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1. Introduction

We consider the initial value problem

Dα,β

a+ y(x) = f (x, y), x > a, 0 < α < 1, 0 ≤ β ≤ 1, (1)

I1−γ

a+ y(a+) = ya, γ = α + β − αβ, (2)

where Dα,β

a+ is the generalized Riemann–Liouville fractional derivative operator introduced by Hilfer in [1–3].
In recent years there has been a considerable interest in the theory and applications of fractional differential equations.

See for example [4–14] and references therein.
Fractional calculus approach has been introduced in many models. Fractional models provide a tool for capturing and

understanding complex phenomena in many areas; see for example [15–18]. Indeed, some of these models are supported
by experimental evidence and yield results that agree with the observed behavior [19].

The two parameter family of fractional derivatives Dα,β

a+ of order α and type β allows one to interpolate between the
Riemann–Liouville and the Caputo derivatives described in [20–22]. The type-parameter produces more types of stationary
states and provide an extra degree of freedom on the initial condition. Models based on this derivatives are considered in
[2,3,7,15].

In this paper, we prove the existence and uniqueness for the nonlinear initial value problem (1)–(2) in a weighted space
of continuous functions. We start with some preliminaries in Section 2. In Section 3, we set up the Cauchy type problem and
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define the generalized derivative and the spaces of solutions. In Section 4, we establish the equivalence with the Volterra
integral equation. In Section 5, we prove the existence and uniqueness of the solution. Finally, in Section 6 we present a
stability result.

2. Preliminaries

In this section we present some definitions, lemmas, properties and notation which we use later. For more details please
see [20].

Let −∞ < a < b < ∞. Let C[a, b], AC[a, b] and Cn
[a, b] denote the spaces of continuous, absolutely continuous and

n times continuously differentiable functions on [a, b], respectively. We denote by Lp(a, b), p ≥ 1, the spaces of Lebesgue
integrable functions on (a, b).

Definition 1. We consider the weighted spaces of continuous functions

Cγ [a, b] = {f : (a, b] → R : (x − a)γ f (x) ∈ C[a, b]} , 0 ≤ γ < 1,

and

Cn
γ [a, b] =


f ∈ Cn−1

[a, b] : f (n)
∈ Cγ [a, b]


, n ∈ N,

C0
γ [a, b] = Cγ [a, b],

with the norms

∥f ∥Cγ
= ∥(x − a)γ f (x)∥C ,

and

∥f ∥Cn
γ

=

n−1
k=0

f (k)

C +

f (n)

Cγ

.

These spaces satisfy the following properties.

• C0[a, b] = C[a, b].
• Cn

γ (a, b) ⊂ ACn
[a, b].

• Cγ1 [a, b] ⊂ Cγ2 [a, b], 0 ≤ γ1 < γ2 < 1.

Lemma 2. Let 0 ≤ γ < 1, a < c < b, g ∈ Cγ [a, c], g ∈ C[c, b] and g is continuous at c. Then g ∈ Cγ [a, b].

Lemma 3 ([23]). Let λ, ν, ω > 0, then t

0
(t − s)ν−1sλ−1e−ωsds ≤ Ctν−1, t > 0,

where

C = max

1, 21−ν


Γ (λ)(1 + λ(λ + 1)/ν)ω−λ > 0.

The following is a special case of Jensen’s Inequality.

Lemma 4. For nonnegative ai, i = 1, . . . , k,
k

i=1

ai

p

≤ kp−1
k

i=1

api , p ≥ 1. (3)

Lemma 5 ([24]). Let a(t) and b(t) be continuous positive functions defined on [t0, ∞), t0 ≥ 0. Let w : [0, ∞) → [0, ∞) be
a continuous monotonic nondecreasing function such that w(0) = 0 and w(x) > 0 for x > 0. If u is a positive differentiable
function on [t0, ∞) that satisfies

u′(t) ≤ a(t)w(u(t)) + b(t), t ∈ [t0, ∞),

then we have

u(t) ≤ G−1

G

u(t0) +

 t

t0
b(s)ds


+

 t

t0
a(s)ds


,
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for the values of t for which the right-hand side is well-defined, where

G(r) =

 r

r0

ds
w(s)

, r > r0 > 0.

Theorem 6 ([20], Banach Fixed Point Theorem). Let (U, d) be a nonempty complete metric space. Let T : U → U be a map such
that for every u, v ∈ U, the relation

d(Tu, Tv) ≤ w d(u, v), 0 ≤ w < 1

holds. Then the operator T has a unique fixed point u∗
∈ U.

Furthermore, if T k, k ∈ N, is the sequence of operators defined by

T 1
= T , T k

= TT k−1, k ∈ N \ {1},

then for any u0 ∈ U the sequence

T ku0

∞

k=1 converges to the above fixed point, u∗.

The left-sided Riemann–Liouville fractional integrals and derivatives are defined as follows.

Definition 7. Let f ∈ L1(a, b). The integral

Iαa+ f (x) :=
1

Γ (α)

 x

a

f (s)
(x − s)1−α

ds, x > a, α > 0,

is called the left-sided Riemann–Liouville fractional integral of order α of the function f .

Definition 8. The expression

Dα
a+ f (x) := DIα−1

a+ f (x), x > a, 0 < α < 1,D =
d
dx

,

is called the left-sided Riemann–Liouville fractional derivative of order α of f provided the right-hand side exists.

For power functions we have the following properties.

Lemma 9. For x > a we have
Iαa+(t − a)β−1 (x) =

Γ (β)

Γ (β + α)
(x − a)β+α−1, α ≥ 0, β > 0.

Dα
a+(t − a)α−1 (x) = 0, 0 < α < 1.

The following lemmas provide some mapping properties of Iαa+ . Proofs can be found in [25].

Lemma 10. For α > 0, Iαa+ maps C[a, b] into C[a, b].

Lemma 11. Let α > 0 and 0 ≤ γ < 1. Then Iαa+ is bounded from Cγ [a, b] into Cγ [a, b].

Lemma 12. Let α > 0 and 0 ≤ γ < 1. If γ ≤ α, then Iαa+ is bounded from Cγ [a, b] into C[a, b].

Lemma 13. Let 0 ≤ γ < 1 and f ∈ Cγ [a, b]. Then

Iαa+ f (a) := lim
x→a+

Iαa+ f (x) = 0, 0 ≤ γ < α.

Proof. Note that by Lemma 12, Iαa+ f ∈ C[a, b]. Since f ∈ Cγ [a, b] then (x − a)γ f (x) is continuous on [a, b] and thus

|(x − a)γ f (x)| < M, x ∈ [a, b],

for some positive constantM . ThereforeIαa+ f (x) < M

Iαa+(t − a)−γ


(x),

and by Lemma 9Iαa+ f (x) ≤ M
Γ (1 − γ )

Γ (α + 1 − γ )
(x − a)α−γ .

Since α > γ , the right-hand side → 0 as x → a+. This completes the proof. �
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Lemma 14. Let f ∈ L1(a, c). Then

lim
x→c+

 c

a
(x − t)α−1f (t) dt =

 c

a
(c − t)α−1f (t) dt = Γ (α)Iαa+ f (c), α > 0.

Proof. We have c

a
(c − t)α−1f (t)dt −

 c

a
(x − t)α−1f (t) dt

 ≤

 c

a

(c − t)α−1
− (x − t)α−1

 |f (t)| dt
=

 c

a
k(x, t)|f (t)| dt.

This proves the result since limx→c+ k(x, t) = 0 for all a ≤ t < c . �

The following lemma follows by direct calculations using Dirichlet formula.

Lemma 15. Let α ≥ 0, β ≥ 0, and f ∈ L1(a, b). Then

Iαa I
β
a f (x)

a.e.
= Iα+β

a f (x), t ∈ [a, b].

In particular, if f ∈ Cγ [a, b] or f ∈ C[a, b] then equality holds at every x ∈ (a, b] or x ∈ [a, b], respectively.

This lemma leads to the left inverse operator as follows.

Lemma 16. Let α > 0, 1 ≤ γ < 1, and f ∈ Cγ [a, b]. Then

Dα
a+ I

α
a+ f (x) = f (x)

for all x ∈ (a, b].

The following composition is proved in [22].

Lemma 17. Let 0 < α < 1, 0 ≤ γ < 1. If f ∈ Cγ [a, b] and I1−α

a+ f ∈ C1
γ [a, b], then

Iαa+D
α
a+ f (x) = f (x) −

I1−α

a+ f (a)

Γ (α)
(x − a)α−1,

for all x ∈ (a, b].

3. Generalized Cauchy problem

In this section we set up the Cauchy type problem (1)–(2) and define the generalized derivative and the spaces of
solutions.

Definition 18. The right-sided fractional derivative operator of order 0 < α < 1 and type 0 ≤ β ≤ 1 is defined by

Dα,β

a+ = Iβ(1−α)

a+ DI(1−β)(1−α)

a+ .

Remark 19. The following follows from the definitions.

R1. The operator Dα,β

a+ can be written as

Dα,β

a+ = Iβ(1−α)

a+ DI1−γ

a+ = Iβ(1−α)

a+ Dγ

a+ , γ = α + β − αβ.

R2. The Dα,β

a+ derivative is considered as an interpolator between the Riemann–Liouville and Caputo derivative since

Dα,β

a+ =


Dα
a+ , β = 0,

I1−α

a+ D, β = 1.

R3. The parameter γ satisfies

0 < γ ≤ 1, γ ≥ α, γ > β, 1 − γ < 1 − β(1 − α).
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We introduce the spaces

Cα,β

1−γ [a, b] =


f ∈ C1−γ [a, b],Dα,β

a+ f ∈ C1−γ [a, b]


, (4)

and

Cγ

1−γ [a, b] =

f ∈ C1−γ [a, b],Dγ

a+ f ∈ C1−γ [a, b]

.

Since Dα,β

a+ f = Iβ(1−α)

a+ Dγ

a+ f , it follows from Lemma 11 that

Cγ

1−γ [a, b] ⊂ Cα,β

1−γ [a, b].

The following lemma follows directly from the semigroup property in Lemma 15.

Lemma 20. Let 0 < α < 1, 0 ≤ β ≤ 1, and γ = α + β − αβ . If f ∈ Cγ

1−γ [a, b] then

Iγa+D
γ

a+ f = Iαa+D
α,β

a+ f ,

and

Dγ

a+ I
α
a+ f = Dβ(1−α)

a+ f .

Lemma 21. Let f ∈ L1(a, b). If Dβ(1−α)

a+ f exists and in L1(a, b) then

Dα,β

a+ Iαa+ f = Iβ(1−α)

a+ Dβ(1−α)

a+ f .

Proof.

Dα,β

a+ Iαa+ = Iβ(1−α)

a+ DI(1−β)(1−α)

a+ Iαa+ = Iβ(1−α)

a+ DI1−β(1−α)

a+ = Iβ(1−α)

a+ Dβ(1−α)

a+ . �

Lemma 22. Let 0 < α < 1, 0 ≤ β ≤ 1, and γ = α + β − αβ . If f ∈ C1−γ [a, b] and I1−β(1−α)

a+ f ∈ C1
1−γ [a, b] then Dα,β

a+ Iαa+ f
exists in (a, b] and

Dα,β

a+ Iαa+ f (x) = f (x), x ∈ (a, b].

Proof. From Lemmas 13, 17 and 21 we have

Iβ(1−α)

a+ Dβ(1−α)

a+ f (x) = f (x) +
I1−β(1−α)

a+ f (a)

Γ (β(1 − α))
(x − a)β(1−α)−1

= f (x), x ∈ (a, b]. �

Next we investigate the solutions of (1)–(2) by reducing the problem to a Volterra integral equation and then applying
the Banach fixed point theorem.

4. Equivalent Volterra integral equation

The following theorem yields the equivalence between the Cauchy type problem (1)–(2) and the Volterra integral
equation of the second kind

y(x) =
ya

Γ (α + β − αβ)
(x − a)(α−1)(1−β)

+
1

Γ (α)

 x

a
(x − t)α−1f (t, y(t)) dt, x > a. (5)

Theorem 23. Let γ = α + β − αβ where 0 < α < 1 and 0 ≤ β ≤ 1. Let f : (a, b] × R→R be a function such that
f (., y(.)) ∈ C1−γ [a, b] for any y ∈ C1−γ [a, b]. If y ∈ Cγ

1−γ [a, b], then y satisfies (1)–(2) if and only if y satisfies (5).

Proof. First we prove the necessity. Let y ∈ Cγ

1−γ [a, b] be a solution of (1)–(2). We want to prove that y is also a solution of
the integral equation (5). By the definition of Cγ

1−γ [a, b], Lemma 12, and Definition 8, we have

I1−γ

a+ y ∈ C[a, b] and Dγ

a+y = D(I1−γ

a+ y) ∈ C1−γ [a, b].

Thus by Definition 1 we have

I1−γ

a+ y ∈ C1
1−γ [a, b].
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Now we apply Lemma 17 to obtain

Iγa+D
γ

a+y(x) = y(x) −
ya

Γ (γ )
(x − a)γ−1, x ∈ (a, b]. (6)

Since by our hypothesis Dγ

a+y ∈ C1−γ [a, b], Lemma 20 yields

Iγa+D
γ

a+y = Iαa+D
α,β

a+ y = Iαa+ f , in (a, b]. (7)

From (6) and (7) we obtain

y(x) =
ya

Γ (γ )
(x − a)γ−1

+

Iαa+ f (t, y(t))


(x), x ∈ (a, b] (8)

which is the Eq. (5).
Now we prove the sufficiency. Let y ∈ Cγ

1−γ [a, b] satisfy Eq. (5) which can be written as (8). Applying the operator Dγ

a+
to both sides of (8), it follows from Lemma 9, Lemma 20, and Definition 8 that

Dγ

a+y = Dβ(1−α)

a+ f . (9)

From (9) and the hypothesis Dγ

a+y ∈ C1−γ [a, b], we have

DI1−β(1−α)

a+ f = Dβ(1−α)

a+ f ∈ C1−γ [a, b]. (10)

Also, since f ∈ C1−γ [a, b], by Lemma 11,

I1−β(1−α)

a+ f ∈ C1−γ [a, b]. (11)

It follows from (10) and (11) and the Definition 1 that

I1−β(1−α)

a+ f ∈ C1
1−γ [a, b].

Thus f and I1−β(1−α)

a+ f satisfy the conditions of Lemma 17.
Now by applying Iβ(1−α) to both sides of (9) and using Definition 18 and Lemma 17 we can write

Dα,β

a+ y(x) = f (x, y(x)) −


I1−β(1−α)

a+ f (t, y(t))

(a)

Γ (β(1 − α))
(x − a)β(1−α)−1. (12)

Since 1 − γ < 1 − β(1 − α), Lemma 13 implies that
I1−β(1−α)

a+ f (t, y(t))

(a) = 0.

Hence the relation (12) reduces to

Dα,β

a+ y(x) = f (x, y(x)), x ∈ (a, b].

Now we show that the initial condition (2) also holds. We apply I1−γ

a+ to both sides of (8), then Lemmas 9 and 15
imply that

I1−γ

a+ y(x) = ya +


I1−β(1−α)

a+ f (t, y(t))

(x). (13)

In (13), taking the limit as x → a, we obtain

I1−γ

a+ y(a) = ya +


I1−β(1−α)

a+ f (t, y(t))

(a) = ya

This completes the proof. �

Remark 24. Note that under the hypotheses of Theorem 23, the solution satisfies the relation

Dα,β

a+ y(x) = Dα
a+y(x) −

ya
Γ (γ − α)

(x − a)γ−α−1.

Thus, from Lemma 13, the solution satisfies the Cauchy-type problem

Dα
a+y =

ya
Γ (γ − α)

(x − a)γ−α−1
+ f (x, y),

I1−α

a+ y(a+) = 0

with Dα
a+y ∈ C1−γ+α[a, b] in general. This problem is a weaker form of (1)–(2).
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5. Existence and uniqueness of the solution

In this section we establish the existence of a unique solution to the Cauchy-type problem (1)–(2) in the space Cα,β

1−γ [a, b]
defined in (4). The result is obtained under the conditions of Theorem 23 and the Lipschitz condition on f (., y) with respect
to the second variable,

|f (x, y1) − f (x, y2)| ≤ A |y1 − y2| , (14)

for all x ∈ (a, b] and for all y1, y2 ∈ G ⊂ R, where A > 0 is constant.

Theorem 25. Let 0 < α < 1, 0 ≤ β ≤ 1, and γ = α + β − αβ . Let f : (a, b] × R→R be a function such that
f (., y(.)) ∈ Cβ(1−α)

1−γ [a, b] for any y ∈ C1−γ [a, b] and satisfies the Lipschitz condition (14) with respect to the second argument.
Then there exists a unique solution y for the Cauchy type problem (1)–(2) in the space Cγ

1−γ [a, b].

Proof. According to Theorem 23, it suffices to prove the result for the equivalent Volterra integral equation (5) which can
be written in the operator form

y(x) = Ty(x), (15)

where

Ty(x) = y0(x) +

Iαa+ f (t, y(t))


(x), (16)

with

y0(x) =
ya

Γ (γ )
(x − a)γ−1. (17)

First we prove the existence of a unique solution y in the space C1−γ [a, b]. Our proof is based on partitioning the interval
(a, b] into subintervals on which the operator T is a contraction, then we use the Banach fixed point theorem. Note that
C1−γ [c1, c2], a ≤ c1 < c2 ≤ b is a complete metric space with the metric d defined by

d(y1, y2) = ∥y1 − y2∥C1−γ [c1,c2] := max
x∈[c1,c2]

(x − a)1−γ
[y1(x) − y2(x)]

 .
Select x1 ∈ (a, b] such that

w1 =
AΓ (γ )

Γ (α + γ )
(x1 − a)α < 1, (18)

where A > 0 is the Lipschitz constant in (14). Clearly y0 ∈ C1−γ [a, x1]. Also, by Lemma 11, Ty ∈ C1−γ [a, x1]. Therefore T
maps C1−γ [a, x1] into itself. Moreover, from (14), (16), and Lemma 11, and for any y1, y2 ∈ C1−γ [a, x1] we have

∥Ty1 − Ty2∥C1−γ [a,x1] =
Iαa+ f (t, y1(t)) − Iαa+ f (t, y2(t))


C1−γ [a,x1]

≤
Iαa+ [|f (t, y1(t)) − f (t, y2(t))|]


C1−γ [a,x1]

≤ (x1 − a)α
Γ (γ )

Γ (α + γ )
∥f (t, y1(t)) − f (t, y2(t))∥C1−γ [a,x1]

≤ A(x1 − a)α
Γ (γ )

Γ (α + γ )
∥y1(t) − y2(t)∥C1−γ [a,x1]

≤ w1 ∥y1(t) − y2(t)∥C1−γ [a,x1] .

Our assumption (18) allows us to apply the Banach fixed point theorem to obtain a unique solution y∗

0 ∈ C1−γ [a, x1] to
Eq. (5) on the interval (a, x1].

If x1 ≠ b then we consider the interval [x1, b]. On this interval we consider solutions y ∈ C[x1, b] for the equation

y(x) = Ty(x) := y01(x) +


Iα
x+1

f (t, y(t))

(x), x ∈ [x1, b], (19)

where

y01(x) =
ya

Γ (γ )
(x − a)γ−1

+
1

Γ (α)

 x1

a
(x − t)α−1f (t, y(t)) dt. (20)

Now we select x2 ∈ (x1, b] such that

w2 =
A

αΓ (α)
(x2 − x1)α < 1. (21)
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Since the solution is uniquely defined on the interval (a, x1], we can consider y01 to be a known function. For y1, y2 ∈

C[x1, x2], it follows from Lipschitz condition (14) and Lemma 10 that

∥Ty1 − Ty2∥C[x1,x2] =

Iαx+1 f (t, y1(t)) − Iα
x+1

f (t, y2(t))

C[x1,x2]

≤

Iαx+1 [|f (t, y1(t)) − f (t, y2(t))|]

C[x1,x2]

≤
1

αΓ (α)
(x2 − x1)α ∥f (t, y1(t)) − f (t, y2(t))∥C[x1,x2]

≤
A

αΓ (α)
(x2 − x1)α ∥y1(t) − y2(t)∥C[x1,x2]

= w2 ∥y1(t) − y2(t)∥C[x1,x2] .

Since 0 < w2 < 1, T is a contraction. Since f (x, y(x)) ∈ C[x1, x2] for any y ∈ C[x1, x2], Lemma 10 implies that
Iα
x+1

f ∈ C[x1, x2]. Thus the right-hand side of (19) is in C[x1, x2]. Therefore T maps C[x1, x2] into itself. By Theorem 6,

there exists a unique solution y∗

1(x) ∈ C[x1, x2] to Eq. (5) on the interval [x1, x2]. Moreover, it follows from Lemma 14
that, y∗

1(x1) = y∗

0(x1). Therefore, if

y∗(x) =


y∗

0(x), a < x ≤ x1,
y∗

1(x), x1 < x ≤ x2,

then by Lemma 2, y∗
∈ C1−γ [a, x1]. So y∗ is the unique solution of (5) in C1−γ [a, x2] on the interval (a, x2].

If x2 ≠ b, we repeat the process as necessary, say M − 2 times, to obtain the unique solutions y∗

k ∈ C[xk, xk+1],
k = 2, 3, . . . ,M , where a = x0 < x1 < · · · < xM = b, such that

wk+1 =
A

αΓ (α)
(xk+1 − xk)α < 1.

As a result we have the unique solution y∗
∈ C1−γ [a, b] of (5) given by

y∗(x) = y∗

k(x), x ∈ (xk, xk+1], k = 0, 1, . . . ,M − 1. (22)

It remains to show that such a unique solution y∗
∈ C1−γ [a, b] is actually in Cγ

1−γ [a, b]. From Eq. (5) we have

y∗(x) = y0(x) +

Iαa+ f (t, y

∗(t))

(x).

Applying Dγ

a+ to both sides yields

Dγ

a+y
∗(x) = Dγ

a+

Iαa+ f (t, y

∗(t))

(x) =


Dγ−α

a+ f (t, y∗(t))

(x)

=


Dβ(1−α)

a+ f (t, y∗(t))

(x),

since γ ≥ α. By hypothesis, the right hand side is in C1−γ [a, b] and thus Dγ

a+y
∗(x) ∈ C1−γ

[a, b].
Therefore, by Theorem 23, y∗ is the unique solution of (1)–(2). �

6. Stability

In this section we exploit the initial decay of the solution of the following problem with weighted initial data

Dα,β

a+ u(t) = f (t, u(t)),

t(1−β)(1−α) u(t)

t=0 = b. (23)

We determine sufficient conditions for maintaining this behavior for all times in case of global existence.

Theorem 26. Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α+β −αβ , and b ≠ 0. Let f (., u(.)) ∈ Cβ(1−α)

1−γ [0, ∞] for any u ∈ C1−γ [0, ∞]

and satisfies

|f (t, u(t))| ≤ tµe−σ tϕ(t) |u|m , µ ≥ 0, m ∈ N, σ > 0, (24)

where ϕ is a continuous nonnegative function on (0, ∞).
Suppose µ − (m − 1)(1 − γ ) > 0, ϕ(t) t−mβ(1−α)

∈ Lq(0, ∞) for some q > 1/α, and

∥ϕ∥
(m−1)q
q


∞

0
s−qmβ(1−α)ϕq(s)ds


< K ,
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where

K =
1

(m − 1)2m(mq−1) |b|mq(m−1)


Γ p(α)(σp)λ1

2p(1−α)Γ (λ1)(1 + λ1/λ2)

mq/p

,

λ1 = 1 + p[µ − (1 − γ )m], λ2 = 1 + p(α − 1),

and p is the conjugate exponent of q, i.e. pq = p + q.
Then there exists a positive constant C such that the solution of (23) satisfies

|u(t)| ≤ Ctγ−1, t > 0.

Proof. Since the hypothesis of Theorem 23 are satisfied, the problem (23) is equivalent to the associated Volterra integral
equation

u(t) = b tγ−1
+

1
Γ (α)

 t

0
(t − s)α−1f (s, u(s))ds, t > 0. (25)

Multiplying both sides of (25) by t1−γ and using the inequality (24), we obtain

t1−γ
|u(t)| ≤ |b| +

t1−γ

Γ (α)

 t

0
(t − s)α−1sµe−σ sϕ(s) |u(s)|m ds, t > 0. (26)

Let v denote the left-hand side of (26). Inserting the term s(1−γ )ms−(1−γ )m inside the integral gives

v(t) ≤ |b| +
t1−γ

Γ (α)

 t

0
(t − s)α−1sµ−(1−γ )me−σ sϕ(s)vm(s)ds, t > 0. (27)

From Hölder inequality we have t

0
(t − s)α−1sµ−(1−γ )me−σ sϕ(s)vm(s) ds

≤

 t

0
(t − s)p(α−1)sp[µ−(1−γ )m]e−pσ sds

1/p  t

0
ϕq(s)vqm(s)ds

1/q

, t > 0.

Note that the second integral in the right-hand side is finite for each fixed t since ϕ is continuous and u is in C1−γ [0, ∞].
It follows from the hypothesis that λ1 > 0 and λ2 > 0 and thus

p[µ − (1 − γ )m] = λ1 − 1 > 0, p(α − 1) = λ2 − 1 > 0.

By Lemma 3 (with ν replaced by λ2, λ replaced by λ1 and ω replaced by pσ ) we have t

0
(t − s)α−1sµ−(1−γ )me−σ sϕ(s)vm(s)ds ≤ C1tα−1

 t

0
ϕq(s)vqm(s)ds

1/q

, (28)

with

C1 =

2p(1−α)Γ (λ1)(1 + λ1/λ2)(pσ)−λ1

1/p
.

By combining (27) and (28) we obtain

v(t) ≤ |b| + t−β(1−α) Ĉ1

 t

0
ϕq(s)vqm(s)ds

1/q

, t > 0, (29)

where Ĉ1 = C1/Γ (α). Multiplying both sides of (29) by tβ(1−α) yields

tβ(1−α)v(t) ≤ |b| tβ(1−α)
+ Ĉ1

 t

0
ϕq(s)vqm(s)ds

1/q

, t > 0. (30)

Let z(t) denote the left-hand side of (30). Inserting the term s−qmβ(1−α)sqmβ(1−α) inside the integral gives

z(t) ≤ |b| tβ(1−α)
+ Ĉ1

 t

0
ϕq(s)s−qmβ(1−α)zqm(s)ds

1/q

, t > 0. (31)
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Raising both sides of (31) to the power q, we get (using Lemma 4)

zq(t) ≤ 2q−1


|b|q tqβ(1−α)
+ Ĉq

1

 t

0
ϕq(s)s−qmβ(1−α)zqm(s)ds


, t > 0. (32)

Let

w(t) = Ĉq
1

 t

0
ϕq(s)s−qmβ(−α)zqm(s)ds, t > 0. (33)

Then, by the continuity of z and the assumption ϕ(t)t−mβ(1−α)
∈ Lq(0, ∞) the integrand is summable, w(0) = 0, and by

differentiation

w′(t) = Ĉq
1ϕ

q(t)t−qmβ(1−α)zqm(t). (34)

Since ϕ, z, and the right hand side of (34) are nonnegative, w is a continuous, nonnegative and nondecreasing function in
(0, ∞).

Now, we estimate the right hand side of (34) in terms of w. From (32) and (33) we obtain

zq(t) ≤ 2q−1(|b|qtqβ(1−α)
+ w(t)), t > 0.

Raising both sides to the powerm and using Lemma 4, we get

zqm(t) ≤ 2mq−1 
|b|mq tmqβ(1−α)

+ wm(t)

. (35)

Next, a substitution of (35) into (34) yields

w′(t) ≤ 2mq−1Ĉq
1ϕ

q(t)t−qmβ(1−α)

|b|mq tmqβ(1−α)

+ wm(t)


≤ 2mq−1
|b|mq Ĉq

1ϕ
q(t) + 2mq−1Ĉq

1 t
−qmβ(1−α)ϕq(t)wm(t), t > 0. (36)

Applying Lemma 5 (with w(u) = um) we infer that

w(t) ≤ G−1
[G(w(0) + l(t)) + k(t)],

where l(t) = 2mq−1 |b|mq Ĉq
1

 t
0 ϕq(s)ds and k(t) = 2mq−1Ĉq

1

 t
0 s−qmβ(1−α)ϕq(s)ds. Since G(r) =

 r
r0

ds
sm , r > 0, r0 > 0, then

G(r) =
r1−m

1 − m
−

r1−m
0

1 − m
,

and

G−1(y) = [r1−m
0 − (m − 1)y]−

1
m−1 .

That is

w(t) ≤ G−1

l(t)1−m

1 − m
−

l(t0)1−m

1 − m
+ k(t)



≤


l(t0)1−m

− (m − 1)

l(t)1−m

1 − m
−

l(t0)1−m

1 − m
+ k(t)

−
1

m−1

≤ [l(t)1−m
− (m − 1)k(t)]−

1
m−1 ,

as long as

l(t)m−1k(t) <
1

m − 1
.

In particular, if t

0
ϕq(s)ds

m−1  t

0
s−qmβ(1−α)ϕq(s)ds


< K

then w(t) ≤ K1 for some positive constant K1, and thus from (31) we find that

z(t) ≤ |b| tβ(1−α)
+ K 1/q

1 ,

or

tβ(1−α)v(t) ≤ |b| tβ(1−α)
+ K 1/q

1 ,
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then

v(t) ≤ |b| + K 1/q
1 t−β(1−α)

≤ C, t ≥ t0 > 0,

for some positive constant C . This yields that |u(t)| ≤ Ctγ−1 for t ≥ t0 > 0 and the proof is complete. �
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