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Doubling the Cube: A New Interpretation of Its Significance 
for Early Greek Geometry 

KEN SAITO 

Faculty of Letters, Chiba University, Yayoi-cho, lnage-ku, Chiba, 263 Japan 

It is widely known that Hippocrates of Chios reduced the problem of doubling the cube 
to the problem of finding two mean proportionals between two given lines. Nothing, however, 
is known about how this reduction was justified. To answer this question, propositions and 
patterns of arguments in Books VI, XI, and XII of the Elements are examined. A reconstruction 
modelled after Archimedes' On Sphere and Cylinder, Proposition II-1, is proposed, and its 
plausibility is discussed. © 1995 Academic Press, Inc. 

I1 est admis qu'Hippocrate de Chio a r6duit la duplication du cube au probl~me de la 
recherche de deux moyennes proportionnelles entre deux segments donn6s, mais rien n'est 
certain quant ~ la justification de cette r6duction. Pour r6pondre ~ cette question, sont exami- 
n6es les propositions comme les argumentations caract6ristiques des livres VI, XI, et XII des 
Elements. Une reconstruction sera propos6e d'apr~s De la sphere et du cylindre, proposition 
II-1 d'Archimbde, et son caract6re plausible sera discut6. © 1995 Academic Press, Inc. 

Es ist wohlbekannt, daft Hippocrates von Chios das Problem der Verdoppelung des Wtirfels 
auf das Problem der Auffindung von zwei mittleren Proportionalen zwischen zwei gegebenen 
Geraden zurtickfiihrte. Jedoch ist nichts bekannt tiber die Rechffertigung dieser Reduktion. 
Um diese Frage zu beantworten, werden S~itze und Strukturen von Argumenten aus den 
Btichern VI, XI, und XII der Elemente untersucht. Eine Rekonstruktion wird dann vorgeschla- 
gen, die sich auf Satz II-1 in Archimedes Uber Kugel und Zylinder stiitzt, und ihre Plausibilitat 
w i r d  d i s k u t i e r t .  © 1995 Academic Press, Inc. 
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1. I N T R O D U C T I O N  

T h e  p r o b l e m  o f  d o u b l i n g  t h e  c u b e  is o n e  o f  t h e  c e n t r a l  p r o b l e m s  in G r e e k  

m a t h e m a t i c s .  S ince  it  a t t r a c t e d  m a n y  m a t h e m a t i c i a n s  o f  t h e  p e r i o d ,  w e  posses s  

e x c e p t i o n a l l y  r i ch  a n c i e n t  m a t e r i a l s  o n  this  p r o b l e m .  A s  is w e l l  k n o w n ,  H i p p o c r a t e s  

o f  C h i o s  (ft. ca. 440 B .C . )  is sa id  to  h a v e  o r i g i n a t e d  t h e  t r a d i t i o n  o f  i n v e s t i g a t i n g  

c u b e  d u p l i c a t i o n .  S e v e r a l  s o u r c e s  c r e d i t  h i m  w i t h  r e d u c i n g  this  p r o b l e m  to  a n o t h e r ,  

t h a t  o f  f ind ing  t w o  m e a n  p r o p o r t i o n a l s  b e t w e e n  t w o  g i v e n  l ines.  F o r  e x a m p l e ,  in 

his  c o m m e n t a r y  to  A r c h i m e d e s '  On Sphere and Cylinder ( h e r e a f t e r  SC) ,  E u t o c i u s  

c i tes  E r a t o s t h e n e s :  

And it was sought among the geometers in what way one could double the given solid, keeping 
it in the same shape, and they called this sort of problem the duplication of the cube. And 
when they all puzzled for a long time, Hippocrates of Chios first conceived that if, for two 

119 

0315-0860/95 $6.00 
Copyright © 1995 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



120 KEN SAITO HM 22 

given lines, two mean proportionals were found in continued proportion, the cube will be 
doubled. Whence he turned his puzzle into another no less puzzling) 

Hereafter we call this transformation of cube duplication into the problem of 
finding two mean proportionals "Hippocrates'  reduction." It was in this reduced 
form that the solution of cube duplication was sought during antiquity. The traditions 
of these ancient studies have recently been so thoroughly studied by Knorr [9, 
11-153] that it seems as if nothing further could be teased out of the extant materials. 

In this article, however, we concentrate on a problem about which almost all the 
ancient sources are strangely taciturn: how cube duplication was reduced to finding 
two mean proportionals between two given lines. Strangely enough, in contrast to 
the abundance of solutions for inserting two mean proportionals, we have little 
testimony on how Hippocrates' reduction was proved in antiquity. No extant text 
explains how Hippocrates arrived at this reduction. It would therefore seem worth- 
while to try to understand the kind of arguments he was likely to have made. 2 
Throughout this paper, we will be less concerned with the heuristic context that 
motivated Hippocrates' work than with the justification of the discovery, the proof 
of the equivalence of cube duplication to finding two mean proportionals. Our 
concern will lead us to propose a new interpretation of the status of the theory of 
proportion in the early stage of Greek mathematics, where we will highlight a group 
of propositions which may have served as a tool for problem-solving (including 
that of cube duplication) for the mathematicians of the period. 

2. THE PROBLEM AND ITS REDUCTION 

First, let us briefly analyze the problem of doubling the cube, taking into account 
ancient testimonies and modern studies on its reduction. Cube duplication is a 
problem that appears to have been originally stated as follows: 

[CD] To find a cube which is twice as large (in size, not side) as a given one. 

Fairly early on, however, this problem was studied in the following generalized form: 

[CDx] To find a cube whose ratio to a given cube equals the ratio of two given 
lines (not necessarily in the ratio 2:1) (see also [8, 23]). 

This generalized problem was then reduced to the following problem: 

1 [5, 3:88]. We cite Knorr's translation in [9, 147]. Knorr persuasively asserts the genuineness of 
Eratosthenes' accounts. See [8, 17-24] and [9, 131-153]. 

2 It might be doubted if Hippocrates really proved the truth of his reduction, since Eratosthenes 
simply says that Hippocrates "first conceived" the truth of the reduction. Therefore, the reader with 
maximum reserve should read the phrase "Hippocrates' proof (or justification) of his reduction" in this 
paper as "the first rigorous proof of Hippocrates' reduction." This proof was surely found very soon, 
if not by Hippocrates himself, since it was concerned with such an important problem as cube duplication. 
Archytas already contrived a method to insert two mean proportionals [5, 3:84-88; 9, 100-110], so that 
we may assume that the proof was already available to Archytas. It seems to us that the attribution 
of both the discovery and the proof of the "reduction" to Hippocrates himself fits better with other 
testimonies which rank him as one of the great mathematicians of the period. 
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[CDxr] To  find two m e a n  propor t ionals  be tween  two given lines. 

Thus  given two lines a, b, one  must  find x, y, such that  a : x = x : y = y : b. The  last 
problem,  [CDxr],  was usually investigated by the ancients under  the name  of  cube 
duplication, a l though strictly speaking, this only covers the case b = 2a. 

W e  have a few sources that  demons t ra te  the t ruth  of  Hippocra tes '  reduct ion,  
and they are based  on the use of  the concept  of  triplicate rat io (as used in a 
propos i t ion  like Elements XI-33),  or  the c om pound ing  of  ratios. We  can confirm 
this in Diocles  [15, 102], Pappus  [6, 1:66-68] (see also [9, 90-91])  and Phi loponus  
[18, 104-105] (for translation, see [9, 20]). We  cannot ,  however ,  regard these argu- 
ments  as reflecting the first p roo f  of  Hippocra tes '  reduct ion  for  reasons that  will 
be explained below. 

Some of  the m o d e r n  reconstruct ions  follow the same lines as these authors  of  
late antiquity. For  example,  Knor r  explains the equivalence of  cube duplicat ion 
[CDx] and its reduct ion  [CDxr] as follows: 

If for any two given lines, A and B, we can insert the two mean proportionals, X and Y, then 
A : X = X : Y = Y: B. Thus, by compounding the ratios, one has (A : X) 3 = (A : X)(X : Y)(Y : B), 
that is, A 3 : X 3 = A : B. Thus, X will be the side of a cube in the given ratio (B : A) to the given 
cube ( m 3 ) .  [8,  23] 

In  this passage, K n o r r  is less interested in restoring Hippocra tes '  line of  thought  
than in convincing m o d e r n  readers  of  the t ruth  of  Hippocra tes '  reduction.  Indeed,  
he does no t  p re tend  to res tore  any ancient  argument .  Using m o d e r n  notat ions,  he 
assumes the equivalence of  triplicate rat io with the opera t ion  of  compound ing  the 
same ratio three times, 3 and he fur ther  assumes that  the triplicate ratio of  two lines 
is equal  to the rat io of  the cubes on them. The  t ruth of  the former ,  though  evident  
to us, is no t  explicitly p roved  in the extant  Elements, while the latter is a special 
case of  Elements XI-33. 4 

In  earlier studies [12; 13], we have argued that  the concepts  of  duplicate and 
triplicate ratio, as well as that  of  c o m p o u n d  ratio, appear  to have been  relatively 
late arrivals in the corpus of  Greek  mathemat ics ,  and that  the same holds true for 
Proposi t ion  XI-33. If  this thesis is correct,  then these not ions  were certainly not  
available to Hippocra tes  when  he formula ted  his reduct ion  of  cube duplication. It  
would,  therefore ,  be worthwhi le  to search for  a p roo f  wi thout  these notions. ~ 

In  this context ,  we should note  another  way  to formula te  cube duplicat ion which 
must  have been  clear to Greek  geometers  f rom the t ime of  Hippocra tes .  The  
p rob lem [CDx] can easily be represented  in the following more  geometr ic  form: 

[CDxg] Given  a rectangular  pr ism on a square base, to find a cube equal  to it. 

3 Knorr is far from the first to make this assumption. For example Heath, in his account of Hippocrates' 
reduction, states that "Hippocrates could work with compound ratios" [3, 1: 200]. 

4 Another modern reconstruction in [1, 57ff.] is based on the corollary of XI-33. 
5 In this respect, two modern reconstructions [16, 119; 14, 128] are to be noted. These authors do not 

resort to multiplicate and compound ratios, but use instead more fundamental theorems. However, as they 
did not intend to offer historical reconstructions, they offered no textual evidence for these arguments. 
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FIGURE 1 

Obviously, the solution of [CDxg] implies that of [CDx]. Let there be given a cube 
AB and two lines a, b (see Fig. 1). To find a cube whose ratio to AB is the given 
ratio a:b, one needs only to construct a rectangular prism FG with square base 
HG congruent to BC and whose height FH is such that FH : AC = a : b. It follows 
immediately that if cube DE is equal to prism FG, then DE : AB = a : b. 

Thus, the problem [CDx] is reduced to [CDxg]. In this respect, cube duplication 
is a natural analogue of the problem of squaring a rectangle in plane geometry. 
We therefore begin by examining the problem of squaring, and its relationship to 
cube duplication. 

3. THE PROBLEM OF SQUARING 

This section examines the problem of squaring a rectangle, the counterpart of 
cube duplication in plane geometry. The first problem is solved by finding one 
mean proportional, whereas the second requires finding two mean proportionals 
(see [3, 1:201; 8, 22]). 

In the Elements, the problem of squaring a rectangle is treated in I1-14. In 
Book VI, the same construction is presented as a method for finding one mean 
proportional between two given lines. In VI-17, the problem of squaring a given 
rectangle is reduced to another problem, that of finding a mean proportional be- 
tween two given lines. This step corresponds to Hippocrates' reduction of cube 
duplication. Then, the problem of finding one mean proportional is solved by 
means of the construction in VI-13, which is identical with that given in 11-14. The 
counterpart of this step in cube duplication is finding two mean proportionals. It is 
important to note that proposition VI-17, the counterpart to Hippocrates' reduction, 
does not depend on propositions concerning duplicate or compound ratios. In other 
words, a reduction of cube duplication using triplicate ratio or compound ratio, 
such as that given by Diocles or Pappus, is a different sort of solution from Euclid's 
solution of squaring. 
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So what means did Hippocrates use in his reduction? To answer this question, 
it is necessary to know which propositions he had at his disposal. Let us therefore 
examine the propositions concerning ratios between figures both in Book VI (plane 
figures) and in Books XI and XII (solid figures). 

Book VI of the Elements  contains several propositions concerning ratios between 
plane figures. Here we choose those relevant to the problem of squaring, and classify 
these propositions according to the scheme introduced by Mueller [10]: 

D base-area proportionality VI-1 

F equal-area propositions VI-14,15,16,17 

G duplicate-ratio between similar figures VI-19,20 

J compound-ratio proposition VI-23 

The letters in the first column indicate the symbols used by Mueller 6 to denote 
each type of proposition. The second column gives a short explanation of each type 
of proposition. Thus, type D refers to the proportionality relationship between base 
and area in two parallelograms or in two triangles of equal height. Only Proposition 
VI-1 belongs to this type and it constitutes the basis for all other propositions. 
Although Proposition VI-1 is concerned with the relationship between base and 
area, not with that involving height and area, the corresponding height-area propor- 
tionality can be established through VI-1, with the aid of VI-4. In the solid geometry 
of Books XI and XII, however, D (base-volume proportionality) and E (height- 
volume proportionality) are treated as distinct propositions. 

Type F, which we call "equal-area propositions," deserves a closer look. The 
first of these is: 

In equal and equiangular parallelograms the sides about the equal angles are reciprocally 
proportional; and equiangular parallelograms in which the sides about the equal angles are 
reciprocally proportional are equal. [Elements Vl-14] 

For the proof, Euclid begins with two equiangular parallelograms, AB and BC 
(see Fig. 2). By using VI-1, he proves that if AB = BC then DB : BE = GB : BF, 
and vice versa. Proposition VI-15 proves the corresponding theorem for triangles 
that have one angle equal. Proposition VI-16 treats the special case of VI-14, where 
the parallelograms are rectangles. VI-17 then handles the particular case of VI-16 
in which one of the rectangles is a square. The proof of VI-17 depends on proposi- 
tions VI-14 through VI-16. 

Type G contains two propositions (VI-19, VI-20) proving that similar plane figures 
are in the duplicate ratio of their corresponding sides.. Finally, type J contains 
the only theorem in Book VI concerning compound ratios (VI-23: equiangular 
parallelograms are in the ratio compounded of the ratios of their sides). This 
result has the greatest affinity to the modern formula for the numerical area of a 
parallelogram. 

6 See [10, 217; Appendix 1]. Some types of propositions in Mueller's classification are omitted since 
they are of little importance here. 
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De Morgan noted [4, 2:217, 233-234] that the two propositions of types D and 
J are sufficient to establish all the other propositions concerning ratios between 
parallelograms. In fact, VI-23 can be proved directly from VI-1, and it thus depends 
on none of the intermediate results of types F and G. VI-19 is merely a special 
case of VI-23, whereas the propositions in F could even seem to be trivial corollaries 
that follow directly from VI-23 (see [10, 161-162]). 

It is important to recognize, however, that the logical relations of these proposi- 
tions, as presented in Book VI, are quite different. First, J (VI-23) is completely 
isolated in the Elements: not only is it never used later but it also depends on the 
notion of compound ratios, a concept whose definition in Book VI is spurious. 

We believe that J was interpolated into an earlier version of Book VI which 
existed before Eudoxus and Euclid [12, 33-35]. 7 Furthermore, the propositions of 
type G (VI-19, VI-20) also seem to be out of place in Book VI. While VI-19 is 
used in the proof of VI-20, neither VI-19 nor VI-20 are used anywhere else in Book 
VI. Instead, the corollary (porism) to VI-19, which avoids the concept of "duplicate 
ratio," is used to prove VI-22, VI-25, and VI-31. This odd avoidance of type G 
suggests that the term "duplicate ratio" was also a later insertion into the original 
version of Book VI. 

The very proof of VI-19 supports the plausibility of this interpolation. If one 
were to demonstrate VI-19 using the full power of the idea of duplicate ratio and 
following the kind of argument presented in VIII-18 for numbers, it would be 
natural to proceed as follows: 

7 This interpolation may have been inserted by Euclid himself or by somebody after him. We can 
only speak of relative chronology here. 



HM 22 DOUBLING THE CUBE 125 

A 

B Q C 

D 

FIGURE 3 

Le t  A B C  and D E F  be similar triangles (Fig. 3). Const ruct  triangle P B Q  congruent  
with the triangle D E F ,  and join A Q .  Then  

so 

A B C  : A B Q  = BC : B Q  = B A  : BP  = A B Q  : P B Q  = A B Q  : D E F ,  

A B C  : A B Q  = A B Q  : D E F .  

Therefore ,  it is evident  that  the ratio of  similar triangles A B C :  D E F  is the duplicate 
ratio of  their cor responding  sides B C  : E F  ( = B C  : BQ) .  8 

The  p r o o f  of  VI-19 in the Elements ,  however ,  p roceeds  quite differently. 

Using VI-11, one  finds a third p ropor t iona l  B G  to B C  and E F  (Fig. 4): 

B C : E F  = E F : B G .  

Since 

A B  : D E  = B C : E F ,  

one  has 

8 This argument tacitly invokes ex aequali (V-22). For a more detailed discussion, see [13, 120]. 
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A B  : D E  = E F : B G .  

By F (VI-14),  this leads to the equal i ty  of two triangles: 

A B G  = D E F .  

Since, by VI-1, A B C  : A B G  = B C :  BG,  

A B C :  D E F  = BC : B G  = 2 * (BC : EF) .  9 

Thus,  Eucl id  evident ly  prefer red  an  a r g u m e n t  de pe nd i ng  on  F (VI-14) to a direct  
p roof  which he could have fo rmula ted  after  the mode l  of VIII-18.  His  p roof  seems 
to be more  appropr ia te  for the corol lary to VI-19 ra ther  than  for VI-19 itself, 
because  he actual ly constructs  the third p ropor t iona l  in the given figure. 1° 

The  idiosyncracies we have no t ed  above  in Book  VI  are difficult to account  for 
on  ma themat i ca l  g rounds  alone.  However ,  they become  unde r s t andab l e  if we as- 

9 We use this notation for the duplicate ratio, and the triplicate ratio of BC:EF will be written 
3 * (BC : EF). 

10 VI-19 and its corollary are as follows: 
VI-19. Similar triangles are to one another in the duplicate ratio of the corresponding sides. 
VI-19 Corollary. From this it is manifest that, if three straight lines be proportional, then, as 
the first is to the third, so is the figure described on the first to that which is similar and similarly 
described on the second. 

The corollary refers explicitly to the third proportional, while in the proposition, it is hidden under the 
term "duplicate ratio." 
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sume that the application of the theory of proportion to plane geometry began 
with the problem of squaring simple figures, and that propositions of the types G 
and J represent the fruits of later developments (for more discussion see [13]). 

Although this interpretation may appear speculative, the contrary assumption 
that the techniques of multiplicate ratios and compound ratios were available at 
the time of Hippocrates poses a major difficulty: if these notions were familiar over 
100 years before Euclid, why are compound ratios so isolated and why are duplicate 
ratios not exploited more often in the extant text of Book VI of the Elements? If 
we assume, on the other hand, that these concepts were not available to Hippocrates, 
the question arises: what was Hippocrates' reduction like? To this question, the 
solid geometry in the Elements provides valuable suggestions. 

4. PROPOSITIONS CONCERNING THE RATIOS OF SOLID FIGURES 
IN THE ELEMENTS 

We now consider Books XI and XII of the Elements and analyze the propositions 
presented therein concerning the ratios between solid figures. The figures treated 
in these propositions are parallelpipeds, prisms, pyramids, cylinders, cones, and 
spheres. Here, as in the preceding section, we again make use of Mueller's classifi- 
cation: 

p tpy py c s 

D base-volume XI-32 XII-5 XII-6 XII-11 
proportionality 

E height-volume XI-32 XII-14 
proportionality 

F equal-volume XI-34 XII-9 XII-15 
proposition 

G triplicate-ratio XI-33 XII-8 XII-12 XII-18 
proposition 

In this table, the symbols p, tpy, py, c and s in the first line stand for parallelpiped, 
triangular pyramid, pyramid (in general), cone (and cylinder) and sphere, respec- 
tively. Propositions like VI-23 (type J, using compound ratios) are absent in the 
solid geometry of the Elements, while those of type E are often independent of 
type D. 

The most striking feature of solid geometry in the Elements is that the selections 
and demonstrations of propositions are not as systematic as one might expect. 
There is no use of compound ratios although this could greatly simplify the proof 
of other propositions, as Ian Mueller has noted. In pointing out that Euclid could 
have proven the theorem that pyramids are to one another in the same ratio as 
the compound ratio of their bases and heights, Mueller states: "Euclid's failure to 
prove this extension of XII,9 is perhaps some further confirmation of the view 
that the connections among compounding, multiplying, and volumes were not so 
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immediately clear to him as they are to us [10, 229]." We should add that the 
propositions of type J are not the only ones that fail to appear in Book XII. As is 
seen in the table, most of the propositions concerning pyramids in general are 
lacking, though these are easily provable. 

We now examine the propositions and the logical dependency among them. First, 
let us analyze the propositions concerning parallelpipeds: Dp and Ep (XI-32), Fp 
(XI-34), and Gp (XI-33). The basic results Dp and Ep are covered by XI-32, which 
is the counterpart of VI-1 in solid geometry. 11 Next, Gp (XI-33) and Fp (XI-34) 
are proved from XI-32. What is striking in these propositions is that Gp appears 
before Fp, unlike the propositions of types G and F for parallelograms. This reversed 
order of propositions entails a difference in their proof, of course. Both Gp (XI- 
33) and Fp (XI-34) are proved directly from Dp and Ep (XI-32). Gp therefore does 
not depend on Fp. Neither Gtpy nor Gc depends on its corresponding theorem of 
type F, since they are both proved from Gp. 

In examining the propositions on parallelograms, we emphasized the logical 
dependence of propositions of type G (VI-19, 20) on those of type F (VI-14 to 
VI-17). We thence claimed that the reduction of squaring to finding one mean 
proportional (VI-17, a special case of VI-14) was not proved through duplicate 
ratio. 

In solid geometry, this dependence no longer exists. Should we then reject F as 
irrelevant to cube duplication and assume that the reduction of cube duplication 
was carried out by means of G (XI-33), taking advantage of triplicate ratio? We 
do not think so. The independence of Gp from Fp may reflect the period of the 
draft of these books on solids, which are no doubt later than Book VI. Indeed, the 
fact that propositions of type F appear in Books XI and XII is significant, because 
they are no longer necessary. Propositions XI-34, XII-9, and XII-15, which are 
never used in any substantial way in the Elements, 12 suggest again that the theorems 
of type F reflect the mathematics of an earlier period, as their role in the extant 
text of the Elements is otherwise difficult to explain. We believe this earlier context 
was intimately connected with the problem of doubling the cube. 

To support this thesis, let us now examine Book XII more closely. The proposi- 
tions of Book XII deal with curved solids, and therefore require the method of 
exhaustion, which is employed in the proofs of the propositions concerned with 
cylinders and cones. The method of exhaustion is also used in the last proposition 
XII-18 (spheres are to one another in the triplicate ratio of their respective diame- 
ters), the most sophisticated result on spheres before Archimedes. The propositions 
on pyramids, which did not require the method of exhaustion, are only useful 
lemmata for the proof of the propositions on cylinders, cones, and spheres. Clearly, 
the aim of Book XII was not to provide a compendium of propositions concerning 
the volumes of pyramids. 

11 Although XI-32 does not explicitly state E, this property is easily derived from XI-32 and VI-1, as 
Euclid argues in XI-34. 

lz The only use of F, namely of XI-34 in XII-9, does not explain the significance of F, since both XI- 
34 and XII-9 belong to F. 
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The method of exhaustion is used in Propositions 2, 5, 11, 12, and 18, and most 
of the other propositions in Book XII are used as lemmata to establish these five 
theorems. Only four propositions, namely 9, 13, 14, and 15, have no connection 
with the method of exhaustion, and they appear to be dead-end propositions with 
no apparent purpose. 13 We should not, however, simply disregard these propositions 
as useless. We must first make every effort to discover their significance. What then 
was the significance of these four propositions? Since they all establish F, the equal- 
volume propositions (XII-9 for triangular pyramids, and XII-15 for cylinders and 
cones), 14 it may be assumed that the author had a special interest in establishing 
propositions of type F. 

Our examination of solid geometry in the Elements thus again reveals an emphasis 
on F, the equal-volume propositions. In the next section, we will examine a document 
that suggests that the equal-volume propositions underpinned Hippocrates' reduc- 
tion of cube duplication. 

5. ARCHIMEDES' ON SPHERE AND CYLINDER, PROPOSITION II-1 

In this section we examine Archimedes' SC II-1. Its solution is reduced to the 
same problem as cube duplication: finding two mean proportionals between two 
given lines. This coincidence inspired Eutocius to add a long commentary on cube 
duplication. In fact, without Eutocius's commentary, we would have far poorer 
documentation on the history of cube duplication. We concentrate on this problem 
in SC because we believe that the coincidence of the solutions of this problem in 
SC II-1 and of cube duplication reveals a more fundamental affinity. 

The first proposition of the second book of Archimedes' On Sphere and Cylinder 
solves the following problem: 

SC II-1. Given a cone or cylinder, to find a sphere equal to it. 

This proposition consists of two parts: the analysis and the synthesis (though Archi- 
medes does not use these terms here). We examine the analysis, where Archimedes 
first reduces the problem as follows: 

SC 11-1'. Given a cylinder, to find an equal cylinder whose height is equal to 
its diameter. 

Archimedes' analysis of II-1' proceeds as follows. 

Let E be the given cylinder (Fig. 5), with height EF, and base diameter CD, and 
let K be the cylinder to be constructed, with height KL equal to its base diameter 
GH. Then 

(circle E) : (circle K), that is, sq(CD) : sq(HG) = KL: EF (1) 

and KL = HG. Therefore, 

13 See Neuenschwander's diagram of the logical relationships between the propositions in Book XII 
in [11, 116]. 

14 The other propositions, namely XII-13 and XII-14, serve as lemmata for XII-15. 
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sq(CD)  : sq (HG)  = H G  :EF .  (2) 

Le t  [MN be a line such that] 

s q ( n G )  = r (CD,  MN)  (3) 

T h e n  

C D  : M N  = sq(CD)  : sq (HG) ,  that  is, = H G  : EF.  (4) 

Then,  al ternately,  

C D  : H G  = H G  : M N  = M N  : EF. (5) 

We  now examine  each step in A r c h i m e d e s '  a rgument ,  filling up small gaps in his 
exposit ion. The  first step (1) is based on  F (the equal -volume proposi t ion)  for  
cylinders (SC L e m m a  4 after 1-16; 15 Elements, XII-15),  and the propor t ional i ty  o f  
the squares  and circles (Elements, XII-2) .  The  next  relat ion (2) is der ived simply 
f rom the rep lacement  of  K L  in (1) by an equal  length, HG.  

The  in t roduct ion of  the line M N  in (3) deserves attention.  It  is cons t ruc ted  so 
that  the rectangle  conta ined by M N  and C D  is equal  to the square on HG.  O n  the 
basis o f  this relat ion (3), Arch imedes  then jumps  to (4). His small skip would  
adequate ly  be filled as follows (our  reconstruct ion) :  16 

15 s c  Lemma 4 after 1-16. In equal cones the bases are reciprocally proportional to the heights; and 
those cones in which the bases are reciprocally proportional to the heights are equal. 

16 We have to note that Heiberg's reference to Definition 9 of the Elements in [5, 1:173, Note 2] is 
misleading. First of all, Heiberg confuses two notions that are clearly different in Greek mathematics: 
duplicate ratio (the ratio of the first term to the third when three magnitudes are proportional) and the 
ratio of squares (see also the text to Note 4, in Section 2). His confusion seems to show that our modern 
arithmetical approach to geometry using real numbers makes it difficult for us to distinguish them. For 
further discussion, see [13]. 

Among modern translations, [2, 182] follows Heiberg in introducing duplicate ratio. We follow Vet 
Eecke's interpretation in [17, 1:91, Note 2]. 
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Since 

Therefore,  

sq(HG) = r(CD, MN) 

sq(CD) : sq(HG) = sq(CD) : r(CD, MN) = CD :MN. 

(3) 

CD :MN = sq(CD) : sq(HG).  

This is the first half of (4). The rest of (4), sq(CD) : sq(HG) = H G  : EF, is the very 
content of (2). 

The deduction of (5) also contains a leap which we supplement in the following 
manner: 

Applying Archimedes '  indication "al ternately" to the previous relation: 

CD : MN = H G  :EF, (4) 

we obtain 

CD : H G  = MN : EF. (5) 

The rest of the relation (5), i.e., CD : H G  = H G  : MN, would be obtained by applying 
Elements VI-16 (another proposition of type F) to the equality (3): sq(HG) = 
r(CD, MN). 

We have now examined every step of Archimedes '  analysis in SC II-1. It is worth 
noting that no recourse is made to either multiplicate ratio (i.e., duplicate and 
triplicate ratio) or compound ratio. 

Archimedes'  argument is thus completely clear, in the sense that every proposition 
he used in each step has been identified. However,  we cannot yet be satisfied 
because we have not yet found an explanation which would make his argument 
understandable as a whole. Since his argument seems at first sight tortuous, we 
need to consider the context that may have motivated it. 

The affinity of Archimedes '  argument with Elements VI-19 offers a satisfactory 
explanation of Archimedes '  intention in his analysis of SC II-1. Let  us examine this 
point more closely. In his analysis, Archimedes does not use the propositions 
concerning multiplicate ratio (type G), their role is replaced by SC Lemma 4 after 
1-16 which is identical to the Elements, XII-15 (type F). In this respect, his argument 
has much in common with the treatment of squaring in Book VI. 

This affinity is far stronger than one might at first imagine. Let  us further confirm 
this point. Both Archimedes and Euclid make use of propositions of type F. Both 
introduce an auxiliary line which performs an analogous role. This parallelism 
deserves further explanation. In Archimedes'  analysis, the introduction of the line 
MN has a twofold significance: on the one hand, a proport ion 

CD : H G  = H G  : MN 

is derived from the equality of areas through VI-16 (type F) of the Elements. On 
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the other  hand, since it supposes an equality of areas (3): sq (HG)  = r(CD, MN), 
it enables one to reduce the ratio between squares s q ( C D ) : s q ( H G )  to that be- 
tween lines: 

sq(CD) : sq (HG)  = sq(CD) : r (CD, MN) = CD :MN. 

Looking at VI-19 of the Elements (see Fig. 4), one notes that the auxiliary line 
B G  thereby has exactly the same twofold role in the proof: to introduce (i) a 
proport ionali ty ( B C : E F  = E F : B G )  and (ii) an equality of areas which leads to 
the reduction of a ratio between areas to that between lines (ABC : D E F  = BC : BG).  
There  is a perfect  parallelism between these arguments.  The only difference is that, 
in VI-19, the line is introduced not through an equality of areas, as in step (3) of 
Archimedes '  analysis, but as the third proport ional  to two given lines, just as in 
step (6) of the same analysis. This difference, however,  does not signify a substantial 
difference between these two arguments.  Since VI-19 of the Elements is a theorem,  
while Archimedes '  passage is an analysis, the arguments  are necessarily in reverse 
order. Thus, SC II-1 and Elements VI-19 employ the same technique of introducing 
an auxiliary line segment. 

In a previous article, we have pointed out the use of this same technique in Euclid's 
Data, Proposit ion 68, and in Apollonius 's  Conics, 1-43, calling this a "reduct ion to 
linear ra t io"  [12, 35-48] .17 The function of this technique can be precisely described: 
it applies a proposit ion of type F, thereby avoiding an argument  by duplicate ratios 
or compound ratios. 

Now we can bet ter  understand Archimedes '  argument  as a whole. It  is a due 
result of the systematic application of an established and widely diffused method,  
"reduct ion to linear ratio." 

Archimedes '  choice of this technique is significant, because another  solution by 
triplicate ratio was certainly available to him. In a l emma in the first book  of SC 
Archimedes  states that similar cones are in triplicate ratio of the base diameters.  TM 

This is also par t  of  XII-12 of the Elements, where the same proper ty  is also estab- 
lished for cylinders. Though Archimedes  does not seem to have directly consulted 
Euclid's Elements, we may certainly assume that Archimedes  was also aware that 
his l emma applied to cylinders as well as to cones. 

With this lemma,  problem II-1 can be solved as follows: 

A Possible Reconstruction of the Solution of 11-1'. Take a point O on EF  such that  
CD = E O  (Fig. 6). Then f rom the l emma above we have 

cylinder C D O  : cylinder G H L  = 3 * (CD : G H )  (1) 

Since cylinders which are on equal bases are as their axes (SC L e m m a  2 after 1- 
16; cf. Elements, XII-14), 

17 Of course it should be distinguished from "Hippocrates' reduction" which we investigate in the 
present paper. 

18 SC I, Lemma 5 after Proposition 16: Cones whose diameters of the bases have the same ratio as 
their axes are in the triplicate ratio of the diameters of their bases. 
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cylinder C D O  : cylinder CDF = E O  : EF = CD : EF. (2) 

Also it is supposed that 

cylinder G H L  = cylinder CDF. (3) 

From (1), (2), and (3), we have 

CD :EF = 3 * (CD :HG) .  (4) 

Then, f rom the definition of triplicate ratio, H G  (the diameter  of the base of the 
cylinder to be found) is the first of the two mean  proport ionals  between CD and EF. 

This argument,  though our reconstruction, depends only upon propositions available 
to Archimedes  and conforms completely to the style of Greek  geometry  at that 
time. In short, we see no reason why Archimedes  could not have carried out 
this argument.  

Archimedes,  however,  did not use the lemma concerning triplicate ratio, although 
it was clearly within his reach, preferring the technique of "reduction to linear 
ratio." His choice confirms the prevalence of this technique, which we have found 
in both Euclid and Apollonius. Archimedes '  case is particularly significant for two 
reasons: first, he chose not to use compound and multiplicate ratios in this problem 
in spite of his perfect  mastery  of these concepts;19second, Archimedes  could not 
have failed to notice that his problem (SC II-1) was essentially equivalent to cube 
duplication. In fact, it is easy to see that, if one replaces the base circles of the 
cylinders in SC I I - l '  with squares circumscribed on these circles, the problem turns 

19 For compound ratio, see SC 11-4. As for multiplicate ratio, Archimedes uses it in SC 1-32, 33, and 
34, he also refers to the results of his predecessors (cf. Elements XII-2 and 18) in terms of multiplicate 
ratio in his preface to Quadrature of  Parabolas. Moreover, he even goes on to introduce a "sesquialteral" 
ratio in SC 11-8 (if a: b = b:c = c:d, then a:d is the sesquilateral ratio of a:c). 
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into the geometrically represented form of cube duplication [CDxg]; Archimedes 
indeed performs this very substitution in his argument. 

Under these circumstances, Archimedes' argument in SC II-1 seems to suggest 
something more than his preference for the technique of "reduction to linear ratio." 
To make our point clear, let us pose a question. The equivalence of the problem of 
doubling the cube and finding two mean proportionals was no doubt a commonplace 
knowledge for mathematicians at Archimedes' time. What then was its proof at 
that time? The assumption that it was based on triplicate ratio (this seems to 
be the opinion of the majority of modern scholars) makes it difficult to explain 
Archimedes' avoidance of triplicate ratio in SC II-1. It would seem plausible, on 
the other hand, that the proof of Hippocrates' reduction of cube duplication was 
similar to Archimedes' analysis in SC II-1 and that the latter was in fact an adaptation 
of the former. 

This latter assumption leads to a natural reconstruction of the reduction of cube 
duplication modelled on Archimedes' analysis in SC II-1. This reconstruction goes 
as follows: 

Let there be given a rectangular prism AB, with square base BC (Fig. 7). It is 
required to find a cube EF which is equal to prism AB. Let it be assumed that the 
cube EF is constructed. Then, by Fp (XI-34), 

sq(CD) :sq(GH) = EG:AC.  (1) 

Since EF is a cube, GH = EG. Therefore, 

sq(CD) : sq(GH) = GH:AC.  (2) 

Let MN be a line such that 

sq(GH) = r(CD, MN). (3) 

Then 



HM 22 DOUBLING THE CUBE 135 

Therefore,  

sq(CD) : sq(GH) = sq(CD) : r(CD, MN) = CD :MN. 

CD : MN = sq(CD) : sq(GH),  that is, G H  : AC. (4) 
Then, alternately, 

CD : G H  = MN : AC. 

From (3), by F(VI-16), CD : G H  = G H  : MN. Therefore,  

CD : G H  = G H  : MN = MN : AC. (5) 

Therefore,  GH, the side of the cube to be constructed, is the first of the two mean 
proportionals between given two lines CD and AB. 

In the reconstruction above, we have given the same numbers to the correspond- 
ing relations so as to make the parallelism between the two arguments apparent. 
To conclude, let us examine what we have established, and discuss the plausibility 
of our analysis and the above reconstruction. 

6. C O N C L U D I N G  O B S E R V A T I O N S  

First, we have established that Archimedes'  argument in SC II-1, which seems 
at first sight roundabout  and tortuous, is in fact a systematic application of a 
technique which we call "reduction to linear ratio." In fact, this proposition provides 
further evidence that this technique enjoyed wide diffusion and long persistence. 
At  the same time, we have discovered the significance of equal-volume propositions 
(those of type F) in Books XI and XII of the Elements. These results are indispens- 
able for the technique of "reduct ion to linear rat io" (just as are their counterparts 
in plane geometry),  and this method enabled Greek mathematicians to avoid using 
multiplicate and compound ratios. How old is this technique of "reduct ion" then? 
Although the lack of extant documents prevents us from giving a definitive answer 
to this question, the technique would seem fairly ancient. For  Archimedes, both 
the technique of "reduct ion"  and the method of multiplicate and compound ratios 
were clearly available, and certain types of problems could be solved by either of 
them. In the Data and the Elements, however, we see a preference for the "reduc- 
t ion" method. There  seems to be no reason to believe that this technique was first 
introduced by Euclid, since it requires only basic theorems of proport ion theory. 
At  any rate, one should be wary of invoking the use of the multiplicate and com- 
pound ratios in reconstructing early Greek geometry, since these methods appear 
to have been developed later and are not directly supported by pre-Euclidean 
documentary evidence. 

Second, the proof  of Hippocrates '  reduction which we have reconstructed from 
Archimedes'  argument, or something quite close to this, very probably served as 
a standard justification of Hippocrates '  reduction. For  although our reconstruction 
has no direct historical evidence, the assumption that this argument was unfamiliar 
would at once entail the following assertions which seem very difficult to sustain: 
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• The technique of "reduct ion to linear ratio," which was widely used in a variety 
of contexts, was not applied to cube duplication; 

• In spite of this, Archimedes  adopted the technique in SC II-1, a p rob lem similar 
to cube duplication, when he could have just as easily utilized the method  of 
multiplicate and compound ratios. 

• B o o k s X I a n d X I I o f E u c l i d ' s E l e m e n t s c o n t a i n s o m e e q u a l - v o l u m e p r o p o s i t i o n s  
(type F) with no apparent  purpose.  
Taking these points into consideration, it would seem safe to assume that  the 
justification of Hippocra tes '  reduction of cube duplication existed in the form we 
have reconstructed it, by no later than Archimedes '  time. 

Finally, let us briefly discuss the possibility of attributing our reconstruction to 
Hippocrates  himself. The technique of "reduct ion to linear ra t io"  may  safely be  
dated before  Eudoxus (fl. ca. 368 B.C.), since Eudoxus 's  theory of propor t ion could 
justify the use of multiplicate ratios and these were indeed used in XII-1 (see [13, 
130-135]). I f  so, our  reconstructed proof  would have originated by no later than 
the first half of the fourth century B.C., which would be much less than a century 
after Hippocrates.  

I f  we may be permit ted to make  some conjectures here, we would like to propose  
that Hippocra tes  himself gave a rigorous proof  similar to our reconstruction, within 
the standards of  his time, for his reduction of cube duplication, and that he developed 
the technique of "reduction to linear ra t io"  based on the propositions of  type F 
contained in his Elements. In this connection, we would emphasize the importance 
of the proposit ions of type F as a tool for the technique of "reduct ion to linear 
ra t io"  in early Greek  geometry.  The greatest  advantage of this approach is that it 
is in accordance with the idiosyncrasies in the Elements and other Greek  mathemat i -  
cal works. 

Thus our study of how Hippocrates  or his contemporar ies  may have justified 
Hippocra tes '  reduction has resulted in a proposal  for a new interpretat ion of the 
development  of  the theory of proport ion in early Greek  geometry.  We believe that, 
despite the disturbing lack of documentary  evidence, we can still hope to improve 
our understanding of pre-Euclidean geometry  through careful analysis of the theo- 
rems and techniques used in the extant texts. We hope that our approach will 
inspire further researches in this direction. 
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