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In this paper, we define the generalized Kato spectrum of an operator, and obtain that the
generalized Kato spectrum differs from the semi-regular spectrum on at most countably
many points. We study the localized version of the single-valued extension property
at the points which are not limit points of the approximate point spectrum, as well
as of the surjectivity spectrum. In particular, we shall characterize the single-valued
extension property at a point λ0 ∈ C in the case that λ0 I − T admits a generalized Kato
decomposition. From this characterization we shall deduce several results on cluster points
of some distinguished parts of the spectrum.
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1. Introduction

Let B(X) denote the algebra of all bounded linear operators on an infinite-dimensional complex Banach space X . For
T ∈ B(X), let σ(T ) denote the spectrum of T and ρ(T ) := C \ σ(T ) be the resolvent set of T . R(T ) = T (X) denotes the
range of T , and ker T = N(T ) denotes the kernel of T .

Two important subspaces are the hyperrange of T , defined by T ∞(X) = ⋂∞
n=1 R(T n), and the hyperkernel of T defined by

N∞(T ) = ⋃∞
n=1 ker(T n). The algebraic core C(T ) of T is defined to be the greatest subspace M of X for which T (M) = M .

Associated with T ∈ B(X), there are another two linear subspaces of X , the analytical core K (T ) of T defined by

K (T ) := {
x ∈ X: there exist a sequence {xn}n�1 in X and a constant δ > 0 such that T x1 = x,

T xn+1 = xn and ‖xn‖ � δn‖x‖ for all n ∈ N
}
,

and the quasi-nilpotent part H0(T ) of T defined by

H0(T ) := {
x ∈ X: lim

n→∞
∥∥T nx

∥∥1/n = 0
}
.

The reduced minimum modulus of a non-zero operator T is defined to be γ (T ) := infx/∈ker T
‖T x‖

dist(x,ker T )
(for T = 0 we define

formally γ (T ) = ∞). Note that γ (T ) = γ (T ∗) for every T ∈ B(X) where T ∗ denotes the dual of T ; γ (T ) > 0 if and only if
R(T ) is closed [1, Theorem 1.23].

The lattice of invariant subspaces of an operator T is denoted as Lat(T ). A pair of closed subspaces (M, N) is said to
reduce T (denoted as (M, N) ∈ Red(T )), if X = M ⊕ N and M, N ∈ Lat(T ). For M ∈ Lat(T ), T |M denotes the restriction of T
to M . T ∈ B(X) is said to be semi-regular if T (X) is closed and ker T ⊂ R(T n) for all n ∈ N. T is said to admit a generalized
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Kato decomposition, abbreviated as GKD, if there exists (M, N) ∈ Red(T ) such that T |M is semi-regular and T |N is quasi-
nilpotent. If we assume in the definition above that T |N is nilpotent, then there exists d ∈ N for which (T |N )d = 0. In this
case T is said to be of Kato type of order d. An operator is said to be essentially semi-regular if it admits a GKD(M, N) such
that N is finite-dimensional.

For every bounded operator T ∈ B(X), let us define the semi-regular spectrum, the essentially semi-regular spectrum,
the Kato type spectrum and the generalized Kato spectrum as follows respectively:

σse(T ) := {λ ∈ C: λI − T is not semi-regular};
σes(T ) := {λ ∈ C: λI − T is not essentially semi-regular};
σk(T ) := {λ ∈ C: λI − T is not of Kato type};
σgk(T ) := {λ ∈ C: λI − T does not admit a generalized Kato decomposition}.

And define the semi-regular resolvent set, the essentially semi-regular resolvent set, the Kato type resolvent set and the
generalized Kato resolvent set as follows respectively: ρse(T ) = C \ σse(T ); ρes(T ) = C \ σes(T ); ρk(T ) = C \ σk(T ); ρgk(T ) =
C \ σgk(T ).

Evidently σgk(T ) ⊂ σk(T ) ⊂ σes(T ) ⊂ σse(T ).

A very detailed and far-reaching account of these notations can be seen in [1,7]. Discussions of operators which admit a
generalized decomposition may be found in [8,9,11].

Recall that T ∈ B(X) is bounded below if T is injective and has closed range T (X). T is said to be Fredholm if
dim ker T < ∞ and codim R(T ) < ∞.

The approximate point spectrum is defined by

σap(T ) := {λ ∈ C: λI − T is not bounded below},
the essential spectrum is defined by

σe(T ) := {λ ∈ C: λI − T is not Fredholm operator},
the surjectivity spectrum is defined by

σsu(T ) := {λ ∈ C: λI − T is not surjective}.
By the closed range theorem we easily know that the approximate point spectrum and the surjectivity spectrum are dual
to each other, in the sense that σsu(T ) = σap(T ∗) and σap(T ) = σsu(T ∗).

An operator T ∈ B(X) is said to have the single-valued extension property at λ0 ∈ C (SVEP at λ0 for brevity), if for every
neighborhood U of λ0 the only analytic function f : U → X which satisfies the equation (λI − T ) f (λ) = 0 is the function
f (λ) ≡ 0.

An operator T ∈ B(X) is said to have the SVEP if T has the SVEP at every point λ ∈ C.
Trivially, an operator T ∈ B(X) has the SVEP at every point of the resolvent set ρ(T ). Moreover, from the identity theorem

for analytical functions and σ(T ) = σ(T ∗) it easily follows that T and T ∗ have the SVEP at every point of the boundary
∂σ (T ) of the spectrum. In particular, T and T ∗ have the SVEP at every isolated point of the spectrum. Hence, we have the
implication

σ(T ) does not cluster at λ0 ⇒ T and T ∗ have the SVEP at λ0. (1)

Also by means of the identity theorem for analytical functions we have

σap(T ) does not cluster at λ0 ⇒ T has the SVEP at λ0 (2)

and dually

σsu(T ) does not cluster at λ0 ⇒ T ∗ has the SVEP at λ0. (3)

Note that none of the implications (1)–(3) may be reversed. Indeed, ∂σ (T ) is contained in σap(T ), as well as in σsu(T ), see
[7, Proposition 3.1.6]. Consequently, if λ0 is a non-isolated boundary point of σ(T ) then σap(T ) and σsu(T ) cluster at λ0, but
as observed before, T and T ∗ have the SVEP at λ0. An example of operator T having the SVEP and such that every spectral
point is limit of points of σap(T ) may be found among the unilateral weighted right shift operators. Indeed, there exist
unilateral weighted right shift operators T on lp(N) for which σ(T ) = σap(T ) = σsu(T ) and σ(T ) is a closed ball centered at
0 with radius r > 0, see the remarks after Theorem 6.1 of [2].

P. Aiena and E. Rosas give characterizations of the SVEP at λ0 in the case that λ0 I − T is of Kato type. Precisely, they
show that if λ0 I − T is of Kato type then the implications (1)–(3) can be reversed [5].

The basic role of SVEP arises in local spectral theory, since a decomposable operator T enjoys this property, as well as
its dual T ∗ [1, Theorem 6.22]. The notion of the localized SVEP at a point dates back to Finch [6] and it has been pursued
further in the more recent papers [3,4,10,13]. In particular, it has been shown that if λ0 I − T admits a generalized Kato
decomposition then the SVEP at a point λ0 ∈ C is equivalent to a variety of conditions that involve some kernel-type and
range-type subspaces of λ0 I − T , as the analytical core and quasi-nilpotent part [1,3].
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In this paper we shall give further characterizations of the SVEP at λ0, always in the case that λ0 I − T admits a gener-
alized Kato decomposition. Precisely, we shall see that if λ0 I − T admits a generalized Kato decomposition then T has the
SVEP at λ0 if and only if σap(T ) does not cluster at λ0. A dual result shows that, always if λ0 I − T admits a generalized Kato
decomposition, T ∗ has the SVEP at λ0 precisely when σsu(T ) does not cluster at λ0. That is, the implications (1)–(3) can be
reversed in the case that λ0 I − T admits a generalized Kato decomposition. As consequence we shall deduce several results
on cluster points of distinguished parts of the spectrum. These results are applied to some concrete cases, as unilateral
weighted right shift operators on lp(N).

If T is of Kato type, then T admits a generalized Kato decomposition. So our results extend works of P. Aiena and E. Rosas
in [5].

We also show that the generalized Kato spectrum of an operator is closed, and obtain that the generalized Kato spectrum
differs from the semi-regular spectrum on at most countably many isolated points (Corollary 2.3).

2. Generalized Kato spectrum

Using the property K (T ) = T ∞(X) of an operator which is of Kato type [1, Theorem 1.44, Corollary 1.45] shows that the
Kato type spectrum of an operator is closed and differs from the semi-regular spectrum on at most countably many isolated
points.

But for an operator which admits a generalized Kato decomposition, the property K (T ) = T ∞(X) does not necessarily
hold.

For example, let T denote the Volterra operator on the Banach space X = C[0,1] defined by

(T f )(t) :=
t∫

0

f (s)ds for all f ∈ C[0,1] and t ∈ [0,1].

T is injective and quasi-nilpotent. Consequently K (T ) = {0}. It is easy to check that T ∞(X) = { f ∈ C∞[0,1]: f (n)(0) = 0,

n ∈ N}, thus T ∞(X) is not closed and hence is strictly larger than K (T ). Hence K (T ) �= T ∞(X).
Using rather direct technique different from [1], we extend the results to operators which admit a generalized Kato

decomposition.

Proposition 2.1. (See [12].) For (M, N) ∈ Red(T ), T is semi-regular if and only if both T |M , T |N are semi-regular.

Denote the open disc centered at λ0 with radius ε in C by D(λ0, ε). For the set E , let ∂ E ,E denote the boundary and
the closure of E , respectively.

Theorem 2.2. Suppose that T ∈ B(X) admits a GKD(M, N). Then there exists a constant ε > 0 (if M = {0}, take ε to be any constant
number C > 0; if M �= {0}, take ε = γ (T |M)), such that for all λ ∈ D(0, ε) \ {0}, λI − T is semi-regular.

Proof. (1) If M = {0}, precisely, T is quasi-nilpotent, then for all 0 �= λ ∈ C, λI − T is invertible, obviously λI − T is semi-
regular.

(2) If M �= {0}, for the GKD(M, N) of T , T = ( T |M 0
0 T |N

)
, so λI − T = ( (λI−T )|M 0

0 (λI−T )|N

)
. Since T |M is semi-regular, then

R(T |M) is closed and we have γ (T |M) > 0. We also know that for |λ| < γ (T |M), (λ− T )|M is semi-regular [1, Theorem 1.31].
As T |N is quasi-nilpotent, for all 0 �= λ ∈ C, we know that (λI − T )|N is invertible, then (λI − T )|N is semi-regular. By
Proposition 2.1, for all λ ∈ D(0, γ (T |M )) \ {0}, λI − T is semi-regular. �

According to Theorem 2.2, it follows that the generalized Kato spectrum σgk(T ) is closed.
Since σgk(T ) ⊂ σk(T ) ⊂ σes(T ) ⊂ σse(T ), as a straightforward consequence of Theorem 2.2, we easily obtain that these

spectra differ from each other on at most countably many isolated points.

Corollary 2.3. σgk(T ) is compact subset of C. Moreover σse(T ) \σgk(T ), σes(T ) \σgk(T ), σk(T ) \σgk(T ) consist of at most countably
many isolated points.

Proof. Obviously, ρ(T ) ⊂ ρgk(T ). By Theorem 2.2, ρgk(T ) = C \ σgk(T ) is open. Then σgk(T ) are compact.
Furthermore, if λ0 ∈ σse(T ) \ σgk(T ) then λ0 I − T admits a GKD(M, N). By Theorem 2.2 there exists ε > 0 such that for

all λ ∈ D(λ0, ε) \ {0}, λI − T is semi-regular. Hence λ0 is an isolated point of σse(T ). From this it follows that σse(T ) \σgk(T )

consists of at most countably many isolated points.
Since σgk(T ) ⊂ σk(T ) ⊂ σes(T ) ⊂ σse(T ), this corollary can be completed by the method analogous to that used above. �
σgk(T ) is not necessarily non-empty. For example, the quasi-nilpotent operator T has empty generalized Kato spectrum.
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3. SVEP and approximate point spectrum

If λ0 I − T admits a generalized Kato decomposition then the SVEP at a point λ0 ∈ C is equivalent to a variety of con-
ditions that involve some kernel-type and range-type subspaces of λ0 I − T , as the analytical core and quasi-nilpotent part
[1,3].

Proposition 3.1. (See [1].) Suppose that λ0 I − T ∈ B(X) admits a GKD(M, N). Then the following assertions are equivalent:

(1) T has the SVEP at λ0;
(2) T |M has the SVEP at λ0;
(3) (λ0 I − T )|M is injective;
(4) H0(λ0 I − T ) = N;
(5) H0(λ0 I − T ) is closed;
(6) H0(λ0 I − T ) ∩ K (λ0 I − T ) = {0}.

Proposition 3.2. (See [1].) Suppose that λ0 I − T admits a GKD(M, N). Then the following assertions are equivalent:

(1) T ∗ has the SVEP at λ0;
(2) (λ0 I − T )|M is surjective;
(3) K (λ0 I − T ) = M;
(4) X = H0(λ0 I − T ) + K (λ0 I − T ).

In this section, we give further characterizations of the SVEP at λ0 by means of the approximate point spectrum in the
case that λ0 I − T admits a generalized Kato decomposition.

P. Aiena and E. Rosas also give characterizations of the SVEP at λ0 by means of approximate point spectrum in the case
that λ0 I − T is of Kato decomposition. Precisely, if λ0 I − T is of Kato type, T has the SVEP at λ0 if and only if σap(T ) does
not cluster at λ0 [5]. Note that they use the closeness of T ∞(X) in the proof. As we know, for an operator which admits
a generalized Kato decomposition, it does not necessarily hold. For example, let T be the Volterra operator defined in the
second section.

In fact, we extend the results of P. Aiena and E. Rosas in [5] to the operators which admit a generalized Kato decompo-
sition. But our method of proof is rather direct and different.

Suppose that (M, N) ∈ Red(T ), consider the relation of the property of bounded below among T and T |M , T |N :

Lemma 3.3. Suppose that (M, N) ∈ Red(T ). Then T is bounded below if and only if both T |M and T |N are bounded below.

Proof. First we show that R(T ) is closed if and only if both R(T |M), R(T |N ) are closed. Let P be the projection of X onto
M along N .

Suppose that (T |M)(xn) ∈ R(T |M) ⊂ M, T (xn) = (T |M)(xn) → y. If R(T ) is closed, then there exists x = m+r, x ∈ X , m ∈ M ,
r ∈ N such that y = T x = T (m + r) = T m + T r. It follows that y = P y = P (T m + T r) = T m = (T |M)m, that is, y ∈ R(T |M), so
R(T |M) is closed. The closeness of R(T |N ) can be proved in a similar way.

On the other hand, if both R(T |M), R(T |N ) are closed, suppose xn = yn + zn , yn ∈ M , zn ∈ N , T (xn) → x, then P T (xn) =
T P (xn) = (T |M)(P (xn)) = (T |M)(yn) → P x, (I − P )T (xn) = (T |N )(zn) → (I − P )x. Since R(T |M), R(T |N ) are closed, there exist
y ∈ M , z ∈ N such that (T |M)y = P x, (T |N )z = (I − P )x, so x = (T |M)y + (T |N )z = T (y + z) ∈ R(T ), that is, R(T ) is closed.

It is easy to verify that T is injective if and only both T |M , T |N are injective by simple calculation.
Thus we have derived that T is bounded below if and only if both T |M and T |N are bounded below. �

Proposition 3.4. (See [1].) Suppose that T ∈ B(X), (M, N) ∈ Red(T ). Then T has the SVEP at 0 if and only if both T |M , T |N have the
SVEP at 0.

Theorem 3.5. Suppose that λ0 I − T ∈ B(X) admits a GKD(M, N). Then the following statements are equivalent:

(1) T has the SVEP at λ0;
(2) σap(T ) does not cluster at λ0;
(3) λ0 is not an interior point of σap(T ).

Proof. Assume that λ0 = 0.
The implication (2) ⇒ (3) is obvious. According to the identity theorem for analytical functions, the implication (3) ⇒ (1)

is clear.
We need only to prove the implication (1) ⇒ (2).
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Since T admits a GKD(M, N), then T |M is semi-regular and T |N is quasi-nilpotent. According to Proposition 3.4, as T
has the SVEP at 0, it follows that T |M has the SVEP at 0, hence T |M is bounded below[1, Theorem 2.49]. Thus there exists
ε > 0 such that for all |λ| < ε, (λI − T )|M is bounded below [1, Lemma 1.30]. As T |N is quasi-nilpotent, then for all λ �= 0,
(λI − T )|N is bounded below. According to Lemma 3.3, it follows that for λ ∈ D(0, ε) \ {0}, λI − T = ( (λI−T )|M 0

0 (λI−T )|N

)
is

bounded below, that is, σap(T ) does not cluster at 0. �
Theorem 3.5 generalizes [5, Theorem 2.2 ] to operators which admit a generalized Kato decomposition. Moreover, we

give rather direct proof.
This theorem also generalizes [3, Theorem 2.14 ]: Suppose that λ0 I − T admits a generalized Kato decomposition, then

T does not have the SVEP at λ0 if and only if λ0 is a limit point of σp(T ).
Observe that σp(T ) ⊂ σap(T ). If σap(T ) does not cluster at λ0, then σp(T ) does not cluster at λ0. On the other hand, if

σp(T ) does not cluster at λ0, it is not necessary that σap(T ) does not cluster at λ0. Let us consider the unilateral shift T .
For all λ ∈ ∂ D(0,1), σp(T ) does not cluster at λ, but λ is a cluster point of σap(T ). According to Theorem 3.5, we can see
that λI − T does not admit a generalized Kato decomposition for all λ ∈ ∂ D(0,1).

For a bounded operator T ∈ B(X), let us consider the following parts of the spectrum: σse(T ), σk(T ) and σgk(T ). It is
known that the three sets are closed, for the first set see [7, Proposition 3.1.9], for the second set see [1, Corollary 1.45], and
the third set see Corollary 2.3 in this paper.

Clearly σgk(T ) ⊂ σap(T ) and σgk(T ) ⊂ σsu(T ). The result of Theorem 3.5 is quite useful for establishing the membership
of cluster points of some distinguished parts of the spectrum to the spectrum σgk(T ). A first application is given from the
following result, which improves a classical Putnam theorem about the non-isolated boundary points of the spectrum as a
subset of the Fredholm spectrum.

Corollary 3.6. For every T ∈ B(X), every non-isolated boundary point of σ(T ) belongs to σgk(T ). In particular, every non-isolated
boundary point of σ(T ) belongs to the Fredholm spectrum σe(T ).

Proof. Assume λ0 ∈ ∂σ (T ), λ0 is non-isolated in ∂σ (T ), then T has the SVEP at λ0. If λ0 I − T admits a generalized Kato
decomposition, σap(T ) does not cluster at λ0 according to Theorem 3.5. Since ∂σ (T ) ⊂ σap(T ), then σap(T ) cluster at λ0.
This leads to a contradiction. So λ0 ∈ σgk(T ) ⊂ σe(T ). �
Corollary 3.7. Suppose that T ∈ B(X) has the SVEP. Then all cluster points of σap(T ) belong to σgk(T ).

Proof. Suppose that λ0 /∈ σgk(T ). Since T has the SVEP, and in particular has the SVEP at λ0. Then σap(T ) does not cluster
at λ0 by Theorem 3.5. �

The next result gives a clear description of the points λ0 /∈ σgk(T ) which belong to the boundary of σ(T ).

Theorem 3.8. Let T ∈ B(X), and suppose that λ0 ∈ ∂σ (T ). Then λ0 I − T admits a generalized Kato decomposition if and only if λ0 is
an isolated point of σ(T ).

Proof. For λ0 ∈ ∂σ (T ), if λ0 is non-isolated in σ(T ), then λ0 is non-isolated in ∂σ (T ). According to Corollary 3.6,
λ0 ∈ σgk(T ), this leads to a contradiction. So λ0 is an isolated point of σ(T ).

On the other hand, suppose that λ0 is an isolated point of σ(T ), then X = H0(λ0 I − T ) ⊕ K (λ0 I − T ),
(λ0 I − T )(H0(λ0 I − T )) ⊂ H0(λ0 I − T ) and (λ0 I − T )(K (λ0 I − T )) = K (λ0 I − T ). Hence (λ0 I − T )|H0(λ0 I−T ) is quasi-nilpotent,
(λ0 I − T )|K (λ0 I−T ) is surjective. Moreover, (λ0 I − T )|K (λ0 I−T ) is semi-regular. Thus λ0 I − T admits a generalized Kato de-
composition. �

The next result is dual, in a sense, to Theorem 3.5.

Theorem 3.9. Suppose that λ0 I − T admits a GKD(M, N), then the following statements are equivalent:

(1) T ∗ has the SVEP at λ0;
(2) σsu(T ) does not cluster at λ0;
(3) λ0 is not an interior point of σsu(T ).

Proof. Suppose that λ0 I − T admits a generalized Kato decomposition, then (λ0 I − T )∗ also admits a generalized Kato
decomposition [1, Theorem 1.43]. Observe that σap(T ∗) = σsu(T ), and the equivalences immediately follow from Theo-
rem 3.5. �
Corollary 3.10. Let T ∈ B(X), suppose that T ∗ has the SVEP. Then all cluster points of σsu(T ) belong to σgk(T ).
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Proof. Suppose that λ0 /∈ σgk(T ). Since T ∗ has the SVEP at λ0, then σsu(T ) does not cluster at λ0 by Theorem 3.9. �
According to Theorems 3.5 and 3.9, we can easily obtain that:

Theorem 3.11. Suppose that T ∈ B(X), λ0 ∈ σ(T ), T and T ∗ have the SVEP at λ0 . Then

λ0 I − T admits a generalized Kato decomposition ⇔ λ0 is isolated in σ(T ).

Proof. If λ0 I − T admits a generalized Kato decomposition, by Theorems 3.5 and 3.9, there exist r1, r2 > 0 such that
D(λ0, r1) \ {λ0} ⊂ C \ σap(T ), D(λ0, r2) \ {λ0} ⊂ C \ σsu(T ). Let r = min{r1, r2}, then D(λ0, r) \ {λ0} ⊂ ρ(T ), so λ0 is isolated
in σ(T ).

Using the same argument as in the proof of Theorem 3.8, we can easily carry out the proof of this theorem. �
In particular, suppose that T is a Riesz operator which has infinite points in σ(T ), then σgk(T ) = {0}.
Since T and T ∗ have the SVEP at λ0 ∈ ∂σ (T ), we can easily obtain Theorem 3.8 according to Theorem 3.11.
All results established above have a number of interesting applications.In the next theorem we consider a situation which

occurs in some concrete cases.

Theorem 3.12. Let T ∈ B(X) be an operator for which σap(T ) = ∂σ (T ), and every λ ∈ ∂σ (T ) is not isolated in σ(T ), then σap(T ) =
σse(T ) = σes(T ) = σk(T ) = σgk(T ).

Proof. Since λ ∈ ∂σ (T ) is non-isolated, according to Corollary 3.6, σap(T ) = ∂σ (T ) ⊂ σgk(T ) ⊂ σk(T ) ⊂ σes(T ) ⊂ σse(T ) ⊂
σap(T ), that is, σap(T ) = σse(T ) = σes(T ) = σk(T ) = σgk(T ). �

Dually,

Corollary 3.13. Suppose that T in B(X) is an operator for which σsu(T ) = ∂σ (T ), and every λ ∈ ∂σ (T )is non-isolated in σ(T ). Then
σsu(T ) = σse(T ) = σes(T ) = σk(T ) = σgk(T ).

Proof. Suppose that λ0 ∈ σsu(T ) = ∂σ (T ), since λ0 ∈ ∂σ (T ) is non-isolated, then σsu(T ) cluster in λ0. Observe that T ∗
has the SVEP at λ0 ∈ ∂σ (T ), then λ0 I − T does not admit a generalized Kato decomposition by Theorem 3.9, that is,
λ0 ∈ σgk(T ). So σsu(T ) = ∂σ (T ) ⊂ σgk(T ) ⊂ σk(T ) ⊂ σes(T ) ⊂ σse(T ) ⊂ σsu(T ). Thus we have σsu(T ) = σse(T ) = σes(T ) =
σk(T ) = σgk(T ). �

Theorem 3.5 applies to the unilateral weighted right shift operators defined on lp(N).

Example 3.14. Let T be the unilateral weighted right shift operator defined on lp(N)(1 � p < ∞) with weight (ωn).

Suppose that c(T ) = limn→∞ inf (ω1ω2 · · ·ωn)
1
n = 0, and T has closed range. Thus r(T ) > 0 and T has the SVEP. Moreover,

σ(T ) = σap(T ) = σsu(T ) = D(0, r(T )) [1, Corollary 3.118].
Then σap(T ) clusters at every point in σ(T ). By Theorem 3.5, λI − T does not admit a generalized Kato decomposition.

That means σ(T ) = σgk(T ).
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