1).
From (d) of Lemma 4.1 and (ii) in Proposition 5.1, we reckon that, for any N � M and t ∈ [T1, T2], where 0 < T1 < T2,∥∥∥∥∥

M∑
k=N

αk(t)wq

∥∥∥∥∥
2

Hγ +1

=
M∑

k=N

∣∣αk(t)
∣∣2

λ
γ +1
k � MT

+∞∑
k=N

[
λ
γ
k |α0

k |2
T 2−δ

1

+ λ
γ
k |bk|2

T 2(1−δ)
1

]
(5.13)

Since γ � θ , we have that u0 ∈ Hθ ⊂ Hγ . Also S0 ∈ Hγ . Hence Eq. (5.13) implies that

sup
t∈[T1,T2]

∥∥∥∥∥
M∑

k=N

αk(t)wq

∥∥∥∥∥ −→
N→+∞ 0 (5.14)
Hγ +1
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Finally, as αk ∈ C 0(R+), from (5.14) above we deduce that u = (
∑+∞

k=N αk ⊗ wq) ∈ C 0(R∗+, Hγ +1).
Next we proceed with the rest of the proof.
(a) Let us prove that S ∈ C 0(R∗+, Dγ ). For any N � M , by (c) of Lemma 4.1 and by (ii) of Lemma 5.2,∥∥∥∥∥

M∑
k=N

(ρ ∗ αk)(t)
(∇wk + ∇T wk

)∥∥∥∥∥
2

Dγ

=
M∑

k=N

∣∣ρ ∗
(t)

αk
∣∣2(

1 + λ
γ
k

)
λk � K

+∞∑
k=N

[
λθ

k

∣∣α0
k

∣∣2
tδ(θ−γ −ω)/ω + λ

γ
k |bk|2

]
(5.15)

Since u0 ∈ Hθ , and S0 ∈ Dγ , then
∑+∞

k=1(ρ ∗ αk)(t)(∇wk + ∇T wk) is uniformly convergent w.r.t. t on any compact subset
[T0, T1] ⊂ R∗+ , in Dγ . Given that αk ∈ C 0(R+), and that ρ ∈ L1

loc(R+) and hence (ρ ∗ αk) ∈ C 0(R+), we conclude that∑+∞
k=1(ρ ∗ αk) ⊗ (∇wk + ∇T wk) ∈ C 0([T0, T1], Dγ ). As W0 ∈ C 0(R+), one gets that (see (5.2))

S =
+∞∑
k=1

(ρ ∗ αk) ⊗ (∇wk + ∇T wk
) + W0 ⊗ S0 ∈ C 0(R+, Dγ ) (5.16)

The inequality (5.12) results from Eq. (5.15) by letting N = 1, M = +∞, and from the fact that ‖W0(t)S0‖Dγ �
‖W0‖∞‖S0‖Dγ for any t ∈ R+ , since W0 ∈ L∞(R+) ∩ C 0(R+). In a similar way we prove that u ∈ C 0(R+, Hθ ).

The inequality (5.11) is a consequence of (i) in Lemma 5.2 and of the fact that u ∈ C 0(R+, Hθ ). Finally, as Hθ ↪→ H and
limt→0 u(t) = u0 in H (see Theorem 8.4 in [15]), limt→0 u(t) = u0 in Hθ .

(b) Whenever θ � ω + γ , u0 ∈ Hγ +ω and S0 ∈ Dγ . The inequalities (i) and (ii) of Lemma 5.2, for θ ′ = ω + γ and γ ′ = γ ,
read

λθ ′
k

∣∣αk(t)
∣∣2 � M

(
λθ ′

k

∣∣α0
k

∣∣2 + λ
γ ′
k |bk|2

)
λ
γ ′
k

(
λk|ρ ∗ αk|2(t)

)
� M

(
λθ ′

k

∣∣α0
k

∣∣2 + λ
γ ′
k |bk|2

)
The proof of (i) of Lemma 5.2 entails the uniform convergence (with respect to t on [0,+∞[) of

∑+∞
k=1(ρ ∗αk)(t)(∇wk +

∇T wk) in Dγ .
Therefore S ∈ C 0(R+, Dγ ). Moreover, as W0(0) = 1, we get (see (5.2)) S(0) = ∑+∞

k=1(ρ ∗ αk)(0)(∇wk + ∇T wk) +
W0(0)S0 = S0. Arguing as in (a) above one proves that: u ∈ C 0(R+, Hγ +ω) and u(0) = u0. �

In the case γ � 0 and θ = γ + ω we get the continuity of (u,S) at t = 0:

Theorem 5.1 (Existence theorem). Let γ � 0. Assume that u0 ∈ Hγ +ω and S0 ∈ Dγ . Then the system of Eqs. (2.1)–(2.2) has at least
one solution (u,S) ∈ [C 0(R+, Hγ +ω)∩C 0(R∗+, V )∩ L p

loc(R+, V )]×C 0(R+, Dγ ), p ∈ [1,2/(2 − δ)[. Moreover, ∃A > 0, such that
∀t ∈ R+ ,∥∥u(t)

∥∥
Hγ +ω

+ ∥∥S(t)
∥∥

Dγ
� A

(‖u0‖Hγ +ω + ‖S0‖Dγ

)
The statement (a) of Corollary 5.1 says that, for any 0 � γ � θ � γ +ω, u0 ∈ Hθ , S0 ∈ Dγ , and S ∈ C 0(R∗+, Hγ ). This does

not ensure continuity at t = 0. Nevertheless, for 0 � γ � θ � γ + ω, θ � ω and still holding on the assumptions u0 ∈ Hθ

and S0 ∈ Dγ , we have S0 ∈ Dθ−ω . Therefore (see Theorem 5.1) S ∈ C 0(R+, Dθ−ω), and u ∈ C 0(R+, Dθ ).
From now on we shall focus on the case 0 � γ � θ � ω < 1. Proceeding as previously we get:

Lemma 5.3. Assume that 0 � γ � θ � ω � 1, u0 ∈ Hθ and S0 ∈ Dγ . Then ∃M > 0, such that for any t � 0,

λθ
k

∣∣αk(t)
∣∣2 � M

(
λθ

k

∣∣α0
k

∣∣2 + λθ−ω
k |bk|2

)
(5.17)

and

λθ−ω
k

(
λk|ρ ∗ αk|2(t)

)
� M

[
λθ

k

∣∣α0
k

∣∣2 + λθ−ω
k |bk|2

]
(5.18)

Proof. Eq. (5.17) follows from part (i) in Proposition 5.1. Next, we use part (iv) in Lemma 5.1 with μ = 1 − ω and τ = 1. It
gives μ − 1 = −ω and μ(2 − δ) + 2(δ − 1) = [1 − δ/(2 − δ)](2 − δ) + 2δ − 2 = 0. Henceforth,

λk
(|ρ ∗ αk|2(t)

)
� M

(
λω

k

∣∣α0
k

∣∣2 + |bk|2
)

which ends the proof. �
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Hence:

Corollary 5.2. Assume 0 � γ � θ , u0 ∈ Hθ and S0 ∈ Dγ .

(a) Whenever θ � ω, u ∈ C 0(R+, Hθ ), and S ∈ C 0(R+, Dθ−ω). Moreover, ∃A > 0 s.t. ∀t � 0:∥∥u(t)
∥∥

Hθ
+ ∥∥S(t)

∥∥
Dθ−ω

� A
(‖u0‖Hθ + ‖S0‖Dθ−ω

)
(5.19)

(b) whenever θ � ω, u ∈ C 0(R+, Hθ ), and S ∈ C 0(R+,�θ−ω). Moreover, ∃A > 0 s.t. ∀t � 0:∥∥u(t)
∥∥

Hθ
+ ∥∥S(t)

∥∥
�θ−ω

� A
(‖u0‖Hθ + ‖S0‖�θ−ω

)
(5.20)

Proof. (a) The proof is a direct consequence of the discussion preceding Lemma 5.3.

(b) That u ∈ C 0(R+, Hθ ) is a consequence of part (a) of Corollary 5.1. Next, Lemma 5.3 and part (e) of Lemma 4.1 imply
that, for any M � N ,∥∥∥∥∥

N∑
k=M

(ρ ∗ αk)(t)
(∇wk + ∇T wk

)∥∥∥∥∥
2

�θ−ω

= 2
N∑

k=M

λθ−ω
k

(
λk

∣∣ρ ∗
(t)

αk
∣∣2) � M

N∑
k=M

(
λθ

k

∣∣α0
k

∣∣2 + λθ−ω
k |bk|2

)
(5.21)

Since u0 ∈ Hθ , S0 ∈ Dγ ↪→ L2(Ω)9 ↪→ �θ−ω , we get by Eq. (5.21) and Eq. (5.2) that

(S − W0 ⊗ S0) ∈ C 0(R+,�θ−ω) (5.22)

Moreover, W0 ∈ C 0(R+) and S0 ∈ Dγ ↪→ �θ−ω . Therefore, by Eq. (5.22), S ∈ C 0(R+,�θ−ω). Inequality (5.20) follows
right away after invoking Eqs. (5.17), (5.2), and (5.21) with M = 1 and N = +∞, and that W0 ∈ L∞(R+) and S0 ∈ �θ−ω . �
Remark 5.1. Using part (b) in Corollary 5.2 and by a density argument one may prove that, for u0 ∈ H and S0 ∈ �−ω , the
system of Eqs. (1.9) has a weak solution (u,S) ∈ C 0(R+, H) × C 0(R+,�−ω). Of course the integrals have to be replaced by
inner product functionals.

Corollary 5.3. Assume 0 � γ � θ � ω � 1, u0 ∈ Hθ and S0 ∈ Dγ . Then u ∈ C 0(R+, Hθ ), and S ∈ C 0(R+, H−1(Ω)9). Moreover
u(0) = u0 , S(0) = S0 .

Proof. Corollary 5.2 states that S ∈ C 0(R+,�θ−ω). Therefore (see Section 4), the mapping of R+ into H−1(Ω)9 defined by

R+
S→ �θ−ω

i
↪→ �−1

r→ H−1(Ω)9, is continuous; the corollary statement follows right away. �
Hence, to the first existence and uniqueness theorem, we can add the following conclusion: S ∈ C 0(R+,�−ω) ↪→

C 0(R+, H−1(Ω)9) and S(0) = S0.
We now give a second existence and uniqueness theorem in Hγ +ω × Dγ spaces.

Theorem 5.2 (Second existence and uniqueness theorem). Let γ � 0. Assume that u0 ∈ Hγ +ω , S0 ∈ Dγ . Then the boundary value
problem given by the system of Eqs. (2.1)–(2.2) has a unique solution

(u,S) ∈ [
C 0(R+, Hγ +ω) ∩ C 0

b

(
R∗+, V

) ∩ L1
loc(R+, V )

] × [
C 0(R+, Dγ ) ∩ L∞(R+, Dγ )

]
(5.23)

Moreover, there exists A > 0, independent of u, such that, for any t � 0,∥∥u(t)
∥∥

Hγ +ω
+ ∥∥S(t)

∥∥
Dγ

� A
(‖u0‖Hγ +ω + ‖S0‖Dγ

)
(5.24)

Lastly, u(0) = u0 , S(0) = S0 .

Proof. The solution uniqueness is a consequence of the following inclusions: Hγ +ω ↪→ H , Dγ ↪→ L2(Ω)9, [C 0(R+, Hγ +ω)∩
C 0

b (R∗+, V ) ∩ L1
loc(R+, V )] × [C 0(R+, Dγ ) ∩ L∞(R+, Dγ )] ⊂ F , and of Corollary 3.1.

The existence of a solution (u,S) ∈ [C 0(R+, Hγ +ω) ∩ C 0(R∗+, V ) ∩ L1
loc(R+, V )] × [C 0(R+, Dγ )] follows from Theo-

rem 5.1. In addition, the last estimate in Theorem 5.1 grants that S ∈ L∞(R+, Dγ ). Next, that ‖u(t)‖V −→
t→+∞ 0 was proved in

the first existence and uniqueness theorem presented above. Based on this fact, we infer that u ∈ C 0
b (R∗+, V ), which ends

the proof of solution existence.
The estimate (5.24) is a consequence of Theorem 5.1. �
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6. The smoothness of solutions.

The following estimates will be used in proving the smoothness of solutions. They generalize those previously obtained
in [15].

Proposition 6.1. ∃M > 0, s.t. ∀(τ ,χ) ∈ [0,1]2 , ∀(x, t) ∈ R+ , ∀μ � λ1 , one has:

(a)

∣∣∣∣∣ lim
A→+∞

+A∫
−A

Tμ(x + iy)e(x+iy)t dy

∣∣∣∣∣ � M

μχ/(2−δ)tχ

(b)
√

μ

∣∣∣∣∣ lim
A→+∞

+A∫
−A

Tμw(x + iy)e(x+iy)t dy

∣∣∣∣∣ � M

μ[ω(1−τ )+τ ]/2tτ (1−δ)

Proof. We only have to prove these estimates for χ = 0 and χ = 1, τ = 0 and τ = 1.
(a) The case χ = 0 has already been addressed in Lemmas 7.4 and 7.2 in [15].
We now prove the case χ = 1. Lemma 7.4 and inequality (70) in [15] give, for suitable κ > 0 and B > 0,∣∣∣∣∣ lim

A→+∞

+A∫
−A

Tμ(x + iy)e(x+iy)t dy

∣∣∣∣∣ � K

[ +∞∫
0

∣∣Tμ

(
zeiπ ) − Tμ

(
ze−iπ )∣∣e−zt dz + e−κtμ1/(2−δ)

]

� K

[ +∞∫
0

u1−δ + λ
−(1−δ)/(2−δ)

1

(u2−δ + B)2
e−utμ1/(2−δ)

du + e−κtμ1/(2−δ)

]
(6.1)

It implies that:∣∣∣∣∣ lim
A→+∞

+A∫
−A

Tμ(x + iy)e(x+iy)t dy

∣∣∣∣∣ � K

[ +∞∫
0

e−utμ1/(2−δ)

du + 1

tμ1/(2−δ)

]
� A

tμ1/(2−δ)
(6.2)

which gives the statement in (a) for χ = 1.
(b) The case τ = 0 is addressed in Lemma 5.1. The case τ = 1: from (iii) in Lemma 7.5 in [15] we get

√
μ

∣∣∣∣∣ lim
A→+∞

+A∫
−A

Tμw(x + iy)e(x+iy)t dy

∣∣∣∣∣ � K

μt1−δ
+ K e−atμ1/(2−δ)

μ1/2−δ
� M

μt1−δ
(6.3)

as suptμ1/(2−δ)�0 |(tμ1/(2−δ))1−δe−atμ1/(2−δ) | � M < +∞. �
As a consequence we have the following extensions of estimates (iii) and (iv) of Theorem 5.1.

Corollary 6.1. Let u0 ∈ H, S0 ∈ L2(Ω)9 . Then:

(a) ∃M > 0, ∀T � 0, s.t. ∀γ ∈ [0, 1
2−δ

], ∀τ ∈ [0,1], ∀t ∈ [0, T ] and ∀k ∈ N∗ ,

∣∣αk(t)
∣∣2 � M

( |α0
k |2

λ
2γ
k t2γ (2−δ)

+ |bk|2
λ
τ+ω(1−τ )

k t2τ (1−δ)

)
(b) ∃M > 0, ∀T � 0, s.t. ∀γ ∈ [0,1], ∀τ ∈ [0, 1

2−δ
], ∀t ∈ [0, T ] and ∀k ∈ N∗ ,

λk|ρ ∗ αk|2(t) � M

( |α0
k |2

λ
2γ −1
k t2[γ (2−δ)+δ−1] + |bk|2

λ
−(1−τ )(1−ω)

k t−2(1−τ )(1−δ)

)

Proof. (a) The statement in (a) follows from (5.1) and Proposition 6.1 (with γ = χ
2−δ

).
(b) The statement follows from (a) above by convolution. �
We deduce from Corollary 6.1:
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Proposition 6.2. Let γ � 0, η > 0. Then:

(a) Assume u0 ∈ H1+γ +ω and S0 ∈ D1+γ . Then u ∈ C 1(R+, Hγ ).

(b) Assume u0 ∈ H3+γ −ω+η and S0 ∈ D3+γ . Then u ∈ C 2(R∗+, Hγ ) ∩ W 2,p
loc (R+, Hγ ), p ∈ [1,1/(1 − α)[.

Proof. (a) Based on Eq. (3.11a) and W0 ∈ L∞(R+), we infer that:

λ
γ
k

∣∣α′
k(t)

∣∣2 � λ
1+γ
k

(
λk|ρ ∗ αk|2(t)

) + λ
1+γ
k |bk|2‖W0‖2∞ (6.4)

Now, Lemma 5.2 with θ = γ + ω, leads to

λ
1+γ
k

(
λk|ρ ∗ αk|2(t)

)
� Aλk

(
λ
γ +ω
k

∣∣α0
k

∣∣2 + λ
γ
k |bk|2

)
(6.5)

From Eqs. (6.4)–(6.5),

λ
γ
k

∣∣α′
k(t)

∣∣2 � A
(
λ

1+γ +ω
k

∣∣α0
k

∣∣2 + λ
1+γ
k |bk|2

)
(6.6)

Since u0 ∈ H1+γ +ω and S0 ∈ D1+γ , λ
γ
k |α′

k(t)|2 < +∞. Hence
∑+∞

k=1 α′
k ⊗ wk converges in C 0(R+, Hγ ). Since by

Lemma 5.2
∑+∞

k=1 αk ⊗ wk converges in C 0(R+, H1+γ ), it also converges in C 0(R+, Hγ ). Finally u ∈ C 1(R+, Hγ ).
(b) Observe that 1 + γ + ω � 3 + γ − ω + η and 1 + γ � 3 + γ . Consequently u0 ∈ H1+γ +ω , S0 ∈ H1+γ . Next, (a) above

ensures that u ∈ C 1(R+, Hγ ). We now deduce several estimates for the second order derivatives. From Eq. (3.11a) it follows

that, for t > 0, α′′
k (t) = −λk(ρ ∗ α′

k)(t) − √
λkbk W ′

0(t) = λ2
k (ρ ∗ ρ ∗ αk)(t) + λ

3/2
k bk(ρ ∗ W0)(t) − √

λkbk W ′
0(t) ∈ C 0(R∗+) since

αk ∈ C 0(R+), W0 ∈ C 0(R+) ∩ C 1(R∗+) and 0 � ρ(t) � kt−δ .
Let now ε > 0 be small enough. Part (a) in Corollary 6.1 with γ = (1 − ε)/(2 − δ) ∈ [0, 1

2−δ
], τ = 1 and |W ′

0(t)| � k
t1−α

(see [15]), gives

λ
γ /2
k

∣∣α′′
k (t)

∣∣ � MT λ
2+γ /2
k

[
t1−2δ ∗

( |α0
k |

λ
(1−ε)/(2−δ)

k t1−ε
+ |bk|

λ
1/2
k t1−δ

)]
+ MT λ

(1+γ )/2
k

(
λk

tδ−1
+ 1

t1−α

)
|bk|

� MT

(
λ

(3+γ )/2
k

tδ−1
+ λ

(1+γ )/2
k

t1−α

)
|bk| + MT

λ
2−(1−ε)/(2−δ)+γ /2
k

t2δ−ε−1

∣∣α0
k

∣∣ (6.7)

Observe that, for ε > 0 small enough, 2(3 + γ )/2 � 3 + γ and 2(γ + 1)/2 � 3 + γ . Also, for ε > 0 small enough,
2[2 + γ /2 − (1 − ε)/(2 − δ)] � 4 + γ − 2/(2 − δ) + η.

Hence, by (6.7), and since u0 ∈ H3+γ −ω+η = H4+γ −2/(2−δ)+η and S0 ∈ D3+γ , we get u ∈ C 2(R∗+, Hγ ). �
Proceeding as before (see Proposition 6.2) one obtains the following smoothness properties:

Proposition 6.3. Let γ � 0, η > 0.

(a) Assume u0 ∈ H2+γ −ω+η , S0 ∈ D2+γ . Then S ∈ C 1(R∗+, Dγ ) ∩ W 1,p
loc (R+, Dγ ), for any p ∈ [1,1/(1 − α)[.

(b) Assume u0 ∈ H4+γ −ω+η , S0 ∈ D4+γ . Then S ∈ C 2(R∗+, Dγ ).

Proof. (a) We limit the proof to the case 0 < η < ω. Denote ω̃ = ω − η; hence 0 < ω̃ < ω < 1.
Since u0 ∈ H2+γ −ω̃ , S0 ∈ D2+γ −ω̃−ω , based on Theorem 5.1, we have that S ∈ C 0(R+, D2+γ −ω̃−ω). Next, as 0 < ω̃ <

ω < 1 entails γ < 2 + γ − ω̃ − ω, one gets S ∈ C 0(R+, Dγ ).
Next we obtain an estimate for S′(t). Observe first that W0 ∈ L∞(R+) and that α′

k(t) = −λk(ρ ∗ αk)(t) − √
λkbk W0(t).

Therefore:

λ
γ /2
k

√
λk

∣∣ρ ∗ α′
k

∣∣ � Aλ
(γ +1)/2
k

[
λk

(
ρ ∗ ρ ∗ |αk|

) + √
λk

(
ρ ∗ |bk|

)]
(t)

Now, part (a) of Corollary 6.1, with δ̃ = 2ω̃/(1 + ω̃) < 2ω/(1 + ω) = δ, γ = 1/(2 − δ̃), δ̃ ∈ ]0, δ[, and τ = 1, gives∣∣αk(t)
∣∣ � MT

( |α0
k |

λ
1/(2−δ̃)

k t(2−δ)/(2−δ̃)
+ |bk|√

λkt1−δ

)
However, |ρ ∗ ρ|(t) � Kt1−2δ . Also, since 0 < δ̃ < δ, then (2 − δ)/(2 − δ̃) ∈ [0,1[. One infers that

λ
γ /2
k

√
λk

∣∣ρ ∗ α′
k

∣∣(t) � MT λ
1+γ /2
k

[√
λk

(
1

t2δ−1
∗ |α0

k |
λ

1/(2−δ̃)

k t(2−δ)/(2−δ̃)

)
+ √

λk

(
1

t2δ−1
∗ |bk|√

λkt1−δ

)
+ |bk|

tδ−1

]
� MT λ

1+γ /2(
λ

−ω̃/2t2−2δ−(2−δ)/(2−δ̃)|α0| + t1−δ|bk|
)

(6.8)
k k k



202 A. Heibig, L.I. Palade / J. Math. Anal. Appl. 380 (2011) 188–203
Let a = 2 − 2δ − (2 − δ)/(2 − δ̃) = 1 − 2δ + (δ − δ̃)/(2 − δ̃), and b = 1 − δ > 0. Then:∣∣λγ /2
k

√
λk

(
ρ ∗ α′

k

)∣∣2
(t) � MT

[
λ

2+γ −ω̃
k

∣∣α0
k

∣∣2
t2a + λ

2+γ
k t2b|bk|2

]
(6.9)

Recall that – as stated in (c) of Lemma 4.1 – that (∇wk + ∇T wk)k∈N∗ is an orthogonal sequence of functions that
belongs to Dγ , and ‖∇wk + ∇T wk‖2

Dγ
= (1 + λ

γ
k )λk . Consequently, using the estimate given above and that u0 ∈ H2+γ −ω̃ ,

S0 ∈ D2+γ , leads to the fact that
∑+∞

k=1(ρ ∗ α′
k) ⊗ (∇wk + ∇T wk) converges in C 0(R∗+, Dγ ). Next, from equation in [15],

W ′
0 ⊗ S0 ∈ C 0(R∗+, Dγ ). Therefore

∑+∞
k=1(ρ ∗ α′

k) ⊗ (∇wk + ∇T wk) + W ′
0 ⊗ S0 ∈ C 0(R∗+, Dγ ). Hence S ∈ C 1(R∗+, Dγ ).

Whenever a � 0, by Eq. (6.9),
∑+∞

k=1(ρ ∗ α′
k) ⊗ (∇wk + ∇T wk) + W ′

0 ⊗ S0 belongs to C 0(R+, Dγ ), thus belongs to
L p

loc(R+, Dγ ) for any 1 � p < +∞.

Now, whenever a < 0, −a − (1−α) = 2δ −2− (δ − δ̃)/(2− δ)−1+α = [−3− (δ − δ̃)/(2− δ)+ (2δ +α)] < 0. We conclude
that

∑+∞
k=1(ρ ∗ α′

k) ⊗ (∇wk + ∇T wk) converges in Lq
loc(R+, Dγ ), for any q ∈ [1,1/(1 − α)]. Moreover, from [15] we observe

that ‖W ′
0(t)S0‖Dγ � K/t1−α . It implies that W ′

0 ⊗ S0 ∈ Lq
loc(R+, Dγ ) for any q ∈ [1,1/(1 − α)[. Therefore

+∞∑
k=1

(
ρ ∗ α′

k

) ⊗ (∇wk + ∇T wk
) + W ′

0 ⊗ S0 ∈ Lq
loc(R+, Dγ )

for any q ∈ [1,1/(1 − α)[ and irrespective of whether a is positive or negative.
Eventually S ∈ W 1,q

loc (R+, Dγ ) for any q ∈ [1,1/(1 − α)[q ∈ [1,1/(1 − α)[.
(b) The proof is omitted. �
From Proposition 6.2 we can infer the existence of smooth solutions to Eqs. (1.9). Assume that u0 ∈ H5+ω and

S0 ∈ D5 ∩ C 1(Ω)9. Then, the solution (u,S) the existence of which is granted by Theorem 3.1 of Section 3, complies
with the statement (a) of Proposition 6.2, that is u ∈ C 1(R+, H4). Since H4 ↪→ H4(Ω) ↪→ C 2(Ω) (see Section 4 and by
Sobolev’s injection), one has u ∈ C 1(R+,C 2(Ω)3) and (∇u + ∇T u) ∈ C 1(R+,C 1(Ω)9). One also has S0 ∈ C 1(Ω)9, W0 ∈
C 0(R+) ∩ C 1(R∗+) and ρ ∈ L1

loc(R+). Consequently S = ρ ∗ (∇u + ∇T u) + W0 ⊗ S0 ∈ C 0(R+,C 1(Ω)9) ∩ C 1(R∗+,C 1(Ω)9).
All the precedent arguments eventually lead to the conclusion that (u,S) ∈ C 1(R+,C 2(Ω)3) × [C 0(R+,C 1(Ω)9) ∩
C 1(R∗+,C 1(Ω)9)], whenever u0 ∈ H5+ω and S0 ∈ D5 ∩ C 1(Ω)9.

7. Final comments

Fractional calculus has a long history that parallels the classical analysis [27,35,38]. It has long been used in modeling
natural phenomena: for a quick glimpse see for example [1–7,9–11,13,14,20–22,24,26,29,35,37,39,43,47–49], and references
cited therein. In particular, fractional derivative CEs have been found to accurately predict stress relaxation of viscoelastic
fluids in the glass transition and glassy (high frequency) states.

The results presented here enrich and complement the linear stability analysis within the framework of variational/weak
solutions initiated in [15]. We have proved results regarding existence, uniqueness, smoothness and continuity at t = 0 of the
solution to the initial boundary value problem stated in Section 1. Moreover, this work is related to that of Shaw, Whiteman
and co-workers on the well-posedness, existence and uniqueness of weak solutions for similar in nature hereditary-type
integral models (see for example [18,40–42]), as well as to that reported in [33,34,45].

The matter of the stability of the original nonlinear CE is an open question on which future work shall focus.
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