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Abstract

Two conjectures of Zuber (On the counting of fully packed loops configurations. Some new

conjectures, Electronic J. Combin 11 (2004)) on the enumeration of configurations in the fully

packed loop model on the square grid with periodic boundary conditions, which have a

prescribed linkage pattern, are proved. Following an idea of de Gier (Loops, matchings and

alternating-sign matrices, Discrete Math., to appear), the proofs are based on bijections

between such fully packed loop configurations and rhombus tilings, and the hook-content

formula for semistandard tableaux.
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1. Introduction

The fully packed loop model (FPL model, for short; see for example [1]) is a model
of (not necessarily closed) polygons on a lattice such that each vertex of the lattice is
on exactly one polygon. Whether or not these polygons are closed, they will be also
referred to as loops. Throughout this article, we consider this model on the square
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grid of side length n � 1; which we denote by Qn: See Fig. 1 for a picture of Q7: The
polygons consist of horizontal or vertical edges connecting vertices of Qn; and edges
that lead outside of Qn from a vertex along the border of Qn; see Fig. 2 for an
example of an allowed configuration in the FPL model. We call the edges that stick
outside of Qn external links. The reader is referred to Fig. 3 for an illustration of the
external links of the square Q11: (The labels should be ignored at this point.) It
should be noted that the four corner points are incident to a horizontal and a vertical
external link. We shall be interested here in allowed configurations in the FPL
model, in the sequel referred to as FPL configurations, with periodic boundary

conditions. These are FPL configurations where, around the border of Qn; every
other external link of Qn is part of a polygon. The FPL configuration in Fig. 2 is in
fact a configuration with periodic boundary conditions.
It is well-known that FPL configurations with periodic boundary conditions are in

bijection with configurations in the six vertex model with domain wall boundary
conditions, which, in their turn, are in bijection with alternating sign matrices
(see, e.g., [8, Section 3] for a description of these bijections).
Every FPL configuration with periodic boundary condition defines a matching on

the external links taken by the polygons, by matching those which are on the same
polygon. There has been a lot of interest recently in the enumeration of fully packed
loop configurations on Qn with periodic boundary conditions, in which the matching
on the external links is fixed. To a big part this is due to the fact that it was
(conjecturally) discovered that these numbers appear as the coordinates of the
groundstate vectors of certain Hamiltonians in the dense Oð1Þ loop model. (See [8]
for a survey of these developments and conjectures).
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Fig. 1. The square grid Q7:

Fig. 2. An FPL configuration on Q7 with periodic boundary conditions.
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Although it is (probably) hopeless to expect a nice closed formula in general, that
is, for the number of FPL configurations with periodic boundary conditions
corresponding to a fixed matching, for an arbitrary such matching, there exist several
conjectures on these numbers for special matchings (see, for example, [15, Section
8]). In [16], Zuber added several new ones, one of which he proved immediately in
joint work with Di Francesco and Zinn–Justin [6]. Another conjecture in this
direction for different boundary conditions, due to Mitra et al. [10], was proved by
de Gier in [8, Section 5] (which is, in fact, the inspiration for [6], and also the present
article). It is our purpose to prove two further conjectures from [16] in this paper, see
Theorems 3.2 and 4.2.
In all the proofs, the basic idea is to set up a bijection between the FPL

configurations in question and rhombus tilings of certain regions, and then use
known results on the enumeration of rhombus tilings to conclude the proof. This is
also the procedure which we shall follow here. While in [8] the base of de Gier’s result
has been a theorem of Ciucu and the second author [2], and in [6] the base of the
result by Di Francesco, Zinn–Justin and Zuber has been MacMahon’s formula for
plane partitions contained inside a given box [9], here it is Stanley’s hook-content
formula [13, Theorem 15.3] (see Theorem 2.5 below) for the number of semistandard
tableaux of a given shape with bounded entries which is at the heart of our proofs.
(We remark that this formula implies MacMahon’s, see, e.g., [14, Proof of Theorem
7.21.7].) In difference to [6,8], we are faced here with an added difficulty in the
proofs, as it is necessary to split the enumeration problems considered here into
several different subcases. Another point worthy of note is the fact that our proofs
use Wieland’s remarkable theorem of rotational symmetry [15] (see Theorem 2.1
below) in an essential way, which is not necessary in [6,8]. That is, our proofs depend
crucially on the way the matching is ‘‘placed around the square Qn:’’ We do in fact
not know how to do the enumeration if we place the matching in a different way
around Qn: On the other hand, it is obvious that, using our approach, one can as well
prove the conjectures in Appendix A of [6], although we did not work out the details.
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Fig. 3. The labelling of the external links.
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We do indeed hope that a refinement of the ideas presented in this article will
as well lead to a proof of Conjectures 6 and 7 in [16]. This is work currently
in progress.
In the next section, we collect all notation and the facts that we need in our proofs.

The proof of Conjecture 4 from [16] is then given in Section 3, while the proof of
Conjecture 5 from [16] is the contents of Section 4.

2. Preliminaries

We start by introducing the notation that we are going to use for encoding FPL
configurations and their associated matchings. The reader should recall from
the introduction that any FPL configuration defines a matching on the external
links taken by the polygons, by matching those which are on the same polygon. We
call this matching the matching associated to the FPL configuration. When we think
of the matching as being fixed, and when we consider all FPL configurations
having this matching as associated matching, we shall also speak of these
FPL configurations as the ‘‘FPL configurations corresponding to this fixed
matching.’’
We label the 4n external links around Qn by the elements of Z=4nZ clockwise

starting from the left-most link on the top side of the square, see Fig. 3. If A is an
external link of the square, we denote by LðAÞ its label and by LNðAÞ the
representative of LðAÞ in ½�2n þ 1; 2n�: Throughout this paper, all the FPL
configurations that are considered are configurations which correspond to matchings
of either the even labelled external links or the odd labelled external links.

Let M be any matching of the set of even (odd) labelled external links. Let M̃ be
the ‘‘rotated’’ matching of the odd (even) external links defined by the property that
the links labelled i and j in M are matched if and only if the links labelled i þ 1 and

j þ 1 are matched in M̃: Let FPLðMÞ denote the number of FPL configurations
corresponding to the matching M: Wieland [15] proved the following surprising
result.

Theorem 2.1 (Wieland). For any matching M of the even (odd) labelled external links,
we have

FPLðMÞ ¼ FPLðM̃Þ:

In other terms, the number of FPL configurations corresponding to a given
matching is invariant under rotation of the ‘‘positioning’’ of the matching around the
square. This being the case, we can represent matchings in terms of chord diagrams
of 2n points placed around a circle (see Fig. 4 for the chord diagram representation
of the matching corresponding to the FPL configuration in Fig. 2).
In our proofs we shall also use the following observation of de Gier [8, Lemma 8].

It is an assertion about the edges that are taken by any FPL configuration if one
makes certain assumptions.
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Lemma 2.2. Let c be an FPL configuration which contains the edges shown to the left

of the implication symbol in Fig. 5. We assume furthermore that the top and the bottom

edges do not belong to the same loop and that one of the following two conditions is

satisfied:

(i) The middle edge belongs to a third loop.
(ii) The middle edge is on the same loop as the top (bottom) one only if the loop

contains the edge between the left vertex of the top (bottom) edge and the right

vertex of the middle edge.

Then c contains all the edges on the right of the implication symbol.

The following result is a consequence of an iterated use of Lemma 2.2. There, and
in the sequel, when we speak of fixed edges we always mean edges that have to be
occupied by any FPL configuration under consideration.

Lemma 2.3. Let A ¼ A1;A2;y;Ak ¼ B be a sequence of external links, where

LNðAiÞ ¼ a þ 2i mod 4n; for some fixed a; that is, the external links A1;A2;y;Ak

comprise every second external link along the stretch between A and B along the border

of Qn (clockwise). Furthermore, we suppose that one of the following conditions holds:

(1) A and B are both on the top side of Qn; that is, 1pLNðAÞoLNðBÞpn;
(2) A is on the top side and B is on the right side of Qn; that is, 1pLNðAÞpnoLNðBÞ

and n � LNðAÞ4LNðBÞ � ðn þ 1Þ;
(3) A is on the left side and B is on the right side of Qn; that is, noLNðBÞp2n and

�noLNðAÞp0:

Then, for the FPL configurations for which the external links A1;A2;y;Ak belong to

different loops, the regions of fixed edges are (essentially) triangular (see Fig. 5 for

illustrations; the ‘‘essentially’’ refers to the fact that in Cases (2) and (3) parts of the

triangle are cut off). More precisely, if one places the origin O of the coordinate system

one unit to the left of the top-left corner of Qn; the coordinates of the triangle are given

in the following way: let A0 and B0 be the points on the x-axis with x-coordinates LNðAÞ
and LNðBÞ; respectively, then the region of fixed edges is given by the intersection
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Fig. 5.

Fig. 4. The chord diagram representation of a matching.
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of the square Qn and the (rectangular isosceles) triangle having the segment A0B0

as basis.
In Cases (2) and (3), the configurations are completely fixed as ‘‘zig-zag’’ paths in the

corner regions of Qn where a part of the triangle was cut off (see again Fig. 6). More

precisely, in Case (2), this region is the reflexion of the corresponding cut off part of the

triangle in the right side of Qn; and in Case (3) it is that region and also the reflexion of

the corresponding cut off part on the left in the left side of Qn:

We next turn our attention to rhombus tilings of subregions of the regular
triangular lattice in the plane. Here, and in the sequel, by a rhombus tiling we mean a
tiling by rhombi of unit side lengths and angles of 60	 and 120	: We first recall
MacMahon’s theorem mentioned in the Introduction. Let Hðp; q; rÞ be the hexagon
with side lengths p; q; r; p; q; r (in clockwise order), all of its angles being 120	: We
imagine Hðp; q; rÞ to be embedded in a triangular lattice. See Fig. 7 for an illustration
of the hexagon Hð5; 3; 2Þ. It is well known (see [5]) that rhombus tilings of Hðp; q; rÞ
are in bijection with plane partitions contained in a p 
 q 
 r box. The number of the
latter plane partitions was computed by MacMahon [9, Section 429, q-1; proof in
Section 494]. Therefore we have the following theorem for the number hðp; q; rÞ of
rhombus tilings of Hðp; q; rÞ:

Theorem 2.4 (MacMahon). Let p; q; rAN: Then

hðp; q; rÞ ¼ p

!

q

!

r

!ðp þ q þ rÞ !

ðp þ qÞ !ðp þ rÞ !ðq þ rÞ !;

where n

!

:¼ ðn � 1Þ!?2! 1! denotes the nth hyperfactorial.

In the subsequent sections, we shall need a more general result for regions which
are indexed by partitions. We recall that a partition is a vector l ¼ ðl1; l2;y; lcÞ of
positive integers such that l1Xl2X?Xlc: If there are repetitions among the li’s,
then, for convenience, we shall sometimes use exponential notation. For example,

the partition ð3; 3; 3; 2; 1; 1Þ will also be denoted as ð33; 2; 12Þ: To each partition l;
one associates its Ferrers diagram, which is the left-justified arrangement of cells with
li cells in the ith row, i ¼ 1; 2;y; c: See Fig. 8 for the Ferrers diagram of the
partition ð7; 5; 2; 2; 1; 1Þ: (At this point, the labels should be disregarded.) The
partition conjugate to l is the partition l0 ¼ ðl10; l20;y; l0l1Þ; where lj

0 is the length of

the jth column of the Ferrers diagram of l: Given a partition l; we write ði; jÞ for the
cell in the ith row and jth column in the Ferrers diagram of l; 1pjpli: We use the
notation u ¼ ði; jÞAl to express the fact that u is a cell of (the Ferrers diagram of) l:
Given a cell u; we denote by cðuÞ :¼ j � i the content of u and by hðuÞ :¼
li þ lj

0 � i � j þ 1 the hook length of u:
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Fig. 6. The possible regions of fixed edges determined by a sequence of external links belonging to distinct

loops.
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The enumeration result for rhombus tilings given in Theorem 2.6 below is a
corollary of the hook-content formula for semistandard tableaux of a given shape
with bounded entries. Here, semistandard tableaux of shape l are fillings of the cells
of the Ferrers diagram of l with positive integers such that the entries along rows are
weakly increasing and entries along columns are strictly increasing. See Fig. 11 for a
semistandard tableau of shape ð7; 5; 2; 2; 1; 1Þ: We denote by SSYTðl; nÞ the set of
semistandard tableaux of shape l with entries less than or equal to n: Then Stanley’s
hook-content formula [13, Theorem 15.3] reads as follows.

Theorem 2.5 (Stanley). Let l be a partition, and let n be a positive integer. Then

jSSYTðl; nÞj ¼
Y
uAl

cðuÞ þ n

hðuÞ :

Given a partition l; we are now going to define a region in the regular triangular
lattice which depends on l: The bottom-right border of the Ferrers diagram of l is a
path consisting of positive unit horizontal and vertical steps. This path determines
the Ferrers diagram, and hence the corresponding partition, uniquely. It may
alternatively be described by the sequence of lengths of its maximal horizontal and
vertical pieces ðh1; v1; h2; v2;y; hk;; vkÞ: For example this sequence for the partition in
Fig. 8 is ð1; 2; 1; 2; 3; 1; 2; 1Þ:
Given a partition l and a nonnegative integer r; we define the region Rðl; rÞ as a

hexagon with some notches along the top side. More precisely (the reader should
consult Figs. 8 and 9 in parallel, the latter showing the region Rðl; 2Þ; where l is the
partition in Fig. 8), Rðl; rÞ is the region with base side l1; bottom-left side l10; top-
left side r; a top side with notches which will be explained in just a moment, top-right

side vk; and bottom-right side r þ
Pk�1

i¼1 vi: Along the top side, we start with a
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Fig. 7. The hexagon Hð5; 3; 2Þ:

Fig. 8. A Ferrers diagram.
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horizontal piece of length h1; followed by a notch of size v1; followed by a horizontal
piece of length h2; followed by a notch of size v2;y; and finally a horizontal piece of
length hk:
We can now state the announced enumeration result for rhombus tilings of the

regions Rðl; rÞ:

Theorem 2.6. Given a partition l and a positive integer r; the number of rhombus tilings

of Rðl; rÞ is given by jSSYTðl; r þ l01Þj:

Proof. There is a standard bijection between our rhombus tilings and families
ðP1;y;Pl1Þ of non-intersecting lattice paths, where Pi is a path consisting of positive
unit horizontal and negative unit vertical steps from ði � l0i; l

0
1 � l0i þ i þ rÞ to ði; iÞ

(see, e.g., [3,4]). Here, ‘‘non-intersecting’’ means the property that no two paths in a
family have a point in common. The bijection is obtained as follows. One places
vertices in each of the mid-points of edges along the base side of Rðl; rÞ; and as well
in each mid-point along the horizontal edges on the top of Rðl; rÞ: The vertices of the
top edges are subsequently connected to the vertices along the base side by paths, by
connecting the mid-points of opposite horizontal edges in each rhombus of the tiling,
see the tiling on the left of Fig. 10. Clearly, by construction, the paths are non-
intersecting. If the paths are slightly rotated, and deformed so that they become
rectangular paths, then one obtains families of paths with starting and final points as
described above. The family of paths which results from our example rhombus tiling
is shown on the right of Fig. 10 (the labels should be ignored at the moment).
These families of non-intersecting lattice paths are, on the other hand, in bijection

with semistandard tableaux of shape l with entries between 1 and r þ l10 (see, e.g.,
[7]; it should be noted that Fig. 8 in [7] has to be reflected in a vertical line to
correspond to our picture). In this bijection, one labels the horizontal steps of the
paths in such a way, that a step from ði; jÞ to ði þ 1; jÞ gets the label j � i; see Fig. 10.
A tableau is then formed by making the labels of the jth path the entries of the jth
column of a tableau. The tableau corresponding to the family of paths in Fig. 10 is
shown in Fig. 11. &
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Fig. 9. A hexagon with notches.
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We need four special cases of this theorem in particular. We list them explicitly in
the following two lemmas.

Lemma 2.7. Let Kðp; q; rÞ be the region Rðððp þ 1Þq�1; pÞ; rÞ (see Fig. 12 for an

example with p ¼ 10; q ¼ 2 and r ¼ 9). Let kðp; q; rÞ be the number of rhombus tilings

of Kðp; q; rÞ: Then

kðp; q; rÞ ¼ ðp þ q þ r þ 1Þ !ðp þ 1Þ !q !r !

ðp þ q þ 2Þ !ðp þ r þ 2Þ !ðq þ rÞ !ðp þ qÞ!ðp þ rÞ!qðp þ 1Þðp þ q þ 1Þ:

In order to state the next lemma more conveniently, we introduce the following
short notation:

aðp; q; rÞ :¼ ðp þ q þ r þ 2Þ !r !q !ðp þ 2Þ !

ðp þ q þ 4Þ !ðp þ r þ 4Þ !ðq þ rÞ !ðp þ q þ 1Þ!ðp þ q þ 2Þ!


 ðp þ r þ 3Þ!ðp þ rÞ!:
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Fig. 10. Bijection between rhombus tilings and non-intersecting lattice paths.

Fig. 11. A semistandard tableau.
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Lemma 2.8. Let Lðp; q; rÞ ¼ Rðððp þ 2Þq; 1; 1Þ; r � 2Þ; Mðp; q; rÞ ¼ Rðððp þ 2Þq�1; p þ
1; 1Þ; r � 1Þ; and Nðp; q; rÞ ¼ Rðððp þ 2Þq�1; pÞ; rÞ (see Fig. 13 for illustrations of these

regions and the corresponding Ferrers diagrams in the case that p ¼ 4; q ¼ 3; and
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Fig. 12. Kðp; q; rÞ:

Fig. 13. Some regions in the triangular lattice and the corresponding Ferrers diagrams.
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r ¼ 5). Let lðp; q; rÞ; mðp; q; rÞ; and nðp; q; rÞ be the numbers of rhombus tilings of

Lðp; q; rÞ; Mðp; q; rÞ; and Nðp; q; rÞ; respectively. Then

(1) lðp; q; rÞ ¼ aðp; q; rÞ1
2
ðp þ 2Þðp þ 3Þðp þ r þ 1Þðp þ r þ 2Þrðr � 1Þ;

(2) mðp; q; rÞ ¼ aðp; q; rÞðp þ 1Þðp þ 3Þðp þ q þ 3Þðp þ r þ 1Þqr;
(3) nðp; q; rÞ ¼ aðp; q; rÞ1

2
ðp þ 1Þðp þ 2Þðp þ q þ 2Þðp þ q þ 3Þqðq þ 1Þ:

Finally, we need the following well-known result about local moves applied to
rhombus tilings, see, for example, [12, Theorem 3.1].

Lemma 2.9. Let D be a simply connected region in the triangular lattice. Then the local

moves shown in Fig. 14 act transitively on the set of rhombus tilings of D:

3. Proof of Conjecture 4 in [16]

The goal of this section is to enumerate the fully packed loop configurations whose
associated matching is given by the matching indicated in the left half of Fig. 15.
Note that we have n ¼ p þ q þ r þ 1: We call the centres of the p � 1; q; and r

nested arches P; Q; and R; respectively, see the right half of Fig. 15. We suppose first
that p is even, and we let p ¼ 2s: Thanks to Wieland’s Theorem 2.1, we may place the
linkage pattern of the matching arbitrarily around Qn: To prove the conjecture, we
shall make use of a particular placement, which we are going to explain next.
We place the centre P on the external link labelled r þ s þ 1: This choice forces the

other centres R and Q to be, respectively, on the external links labelled by 5s þ
3r þ 4q þ 3 ¼ 3n þ ðq � sÞ and 5s þ 2q þ r þ 3 ¼ ð2n þ 1Þ þ ðs � rÞ: In the sequel, by
an FPL configuration we shall always mean an FPL configuration corresponding to
the particular matching in Fig. 15. Note that R is located on the bottom side of the
square if and only if sXq; and similarly Q is on the bottom side of the square if and
only if sXr: Note also that we have a perfect right-to-left symmetry by exchanging
the roles of q and r:
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Fig. 14. The local moves for rhombus tilings.

Fig. 15. The matching in Theorem 3.2.
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A priori, we have three essentially distinct cases to deal with:

(1) R and Q are both on the bottom side,
(2) R is on the bottom side and Q is on the right side,
(3) R is on the left side and Q is on the right side.

We are going to concentrate on Case (2). The Cases (1) and (3) can be treated in
exactly the same way. In fact, all the claims that we are going to make for Case (2)
are as well true for Cases (1) and (3).
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Fig. 16. The region of fixed edges.
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For notational convenience we embed our square in the Cartesian plane in such a
way that the left side and the bottom side of the square belong to the y-axis and the
x-axis, respectively, with unit length equal to the unit of the square, as shown in
Fig. 16. We let R00 :¼ ð0; n � 1þ s þ r � 2Þ; Q00 :¼ ðn � 1; n � 1þ s þ q � 2Þ; R0 :¼
ð0; q � sÞ and Q0 :¼ ðn � 1; r � sÞ: Then, by Lemma 2.3, R0 and R00 are two vertices of
the triangle of fixed edges determined by the distinct external links between P and R;
and similarly for the triangle of fixed edges determined by the distinct external links
between P and Q (see Fig. 16). The choice of the position of the centres will ensure
that the set of fixed edges has certain useful properties. In fact, if we call V and W

the other vertices of these triangles, as shown in Fig. 16, we can easily see that they
have the same y-coordinate yV ¼ yW ¼ s þ q þ r � 1 and that xW � xV ¼ p � 2: So,
the total set of fixed edges will be as indicated in Fig. 17.
If p is odd, we lose some of the symmetry of the case of even p just discussed.

Nevertheless, the argument remains essentially valid. To be more precise, in this case

we place P on the external link labelled r þ s þ 1 where s ¼ 1
2
ðp � 1Þ: The analogues

of Figs. 16 and 17 are essentially identical, except that the y-coordinates of the
vertices V and W differ by 1:
For both p even and odd, every vertex of the square belongs to at least one fixed

edge. If a vertex belongs to exactly one fixed edge we call it a free vertex, and we say
that two free vertices are neighbours if they can be joined by a non-fixed edge. Now
consider the vertical fixed edge just below P (marked in bold-face in Fig. 17). It is
evident that the two other edges emanating from its vertices have to be both on the
right or both on the left, otherwise we could not close the two small loops next to P:
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Fig. 17. The set of fixed edges.
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Lemma 3.1. There exists a fully packed loop configuration for both of these choices.

Proof. This is very similar to the proof of [6, Lemma 3] and is hence omitted. &

Theorem 3.2. Let Z1ðp; q; rÞ be the number of fully packed loop configurations

determined by the matching in Fig. 15. Then,

Z1ðp; q; rÞ ¼ ðp þ q þ r þ 1Þ !ðp þ 1Þ !q !r !

ðp þ q þ 2Þ !ðp þ r þ 2Þ !ðq þ rÞ !ðp þ qÞ!ðp þ rÞ!


ððp þ 1Þðqðp þ q þ 1Þ þ rðp þ r þ 1ÞÞ þ pðp þ q þ 1Þðp þ r þ 1ÞÞ:

Proof. We treat the case where the edges emanating from the bold-face edge are
both on the left of it. This covers also the case where these edges are both on the
right, as is seen by an exchange of q and r: Then, following an idea of de Gier [8,
Section 5], we draw a triangle around any free vertex of our region in such a way that
two free vertices are neighbours if and only if the corresponding triangles share an
edge. This is illustrated in Fig. 18 for the example of Fig. 17 (the two added fixed
edges are marked in bold-face).

ARTICLE IN PRESS

Fig. 18. The triangles around free vertices.
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Next we determine the dimensions of the region covered by these triangles. Let
A;B;C;D;E;F be the mid-points of the external links with labels as indicated in the
following table. See also Fig. 18.

Given this information, the lengths of the sides of the region covered by the

triangles (measured in terms of triangle edges) are BC ¼ 1
2
ðð3s þ r þ 2qÞ � ðs þ r þ

2ÞÞ ¼ s þ q � 1; CD ¼ r þ 1; DE ¼ p þ 1; EF ¼ q þ 1 and FA ¼ 1
2
ððs þ rÞ þ 4n �

ð7s þ 3r þ 4q þ 6ÞÞ ¼ s þ r � 1; where in the last equality we have used the
previously observed fact that n ¼ p þ q þ r þ 1 ¼ 2s þ q þ r þ 1: Note the symmetry
of these lengths with respect to q and r:
After an appropriate deformation of the region in such a way that it fits in a

regular triangular lattice, we obtain a hexagon with two ‘‘ears’’, see Fig. 19 for the
result of the deformation applied to the region of triangles in Fig. 18.
It is clear that any tiling of this region defines a fully packed loop configuration

just by drawing a segment between the two free vertices corresponding to any tile. By
Lemma 3.1, we know that there is an FPL configuration for the case which we are

ARTICLE IN PRESS

Fig. 19. The eared hexagon.

Fig. 20. Local moves for FPL configurations.
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discussing at the moment. Any FPL configuration corresponds to a rhombus tiling
of our eared hexagon. By Lemma 2.9, one can go from any rhombus tiling of the
eared hexagon to any other by the local moves shown in Fig. 14. It is easy to see that,
under the translation of FPL configurations into rhombus tilings, these moves
correspond to the local moves for FPL configurations shown in Fig. 20. It is an
important property of these latter moves that they do not change the matching
corresponding to the FPL configurations. It follows that this correspondence
establishes a bijection between FPL configurations having the two prescribed edges
and rhombus tilings of the eared hexagon.
We now embark on the enumeration of the rhombus tilings of the hexagon with

two ears. In fact, in the left ear, and in a strip along the left border, the tiles are
uniquely determined (see Fig. 21). Hence we can reduce our calculation to the
number of tilings of a hexagon with just one ear, see Fig. 22 (the shaded triangles
should be disregarded for the moment). We call this region Fðp; q; r; sÞ:

ARTICLE IN PRESS

Fig. 21. Fixed rhombi in the eared hexagon.

Fig. 22. Cutting the right ear.
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At this point, the crucial observation is that exactly one of the two tiles which
‘‘connect’’ the hexagon and the remaining ear (these are the shaded tiles in Fig. 22)
must be chosen in any tiling of Fðp; q; r; sÞ; otherwise our region would be cut in two
subregions with an odd number of triangles. If the right tile is chosen, then our
region is split into two separate hexagons, a hexagon Hðp þ 1; q; rÞ and a hexagon
Hðs � 1; 1; 1Þ (see Section 2 for the definition of Hðp; q; rÞ). Hence the number of
rhombus tilings in this case is

hðp þ 1; q; rÞhðs � 1; 1; 1Þ ¼ ðp þ q þ r þ 1Þ !ðp þ 1Þ !q !r !

ðp þ q þ 1Þ !ðp þ r þ 1Þ !ðq þ rÞ !s

¼ ðp þ q þ r þ 1Þ !ðp þ 1Þ !q !r !
ðp þ q þ 2Þ !ðp þ r þ 2Þ !ðq þ rÞ !ðp þ qÞ!ðp þ rÞ!


 ðsðp þ q þ 1Þðp þ r þ 1ÞÞ:

If the left tile is chosen, then the tiling of the ear is uniquely determined, and the
remaining region is Kðp; q; rÞ: Thanks to Lemma 2.7, we already know the number of
corresponding rhombus tilings. Altogether, we obtain that the number of rhombus
tilings of Fðp; q; r; sÞ is

f ðp; q; r; sÞ ¼ ðp þ q þ r þ 1Þ !ðp þ 1Þ !q !r !

ðp þ q þ 2Þ !ðp þ r þ 2Þ !ðq þ rÞ !ðp þ qÞ!ðp þ rÞ!


 ðqðp þ 1Þðp þ q þ 1Þ þ sðp þ q þ 1Þðp þ r þ 1ÞÞ:

Hence, in total, there are Z1ðp; q; rÞ ¼ f ðp; q; r; p=2Þ þ f ðp; r; q; p=2Þ FPL configura-
tions. It is easy to verify that this agrees with our claim.
If p is odd, then, using the same approach, one shows that in this case we have

Z1ðp; q; rÞ ¼ f ðp; q; r; 1
2
ðp � 1ÞÞ þ f ðp; r; q; 1

2
ðp þ 1ÞÞ; which again agrees with our

claim. &

Remark. As Jean–Bernard Zuber pointed out to us, Theorem 3.2 confirms the main
conjecture of Razumov and Stroganov in [11] (given there in three equivalent forms

as Conjectures 1–3; see also [8, Conjecture 1, case HP
2n]) and the enumeration result

of Di Francesco, Zinn–Justin and Zuber in [6]. To be more precise, the conjecture of

ARTICLE IN PRESS

Fig. 23. The ‘‘three bridges’’ matching.

F. Caselli, C. Krattenthaler / Journal of Combinatorial Theory, Series A 108 (2004) 123–146140



Razumov and Stroganov implies the relation

ð2ðp þ q þ rÞ � 3ÞZ0ðp; q; rÞ ¼Z1ðp � 1; q; rÞ þ Z1ðq � 1; r; pÞ

þ Z1ðr � 1; p; qÞ; ð3:1Þ

valid for all p; q; rX2; where Z0ðp; q; rÞ is the number of FPL configurations
determined by the matching in Fig. 23. (This is seen by specializing Conjecture 2 of
[11] to the case where p is the matching in Fig. 23.) Indeed, a direct verification shows
that Eq. (3.1) is satisfied when the expression for Z1ðp; q; rÞ given by Theorem 3.2 is
substituted in (3.1), and when hðp; q; rÞ is substituted in place of Z0ðp; q; rÞ; the
equality Z0ðp; q; rÞ ¼ hðp; q; rÞ being the enumeration result demonstrated in [6].

4. Proof of Conjecture 5 in [16]

In this section we solve the problem of enumerating fully packed loop
configurations whose corresponding matching is described in the left half of

ARTICLE IN PRESS

Fig. 24. The matching in Theorem 4.2.

Fig. 25. The region of fixed edges.
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Fig. 24. Our method of proof will be analogous to the one in the proof of
Theorem 3.2, though many more technicalities will occur.
First of all, we note that this time we have n ¼ p þ q þ r þ 2 (see Fig. 24). Again

we first suppose p to be even, and we let p ¼ 2s: We call the centres of the p � 1; q;
and r nested arches P; Q; and R; respectively, as before, see the right half of Fig. 24.
We place P on the external link numbered r þ s þ 2: Consequently Q is on the
external link labelled 5s þ 2q þ r þ 6 ¼ ð2n þ 1Þ þ s � r þ 1; and R is on the external
link labelled 5s þ 4q þ 3r þ 6 ¼ 3n þ ðq � sÞ: We introduce the same system of
coordinates as in Section 3, and we let R0 :¼ ð0; q � sÞ; R00 :¼ ð0; ðn � 1Þ þ r þ s � 3Þ;
Q0 :¼ ðn � 1; r � s � 1Þ and Q00 :¼ ðn � 1; ðn � 1Þ þ s þ q � 2Þ: Then these points
determine the triangles of fixed edges (see Fig. 25). Again, the vertices V and W of
these triangles have the same height, yV ¼ yW ¼ s þ q þ r � 1; and we have xW �
xV ¼ p � 2:
At this point, by Lemma 2.3, we can easily draw the set of fixed edges

corresponding to our choice of the position of the centres P; Q and R (see Fig. 26).
Again, any vertex of the square grid belongs to at least one fixed edge. However,

here we have to split our problem into four cases, according to the local
configuration around the centre P: There are indeed four mutually exclusive
possible configurations near P; see Fig. 27.

Lemma 4.1. There exists a fully packed loop configuration for any of the four local

configurations shown in Fig. 27.

ARTICLE IN PRESS

Fig. 26. The set of fixed edges.
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Proof. Again the proof is omitted since it is very similar to the proof of [6,
Lemma 3]. &

Theorem 4.2. Let Z2ðp; q; rÞ be the number of fully packed loop configurations

determined by the matching in Fig. 24. Then

ARTICLE IN PRESS

Fig. 27. The possible local configurations and the corresponding regions.
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Z2ðp; q; rÞ ¼ aðp; q; rÞ
2

ðp þ 2Þððp þ 1Þðp þ q þ 3Þðp þ r þ 1Þ


 ðpðp þ r þ 2Þ þ pq þ 4qrÞ

þ 2pðp þ q þ 3Þqðp þ r þ 1Þðp þ q þ 2Þ

þ 2ðp þ 1Þðp þ q þ 3Þðp þ r þ 1Þðp þ r þ 2Þr

þ ðp þ 3Þðp þ r þ 1Þðp þ r þ 2Þrðr � 1Þ

þ ðp þ 1Þðp þ q þ 2Þðp þ q þ 3Þqðq þ 1ÞÞ:
Proof. Again, we only discuss the case where p is even, since the other case is
completely analogous. We already know that Z2ðp; q; rÞ is the sum of four parts
corresponding to the local configurations described in Fig. 27. In each of these cases
we proceed similarly as in the proof of Theorem 3.2. We draw a triangle around any
free vertex in such a way that triangles share an edge if and only if the corresponding
vertices are adjacent. After a suitable deformation of the corresponding regions, we
can fit these regions in the regular triangular lattice. Again, there are certain parts
which are covered by forced tiles and which may hence be eliminated. See Fig. 27 for
an illustration of the resulting regions in each of the four cases (the shaded triangles
should be disregarded for the moment). We now observe that Lemmas 2.9 and 4.1
imply that in each of the four cases there is a bijection between the fully packed loop
configurations and rhombus tilings of the corresponding region in the triangular
lattice. So the number of fully packed loop configurations is equal to the sum of the
number of tilings of these four regions. We treat them one at a time. Below, the
numbers (1)–(4) refer to the corresponding numbers in Fig. 27.

(1) Consider the three shaded tiles. It is easy to see that exactly two of them should
be chosen in any tiling of this region. If we choose the first two, then the region
is split into two hexagons, a hexagon Hðs � 2; 1; 2Þ and a hexagon Hðp þ 2; q; rÞ:
If we choose the first and the third, then the region is split into a hexagon
Hðs � 1; 1; 1Þ and a region Kðp þ 1; r; qÞ: Finally, if we choose the second and
the third tile, our region reduces to a region Lðp; q; rÞ:Hence the total number of
rhombus tilings in this case is

1

2
sðs � 1Þ � hðp þ 2; q; rÞ þ s � kðp þ 1; r; qÞ þ lðp; q; rÞ:

(2) Any tiling of the second region must contain exactly one of the two shaded tiles
on the left and exactly one of the two shaded tiles on the right. If we choose the
first on both the right and the left, then we obtain a hexagon Hðs � 2; 1; 1Þ and a
region Kðp þ 1; q; rÞ: If we choose the first on the left and the second on the
right, we split the region into three hexagons, a hexagon Hðs � 2; 1; 1Þ; a
hexagon Hðp þ 2; q; rÞ; and a hexagon Hðs; 1; 1Þ: If we choose the second on the
left and the first on the right, we obtain a region Mðp; q; rÞ: Finally, if we choose
the second on both the left and the right, we split the region into a hexagon
Hðs; 1; 1Þ and a region Kðp þ 1; r; qÞ: Hence the number of rhombus tilings in
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this case is

ðs � 1Þ � kðp þ 1; q; rÞ þ ðs2 � 1Þ � hðp þ 2; q; rÞ þ mðp; q; rÞ

þ ðs þ 1Þ � kðp þ 1; r; qÞ:

(3) Again, we have to choose exactly one of the two shaded tiles. If we choose the
first one, we get a region Kðp þ 1; q; rÞ; and if we choose the second one, we get
two disjoint hexagons, a hexagon Hðs; 1; 1Þ and a hexagon Hðp þ 2; q; rÞ: Hence
the number of rhombus tilings in this case is

kðp þ 1; q; rÞ þ ðs þ 1Þ � hðp þ 2; q; rÞ:

(4) In this last case we have to choose exactly one of the three tiles. If we choose the
first one, we get a region Nðp; q; rÞ: If we choose the second, we obtain a
hexagon Hðs � 1; 1; 1Þ and a region Kðp þ 1; q; rÞ; and if we choose the third
one, we get a hexagon Hðs � 1; 1; 2Þ and a hexagon Hðp þ 2; q; rÞ: Hence the
number of rhombus tilings in this case is

nðp; q; rÞ þ s � kðp þ 1; q; rÞ þ 1

2
sðs þ 1Þ � hðp þ 2; q; rÞ:

Putting everything together, the total number Z2ðp; q; rÞ is given by the sum of these
four expressions, that is

Z2ðp; q; rÞ ¼ ð2s2 þ sÞ � hðp þ 2; q; rÞ þ 2s � kðp þ 1; q; rÞ þ ð2s þ 1Þ � kðp þ 1; r; qÞ

þ lðp; q; rÞ þ mðp; q; rÞ þ nðp; q; rÞ:
Now note that, by Theorem 2.4 and Lemma 2.7, there hold

hðp þ 2; q; rÞ ¼ aðp; q; rÞðp þ q þ 2Þðp þ q þ 3Þðp þ r þ 1Þðp þ r þ 2Þ;

kðp þ 1; q; rÞ ¼ aðp; q; rÞðp þ 2Þðp þ q þ 3Þqðp þ r þ 1Þðp þ q þ 2Þ
and

kðp þ 1; r; qÞ ¼ aðp; q; rÞðp þ 2Þðp þ q þ 3Þðp þ r þ 1Þðp þ r þ 2Þr:
If we also recall Lemma 2.8, then it follows that

Z2ðp; q; rÞ ¼ aðp; q; rÞ p

2
ðp þ 1Þðp þ q þ 2Þðp þ q þ 3Þðp þ r þ 1Þðp þ r þ 2Þ

�

þ pðp þ 2Þðp þ q þ 3Þqðp þ r þ 1Þðp þ q þ 2Þ

þ ðp þ 1Þðp þ 2Þðp þ q þ 3Þðp þ r þ 1Þðp þ r þ 2Þr

þ 1

2
ðp þ 2Þðp þ 3Þðp þ r þ 1Þðp þ r þ 2Þrðr � 1Þ

þ ðp þ 1Þðp þ 3Þðp þ q þ 3Þðp þ r þ 1Þqr

þ 1

2
ðp þ 1Þðp þ 2Þðp þ q þ 2Þðp þ q þ 3Þqðq þ 1Þ

�
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¼ aðp; q; rÞ
2

ðp þ 2Þððp þ 1Þðp þ q þ 3Þðp þ r þ 1Þ


 ðpðp þ r þ 2Þ þ pq þ 4qrÞ

þ 2pðp þ q þ 3Þqðp þ r þ 1Þðp þ q þ 2Þ

þ 2ðp þ 1Þðp þ q þ 3Þðp þ r þ 1Þðp þ r þ 2Þr

þ ðp þ 3Þðp þ r þ 1Þðp þ r þ 2Þrðr � 1Þ

þ ðp þ 1Þðp þ q þ 2Þðp þ q þ 3Þqðq þ 1ÞÞ;
which agrees with the expression in the assertion of the theorem. &
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