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Abstract In this paper, a family of derivative-free of third and fourth order convergent methods

for solving nonlinear equations is suggested. In the proposed methods, several linear combinations

of divided differences are used in order to get a good estimation of the derivative of the given func-

tion at the different steps of the iteration. The efficiency indices of the members of this family are

equal to 1.442 and 1.587. The convergence and error analysis are given. Numerical comparisons are

made with other existing methods to show the performance of the presented methods.
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1. Introduction

In recent years many researchers have developed several itera-
tive methods for solving nonlinear equations. In this paper we
are going to develop efficient methods to find approximations

of the root r of f(x) = 0, without evaluation of derivatives. A
number of ways are considered by many researchers to im-
prove the local order convergence of Newton’s method by

the expense of additional evaluations of the functions, deriva-
tives and changes in the points of iterations see [1–9]. There are
several different methods in literature for the computation of
.A. Hafiz), msmbahgat66@

ptian Mathematical Society.
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the root r of the nonlinear equation f(x) = 0. The most famous
of these methods is the classical Newton’s method (NM):

xnþ1 ¼ xn �
fðxnÞ
f0ðxnÞ

;

which is a well-known basic method and converges quadrati-

cally in the neighborhood of simple root r. This method is
not applicable when the derivative of any function is not de-
fined in any interval. Therefore the Newton’s method was

modified by Steffensen, who replaced the first derivative f0(x)
in Newton’s method by forward difference approximation

f0ðxnÞ ¼
fðxn þ bfðxnÞÞ � fðxnÞ

bfðxnÞ
¼ P0ðxnÞ ð1Þ

and obtained the famous Steffensen’s method (SM) [10]:

xnþ1 ¼ xn �
bfðxnÞ2

fðxn þ bfðxnÞÞ � fðxnÞ
;

which is the known Steffensen’s method (SM), where
b 2 R � {0}, provided that the denominator is not equal to
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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zero. Newton and Steffensen’s methods are of second order

converges, both require two functional evaluations per step,
but in contrast to Newton’s method, Steffensen’s method is
free from any derivative of the function, because sometimes

the applications of the iteration methods which depend upon
derivatives are restricted in engineering.

A family of Steffensen like methods was derived in [10–13]
free from derivatives, which uses three functional evaluations

per step and has cubic convergence. Recently, Cordero et al.
[14] proposed a derivative free iterative method by replacing
the forward-difference approximation in Ostrowski’s method

by the central-difference approximation. However, it is still a
method of third order and requires four functional evaluations
per iteration. Therefore, these methods have efficiency index

31/4 � 1.1316 which is less than 21/2 � 1.4142 of the Newton
and Steffensen methods [15]. However, the purpose of this pa-
per is to establish new derivative-free methods with optimal or-

der, i.e., we aim to increase the convergence rate to four
without any additional evaluations of the function.

The rest of the paper is organized as follows: in Section 2 we
describe our family of methods. In Section 3 we show the order

of convergence of these methods. In Section 4, different
numerical test confirm the theoretical results and allow us to
compare this family with other known methods mentioned in

this section.

2. Description of the methods

For the sake completeness, we recall methods in [14,17] these
methods respectively as follows:

Algorithm 2.1. For a given x0, compute approximates solution

xn+1 by the iterative schemes

yn ¼ xn �
fðxnÞ
f0ðxnÞ

;

xnþ1 ¼ yn �
fðxnÞ2 þ fðynÞ

2

f0ðxnÞðfðxnÞ � fðynÞÞ
:

Algorithm 2.1 has fourth-order convergence, which was ob-
tained by Jisheng et al. [16].

Algorithm 2.2. For a given x0, compute approximates solution

xn+1 by the iterative scheme

xnþ1 ¼ xn �
2fðxnÞf0ðxnÞ

2f02ðxnÞ � fðxnÞf00ðxnÞ
:

This is known as Halley’s method and has cubic conver-

gence [17]. Now we introduce the following cubically conver-
gent iteration scheme.

Algorithm 2.3. For a given x0, compute approximates solution
xn+1 by the iterative schemes

yn ¼ xn �
fðxnÞ
f0ðxnÞ

;

xnþ1 ¼ xn �
fðynÞ
f0ðxnÞ

:

The first and the second derivatives with respect to y, which

may create some problems. To overcome this drawback, sev-
eral authors have developed involving only the first derivatives.
This idea plays a significant part in developing our new itera-

tive methods free from first and second derivatives with respect
to y. To be more precise, we now approximate f0(yn), to reduce
the number of evaluations per iteration by a combination of
already known data in the past steps. Toward this end, an esti-

mation of the function P1(t) is taken into consideration as
follows:

P1ðtÞ ¼ aþ bðt� xnÞ þ cðt� xnÞ2;
P01ðtÞ ¼ bþ 2cðt� xnÞ:

By substituting in the known values

P1ðynÞ ¼ fðynÞ ¼ aþ bðyn � xnÞ þ cðyn � xnÞ2;
P01ðynÞ ¼ f0ðynÞ ¼ bþ 2cðyn � xnÞ;
P1ðxnÞ ¼ fðxnÞ ¼ a;P01ðxnÞ ¼ f0ðxnÞ ¼ b;

we could easily obtain the unknown parameters. Thus we have

f0ðynÞ ¼ 2
fðynÞ � fðxnÞ

yn � xn

� �
� f0ðxnÞ ¼ P1ðxn; ynÞ: ð2Þ

At this time, it is necessary to approximate f00(yn), with a

combination of known values Accordingly, we take account
of an interpolating polynomial

P2ðtÞ ¼ aþ bðt� xnÞ þ cðt� xnÞ2 þ dðt� xnÞ3

and also consider that this approximation polynomial satisfies
the interpolation conditions f(xn) = P2(xn), f(yn) = P2(yn),

f0ðxnÞ ¼ P02ðxnÞ and f0ðynÞ ¼ P02ðynÞ, By substituting the known
values in P2(t) we have a system of three linear equations with
three unknowns. By solving this system and simplifying we

have

f00ðynÞ ¼
2

yn � xn

fðynÞ � fðxnÞ
yn � xn

� f0ðxnÞ
� �

¼ P2ðxn; ynÞ: ð3Þ

Using (1) we can also remove the first derivative from (2) to

(3)

f0ðynÞ ¼ 2
fðynÞ � fðxnÞ

yn � xn

� �
� fðxn þ bfðxnÞÞ � fðxnÞ

bfðxnÞ
¼ P1ðxn; ynÞ; ð4Þ

f00ðynÞ ¼
2

yn � xn

fðynÞ � fðxnÞ
yn � xn

� fðxn þ bfðxnÞÞ � fðxnÞ
bfðxnÞ

� �
¼ P2ðxn; ynÞ: ð5Þ

Now using Eqs. (1)–(3) to suggest the following new iter-
ative methods for solving nonlinear equation, It is estab-
lished that the following new methods have convergence
order three, which will denote by Hafiz Bahgat Methods

(HBM1–HBM5). Then Algorithm 2.1 can be written in the
following form.

HBM1: For a given x0, compute approximates solution
xn+1 by the iterative schemes

yn ¼ xn �
bfðxnÞ2

fðxn þ bfðxnÞÞ � fðxnÞ
;

xnþ1 ¼ xn �
fðxnÞ2 þ fðynÞ

2

P0ðxnÞðfðxnÞ � fðynÞÞ
:

We use Steffensen’s method as predictor and Algorithm 2.2 as
a corrector then we have the following new methods have con-

vergence order three.
HBM2: For a given x0, compute approximates solution
xn+1 by the iterative schemes
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yn ¼ xn �
bfðxnÞ2

fðxn þ bfðxnÞÞ � fðxnÞ
;

xnþ1 ¼ yn �
2fðynÞP1ðxn; ynÞ

2P2
1ðxn; ynÞ � fðynÞP2ðxn; ynÞ

:

HBM2 is called the new two-step modified Halley’s method
free from second and first derivative, for solving nonlinear
equation f(x) = 0.

HBM3: For a given x0, compute approximates solution
xn+1 by the iterative schemes

yn ¼ xn �
bfðxnÞ2

fðxn þ bfðxnÞÞ � fðxnÞ
;

xnþ1 ¼ xn �
fðxnÞ
P0ðxnÞ

:

Now we can modified the methods in [18] by removing the
derivatives in the following two methods.

HBM4: For a given x0, compute approximates solution
xn+1 by the iterative schemes

yn ¼ xn �
bfðxnÞ2

fðxn þ bfðxnÞÞ � fðxnÞ
;

xnþ1 ¼ yn þ
fðynÞ
P0ðxnÞ

� 2fðxnÞfðynÞ
P0ðxnÞðfðxnÞ � fðynÞÞ

:

HBM5: For a given x0, compute approximates solution

xn+1 by the iterative schemes

yn ¼ xn �
bfðxnÞ2

fðxn þ bfðxnÞÞ � fðxnÞ
;

xnþ1 ¼ yn þ
fðynÞ
P0ðxnÞ

� 4fðynÞ
P0ðxnÞ þ P1ðxn; ynÞ

:

Let us remark that, in terms of computational cost, the devel-
oped methods require only three functional evaluations per
step. So, they have efficiency indices 31/3 � 1.442, which is

higher than 21/2 � 1.4142 of the Newton and Steffensen’s
[15]. Therefore, these methods do not produce an optimal or-
der of convergence. However, the purpose of this paper is to

establish new derivative-free methods with optimal order,
i.e., we aim to increase the convergence rate to four without
any additional evaluations of the function. So, we shall use

the weight function w which is expressed as

w ¼ 4

1þ f½xn; yn�f½wn; yn�=P0ðxnÞ2
� 1

( )
;

where wn = xn + f(xn) and f[xi, xj] = (f(xi) � f(xj))/(xi � xj),

"i, j 2 N, i „ j.we can modify the algorithm HBM3 to the fol-
lowing algorithm

HBM6: For a given x0, compute approximates solution

xn+1 by the iterative schemes

yn ¼ xn �
bfðxnÞ2

fðxn þ bfðxnÞÞ � fðxnÞ
;

xnþ1 ¼ yn �
fðynÞ
P0ðxnÞ

4

1þ f½xn; yn�f½wn; yn�=P0ðxnÞ2
� 1

( )
;

this method (HBM6) have convergence order four and require
only three functional evaluations per step. So, they have effi-

ciency indices 41/3 � 1.5874, that is, the new method (HBM6)
reaches the optimal order of convergence four, conjectured
by Kung and Traub [19]. Furthermore, if we consider approx-

imating the derivative in (2) and replaced it by divided differ-
ence method

f0ðynÞ ¼
f½xn; yn�f½wn; yn�

f½wn; xn�
;

then we derive higher efficiency index methods. Furthermore,
the algorithm HBM5 can be rewritten in the same form of

algorithm HBM6.
3. Convergence analysis

Let us now discuss the convergence analysis of the above men-
tioned algorithms at b = 1.

Theorem 3.1. Let r be a sample zero of sufficient differentiable
function f :˝ R fi R for an open interval I. If x0 is sufficiently

close to r, then the two-step method defined by HBM2 has third-
order convergence.

Proof. Consider to

yn ¼ xn �
fðxnÞ2

fðxn þ fðxnÞÞ � fðxnÞ
; ð6Þ

xnþ1 ¼ yn �
2fðynÞP1ðxn; ynÞ

2P2
1ðxn; ynÞ � fðynÞP2ðxn; ynÞ

: ð7Þ

Let r be a simple zero of f. Since f is sufficiently differentia-
ble, by expanding f(xn) about r, we get

fðxnÞ ¼ c1en þ c2e
2
n þ c3e

3
n þ c4e

4
n þ � � � ð8Þ

Furthermore, we have

fðxnÞ2 ¼ c21e
2
n þ 2c1c2e

3
n þ 2c3c1 þ c22

� �
e4n þ � � � ð9Þ

Again by using Taylor’s expansion we can get

fðxn þ fðxnÞÞ ¼ c1ð1þ c1Þen þ 3c2c1 þ c2 þ c21c2
� �

e2n þ � � � ð10Þ

which gives

fðxn þ fðxnÞÞ � fðxnÞ ¼ c21en þ 3c2c1 þ c21c2
� �

e2n

þ 4c3c1 þ 2c22 þ 2c22c1 þ 3c3c
2
1 þ c3c

3
1

� �
e3n

þ � � �
ð11Þ

where ck ¼ fðkÞðrÞ
k!
; k ¼ 1; 2; 3; . . . and en = xn � r.

Now by substituting (9) and (11) in (6), we have

yn ¼ rþ c2 þ
c2
c1

� �
e2n

þ 2
c3
c1
þ c3c1 � c22 þ 3c3 � 2

c22
c21

� �
e3n þ � � � ð12Þ

By using Taylor’s theorem, we have

fðynÞ ¼ c2ð1þ c1Þe2n

þ 2c3c1 þ c3c
3
1 � c22c

2
1 þ 3c3c

2
1 � 2c22 � 2c22c1

� � e3n
c1

þ � � � ð13Þ

and
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P1ðxn; ynÞ ¼ c1 � c1c2en þ �c3 þ c22 þ 2
c22
c1
� c3c

2
1 � 3c1c3

� �
e2n þ � � � ð14Þ

P2ðxn; ynÞ ¼ 2ðc1c2 þ c2Þ þ 4c3 �
c22
c1
þ 2c3c

2
1 þ 6c1c3 þ c1c

2
2 þ 2c22

� �
en þ � � �

ð15Þ

From (13)–(15), we obtain

fðynÞ
P1ðxn; ynÞ

¼ c2
c1
ð1þ c1Þe2n

þ �c22 þ 2c3 þ c3c
2
1 þ 3c3c1 � 2

c22
c1
� 2c22

� �
e3n
c1
þ � � � ð16Þ

P2ðxn; ynÞ
P1ðxn; ynÞ

¼ 2 c2 þ
c2
c1

� �

þ 3c22 þ 4
c22
c1
þ 4

c3
c1
� c22
c21
þ 2c3c1 þ 6c3

� �
en þ � � � ð17Þ

1

2

fðynÞ
P1ðxn; ynÞ

P2ðxn; ynÞ
P1ðxn; ynÞ

¼ c21 þ 2c1 þ 1
� � c22

c21
e2 þ � � � ð18Þ

Then Eq. (7) can be written as:

xnþ1 ¼ yn �
fðynÞ

P1ðxn; ynÞ
1� 1

2
:

fðynÞ
P1ðxn; ynÞ

:
P2ðxn; ynÞ
P1ðxn; ynÞ

� ��1
: ð19Þ

Now by substituting (16) and (18) in (19), we have

xnþ1 ¼ rþ ð1� c1Þ
c22
c1
e3n þ � � � ð20Þ

From (20) and en+1 = xn+1 � r, we have:

enþ1 ¼ ð1� c1Þ
c22
c1
e3n þ � � �

which shows (HBM2) has third-order convergence. h
Table 1 Test functions and their roots.

Functions Roots From

f1(x) = sin2x � x2 + 1, 1.40449164821534 [12]

f2(x) = x2 � ex � 3x+ 2, 0.25753028543986 [12]

f3(x) = cosx � x, 0.73908513321516 [14]

f4(x) = x � 3logx, 1.85718386020784 [21]

f5(x) = e�x + cosx, 1.74613953040801 [21]

f6(x) = x � esinx � l 0.38997777494636 [22]

f7ðxÞ ¼ 1
x� jxj, 1 [21]

f8(x) = Œx2 � 9Œ �3, 3 [22]

f9ðxÞ ¼
xðxþ 1Þ; if x 6 0;
�2xðx� 1Þ; if x > 0;

�
�1, 0, 1 [14]

f10ðxÞ ¼ 10ðx4 þ xÞ; if x < 0;
�10ðx3 þ xÞ; if x P 0;

�
�1,0 [14]
Theorem 3.2. Let r be a sample zero of sufficient differentiable
function f :˝ R fi R for an open interval I. If x0 is sufficiently
close to r, then the two-step method defined by (HBM6) has

fourth-order convergence.

Proof. Consider to

yn ¼ xn �
fðxnÞ2

fðxn þ fðxnÞÞ � fðxnÞ
; ð21Þ

xnþ1 ¼ yn �
fðynÞ
P0ðxnÞ

4

1þ f½xn; yn�f½wn; yn�=P0ðxnÞ2
� 1

( )
: ð22Þ

Let r be a simple zero of f. Since f is sufficiently differentia-

ble, by expanding f(xn), f(xn + f(xn)) and f(yn) about r as in
Theorem 3.1 we get

f½wn;xn� ¼
fðwnÞ� fðxnÞ

wn�xn

¼P0ðxnÞ

¼ c1þð2þ c1Þc2enþ 3c3þ3c1c3þc21c3þ c22
� �

e2nþ�� �

f½wn;yn� ¼
fðwnÞ� fðynÞ

wn�yn

¼ c1þð1þ c1Þc2enþ 3c21c3þc22þ c1c
2
2þc31c3

� �e2n
c1
þ�� �

f½xn;yn� ¼
fðxnÞ� fðynÞ

xn�yn

¼ c1þc2enþ c1c3þc22þ c1c
2
2

� �e2n
c1
þ���

f½xn;yn�f½wn;yn�
P0ðxnÞ2

¼ 1�ðc1þ2Þc2en
c1

þ 7c22þ5c1 c22�c3
� �

þ c21 c22�3c3
� �

�c31c3
� �e2n

c21
þ�� �
4

f½xn; yn�f½wn; yn�=P0ðxnÞ2 þ 1
¼ 2þ ðc1 þ 2Þ c2en

c1

þ c31c3 þ c21 3c3 �
c22
2

� ��

þ c1 5c3 � 3c22
� �

� 5c22
� e2n
c21

þ � � � ð23Þ

fðynÞ
P0ðxnÞ

¼ ð1þ c1Þ
c2
c1
e2n þ c3c

3
1 þ c21 3c3 � 2c22

� ��
þ c1 2c3 � 3c22

� �
� 4c22

� e3n
c21
þ � � � ð24Þ

Now by substituting (12), (23) and (24) in (22), we have

enþ1 ¼ 18c42 þ c1 26c22 � 14c3
� �

þ c21 14c22 � 24c3
� ��

þ c31 3c22 � 13c3
� �

� 3c41c3
� c2
c31
e4n þO e5n

� �
ð25Þ

from which it follows that (HBM6) has four-order
convergence.

In similar way, we observe that the methods HBM1,
HBM3, HBM4 and HBM5 have also third order convergence
as follows:

enþ1 ¼ �ð1þ c1Þ
c22
c1
e3n þO e4n

� �
; ðHBM1;HMB4Þ

enþ1 ¼ 2þ 3c1 þ c21
� � c22

c21
e3n þO e4n

� �
; ðHBM3Þ

enþ1 ¼ � c2 þ
c22
c1

� �
e3n þO e4n

� �
: � ðHBM5Þ
4. Numerical examples

For comparisons, we have used the third-order Soleymani
method (SM) [20] defined by:

yn ¼ xn �
fðxnÞ2

fðxn þ fðxnÞÞ � fðxnÞ
;

xnþ1 ¼ xn � 1þ fðynÞ
fðxnÞ

1þ 2fðynÞ
fðxnÞ

� �� �
fðynÞ
P0ðxnÞ

:



Table 2 Comparison of number of iterations for various methods required such that Œf(xn+1)Œ < 10�15.

Iterations f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
x0 1.3 1.0 1.7 0.5 3.0 1.0 �0.5 3.2 0.1 �0.8
SM 3 3 4 7 3 4 4 Div. 2 14

DM 3 3 3 7 3 5 3 3 2 25

JM 3 3 3 5 3 5 4 3 9 8

HBM1 3 3 4 6 3 4 4 3 4 11

HBM2 3 4 4 5 3 10 4 812 82 20

HBM3 3 3 3 7 3 5 3 3 2 25

HBM4 3 3 4 6 3 4 4 7 4 11

HBM5 3 3 4 6 3 4 4 7 4 11

HBM6 3 3 3 4 3 4 2 3 3 14
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Dehghan method (DM) [12]

yn ¼ xn �
fðxnÞ2

fðxn þ fðxnÞÞ � fðxnÞ
;

xnþ1 ¼ xn �
fðxnÞ½fðxnÞ þ fðynÞ�
fðxn þ fðxnÞÞ � fðxnÞ

and Jain method (JM) [10]

yn ¼ xn �
fðxnÞ2

fðxn þ fðxnÞÞ � fðxnÞ
;

xnþ1 ¼ xn �
fðxnÞ3

½fðxn þ fðxnÞÞ � fðxnÞ�½fðxnÞ � fðynÞ�
:

We consider here some numerical examples to demonstrate
the performance of the new modified two-step iterative meth-
ods, namely algorithms (HBM1)–(HBM6). We compare the

Soleymani method (SM), the Dehghan method (DM), Jain
method (JM) and the new modified two-step methods algo-
rithms (HBM1)–(HBM6), in this paper. In Table 1 our exam-

ples are tested with precision e = 10�15 and b = 1.
All the computations are performed using Maple 15. The

following examples are used for numerical testing:

where the function f6 is Kepler’s equation; 0 6 e < 1 and
0 6 l 6 p. We take values l = 0.01 and e = 0.9995. Further-
more, functions f7 � � � f10 are nonsmooth functions. In Table 2,
we listed the number of iterations for various methods, where

the ‘Div.’ in the following tables imply that the method di-
verges (or the method terminates due to overflow).

Results are summarized in Table 2 as it shows, new algo-

rithms are comparable with all of the methods and in most
cases gives better or equal results.

5. Conclusions

The present study suggested a family of new derivative-free

iterative methods for solving nonlinear equations. The effi-
ciency indices of the members of this family are equal to
1.442 and 1.587. In addition, these methods are derivative-free,

which allow us to apply them also on nonsmooth equations
with positive and promising results. Furthermore, these meth-
ods are particularly suited to those problems in which deriva-
tives require lengthy. In the sequel, numerical examples have

used in order to show the efficiency and accuracy of the novel
methods from our suggested derivative-free class. Finally,
it should be noted that, like all other iterative methods,
the new methods from the class (HBM1)–(HBM6) have their

own domains of validity and in certain circumstances should
not be used.
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