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Let v be a henselian valuation of any rank of a field K and ¢ be the extension
of v to a fixed algebraic closure K of K. Let o € K\ K be separable over K. In
this paper the author investigates the condition under which Krasner’s constant
wg(a) given by max{t(a — a’)la’ # a runs over K-conjugates of «}, is equal to
min{o(a — a'): a’ runs over K-conjugates of «}; this is the condition for « to be
equidistant from all of its K-conjugates.  © 1999 Academic Press
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1. INTRODUCTION

Throughout v is a henselian valuation of any rank of a field K with
residue field k, and v is a (unique) prolongation of v to a fixed algebraic
closure K of K. A finite extension (K’,v") of (K, v) will be called tame if
(a) it is defectless, i.e., [K': K] = ef, where ¢, f are, respectively, the index
of ramification and the residual degree of v’ /v; (b) the residue field of v’
is a separable extension of k,; (c) the ramification index of v’ /v is not
divisible by the characteristic of k.

In 1970, Ax [1, Sect. 2, Proposition 2'] pointed out that if K is a perfect
field of nonzero characteristic and v is of rank one, then to each « € K\ K
there corresponds a € K for which 7(a — a) > Ay (a), where

Ag(a) =min{?(a — a'): a’ runs over K-conjugates of a}. (1)

In 1991, a counterexample was given to show that this result is false (see
[3D. In 1997, while giving a necessary and sufficient condition for Ax’s
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result to be true without any assumption on the characteristic of K, we
proved the following result (see [4, Theorems 1.2, 2.3)).

THEOREM A. Let (K',v") be a finite tame extension of a henselian valued
field (K, v). Then for any a € K' \ K there exists a € K such that v'(a — a)
> Ag(a).

We showed that the converse of the foregoing theorem is not true [4,
Example 2.5], and it was proved to be true [4, Theorem 1.2] with an extra
hypothesis, viz., A (B) = w,(B), where Krasner's constant w,(B) is
given by

wx(B) = max{T( B — B')| B’ # B runs over K-conjugates of B} .

This leads to the following problem: Let (K, v) and (K, 7) be as above. If
a € K\ K is separable over K, are there any necessary and sufficient
conditions for A («) to be equal to wy(a)?

If « satisfies a polynomial of the type x" —a € K[x] and if the
characteristic of k, does not divide n, then any K-conjugate of « is ae,
with ¢" = 1 and hence

wg(a) =0(a) = Ag(a).

There is another situation when the above equality is easily seen to hold,
viz.., when () = 0 and the minimum polynomial P(x) of o over K is
such that the corresponding polynomial P*(x) € k [x] (obtained on re-
placing the coefficients of P(x) by their images in k,) has no repeated
roots, for in this case 7(a — ') = 0 for all K-conjugates «’ # a of a.

Observe that if a € I?\K is separable over K and if a, ¢ # O are in K,
then

Ag((a—a)/c) = Ag(a) —v(c),
wx((a—a)/c) = og(a) —v(c).

It follows that if instead of «, the element (a — a)/c satisfies the
requirements of either of the two cases discussed in the preceding para-
graph, then A, (a) = wg(a). In fact these two cases and the foregoing
observation are our motivation behind the formulation of Theorem 1.1
stated below.

For any B in the valuation ring of a valuation v’ extending the given
valuation v, B* will stand for its v’-residue, i.e., the image of 8 under the
canonical homomorphism from the valuation ring of v’ onto the residue
field of v'. We shall prove
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THEOREM 1.1. Let v be a henselian valuation of a field K with value
group G, and residue field k,, and K, T be as above. Suppose that (K(a), w)
is a tame extension of (K,v) of degree n > 1. Then the following statements
are equivalent:

() Ag(a) = wg(a).

(ii) There exists a € K such that the value group G, and the residue
field k,, of w are given by

G, =G, +7Zb(a—a), k,=k,(((a—a)/b)*),

where r is the smallest positive integer such that ro(a — a) = v(b) is in G,,.

THEOREM 1.2.  Let v be a henselian valuation of a field K. Suppose that «
is separable over K of degree a prime number. Then Ay (a) = wg(a).

2. PROOF OF THEOREM 1.1

LEMMA 2.1. Let x, y be elements of field K having a valuation v, and r be
a natural number. If v(x — y) > v(x), then v(x" — y") > v(x").

Proof. Observe that v(x) = v(y). The desired inequality can be easily
verified on writing x” —y" as (x — y)x"" 1 + x "%y + - 4y D).

LEMMA 2.2. Let v be a henselian valuation of field K and K(a) be a tame
extension of K (with respect to the unique prolongation of v to K(a) of degree
n > 1. Then there exists 6 € K(a) such that [K(8): K] < n and t(a — )
> wg(a).

Proof. As K(a)/K is a tame extension, it must be separable. Let K’
be the smallest Galois extension of K containing « and v’ be the unique
prolongation of v to K'. If T denotes the maximal tame extension of
(K,v) contained in (K', v"), then as is well known, T is a Galois extension
of K, which contains K(«) by hypothesis (see [2, 21.2]). Hence K' = T is
a tame extension of K.

Let H denote the subgroup of Gal(K’/K) defined by

H={oe€Gal(K'/K)|v'(a — oa) > wg(a)}.

Let F be the fixed field of H. It is clear from the definition of w(«a) that
Gal(K’'/K(a)) is properly contained in H. Therefore F is properly
contained in K(a). If Az(a) is defined on replacing K by F in (1), then it
can be easily visualized that

Ap(a) = og(a). (2)
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By virtue of Theorem A stated in the first section and (2), there exists
6 € F satisfying

V'(a—=98) = Ap(a) = wg(a).

Since F is properly contained in K(«), the lemma is proved.

Proof of Theorem 1.1. The valuation v being henselian, for any K-con-
jugate ' of « and d € K, we have

(a—d)=0(a'—d);
hence
i(a—a')y2min{t(a—d), t(a"—d)} =0(a—4d).
Consequently,
Ag(a) 20(a—4d), d e K. (3)

Suppose first that A (a) = wg(@). Since K(a)/K is a tame extension,
there exists ¢ € K such that 7(a — a) > Ag(a) by Theorem A. Therefore
by virtue of (3) and the supposition, we have

0(a—a) =Ag(a) = og(a). (4)

We shall denote « — a by . Let u be the prolongation of the valuation o
of K to a simple transcendental extension K(x) defined on K[x] by

a( Ycx') =min{o(c,) +iv(B)}, ¢ €K

We denote by u the valuation of K(x), obtained by restricting & to K(x).
Observe that the value group of u is G, + Zv( B). So the first assertion of
(ii) is proved once we show that G, = G,; for this it is enough to prove
that if g(x) is any polynomial over K of degree less than n, then

0(8(B)) =u(g(x)). (5)

To verify (5), let B,, B,, Bs,... be the roots of g(x) and ¢ be its leading
coefficient. It follows from Krasner’s lemma and (4) that

U(B—B)=0(a—a—B) <og(a)=0(B).
The above inequality together with the triangle law gives

0(B— B;) =min{o(B).0(B)}- (6)
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The definition of u# implies that
(x — p;) = min{o( B), (B} (7)
Combining (6) and (7), we see that
0(B—=B) =u(x—B);
consequently,
0(g(B)) =v(c) + Xo(B—B) =v(c) + Lu(x - B) =u(g(x)),

which proves (5) and hence the first assertion of (ii).

To prove the assertion regarding the residue field, let (A( 8))* be any
nonzero element of k,, where hA(x) € K[x] is a polynomial of degree less
than n. In view of (5),

u(h(x)) = o(h(B)) = 0.
So if we write
h(x) = ag + a;x + a,x* + - +a,x',  a;, €K,
then
u(h(x)) = miin{v(al.) +i0(B)} = 0.

Hence v(a;) + iv( B) = 0 for every i. Since r is the smallest positive
integer such that /o( 8) = v(b) € G,, it follows that

v(a;) +iv(B) >0 if » does not divide i.
Therefore on taking the o-residue of A(B) = ¥ a; B', we see that
(h(B))* = X (a,B")* = L (b'a, )*(B"/b')*

isin k,((B”/b)*), as desired.

Conversely, suppose that (ii) holds and suppose, to the contrary, (i) does
not hold. By Lemma 2.2, there exists 6 € K(«a) such that [K(8): K] < n
and 7(a — 8) = wg(a). Therefore, by virtue of the supposition wi(a) >
Ag(a) and (3), we have

D(a—08) 2 wg(a)>Ax(a) 20(a—a).
So we are led to the inequality o(a — &) > 0(a — a), which shows that

U(a—a)=0(6—a), (8)



230 SUDESH K. KHANDUJA

and
t((a—a) —(8—a))>0((a—a)") =v(b),
in view of Lemma 2.1. The foregoing inequality implies that
((a—a)'/b)* = ((8 = a)"/b)*. (9)

If G, and k, denote the value group and the residue field of the valuation
w, obtained by restricting w to K(8), then it follows from (8), (9), and
assumption (ii) of Theorem 1.1 that

G,cG,, k, Ck,. (10)
Since (K(a),w)/(K,v) is defectless, we have
n=[K(a): K| =I[G,:G,]lk,: k,]. (11)
It follows from (10), (11), and the fundamental inequality [2, 13.10] that
n<|[G, G1]lk,: k,] <[K(8): K] <n.

This contradiction proves the result.

3. PROOF OF THEOREM 1.2

Let N be the smallest normal extension of K containing «. Let H
denote the subgroup of the Gal(N /K) defined by

H={oe Gal(N/K)|i(a— oa) = og(a)},

and let L be its fixed field. Clearly, Gal(N /(K(«)) is properly contained
in H; consequently, L is properly contained in K(a). As [K(a): K] is a
prime number, it follows that L = K, and hence H = Gal(N/K), which
proves that for all K-conjugates o’ of «a, 1(a — a’) > wi(a).
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