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a b s t r a c t

This study examined the structural variables affecting the environmental effects of organic farming
compared to those of conventional farming. A meta-analysis based on 107 studies and 360 observations
published from 1977 to 2012 compared energy efficiency (EE) and greenhouse gas emissions (GHGE) for
organic and conventional farming. The meta-analysis systematically analyzed the results of earlier
comparative studies and used logistic regression to identify the structural variables that contributed to
differences in the effects of organic and conventional farming on the environment. The statistical evi-
dence identified characteristics that differentiated the environmental effects of organic and conventional
farming, which is controversial. The results indicated that data sources, sample size and product type
significantly affected EE, whereas product type, cropping pattern and measurement unit significantly
affected the GHGE of organic farming compared to conventional farming. Superior effects of organic
farming on the environment were more likely to appear for larger samples, primary data rather than
secondary data, monocropping rather than multicropping, and crops other than fruits and vegetables.
The environmental effects of organic farming were not affected by the study period, geographic location,
farm size, cropping pattern, or measurement method.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Organic farming has been recognized as one of the most
reasonable alternatives to conventional agriculture for overcoming
the crisis of climate change. Organic farming is currently practiced
in 162 countries around the world on 37.2 million hectares of
farmland, accounting for .86% of agricultural land in 2011 (FiBL and
IFOAM, 2013). Markets for organic foods have been increasing since
the European Union (EU) Regulation EEC 2092/91 was enacted in
1991. Worldwide sales of organic food and drinks reached $63
billion from 2008 to 2011 (Soil Association, 2013). The growing
importance of organic farming has created an urgent need to
compare the environmental effects of organic and conventional
farming methods (Venkat, 2011). Because organic farming focuses
on sustainability, it is often perceived to have less detrimental ef-
fects on the environment than conventional farming, which relies
on external inputs to a greater extent (Gomiero et al., 2008).
lture and Life Sciences, Seoul
þ82 2 880 4747; fax: þ82 2

r Ltd. This is an open access article
In recent decades, studies investigating the environmental im-
pacts of organic farming compared to conventional farming have
produced conflicting findings. Although some studies have found
organic farming to be superior, others have not. The results of
environmental assessments of organic farming are difficult to
compare because the extant studies have employed different
methodologies and measurement procedures (e.g., Hansen et al.,
2001; Haas et al., 2001; St€olze et al., 2000). In addition, farming
outcomes are extremely sensitive to meteorological and natural
conditions. Consequently, a systematic and critical analysis is
required to identify and evaluate the structural characteristics of
studies that have investigated the environmental effects of organic
farming, and to provide guidelines for future research. The present
paper reports the results of a meta-analysis of environmental
assessment studies of organic farming to identify the variables that
contributed to their assessments and to provide recommendations
for future studies. This meta-analysis seeks to identify the struc-
tural variables that accounted for differences between studies that
found better performance in organic farming systems and studies
that did not.

The next section reviews literature that compares the environ-
mental effects of organic and conventional farming systems, and
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presents the research framework, which includes the structural
variables derived from the literature. The third section describes
the meta-analysis and the methods employed in this analysis. The
fourth section presents the results of the analysis, and the final
section summarizes the findings and presents recommendations
for future research.

2. Literature review and research framework

2.1. Environmental effects of organic farming

In recent decades, many studies have compared the environ-
mental effects of organic and conventional farming systems, pri-
marily in Europe and North America. Some scholars have
comprehensively reviewed previous studies to assess the envi-
ronmental effects of organic and conventional farming on energy
use and greenhouse gas emissions (GHGE) (Azeez and Hewlett,
2008; Gomiero et al., 2008; Hill, 2009; Lynch et al., 2011, 2012;
Niggli et al., 2009; Ziesemer, 2007). Others have conducted simu-
lation studies to predict the effects of converting from conventional
farming to organic farming on energy use and GHGE (Acosta-Alba
et al., 2012; Halberg, 2008; Hansen et al., 2001; Pelletier et al.,
2008; Point et al., 2012; Tzilivakis et al., 2005).

The extant studies have produced different conclusions
regarding environmental performance due to differences in the
methods employed, which include differences in data sources,
sample size, statistical analyses and measurement. In a compre-
hensive review of the literature comparing the environmental ef-
fects of organic and conventional farming, Bertilsson et al. (2008),
Gomiero et al. (2008), MacRae et al. (2011), and Mondelaers et al.
(2009) found that organic farming was more likely to result in
less energy use and lower GHGE per unit of land but higher energy
use and emissions per unit of output. However, the results varied
due to differences in farm characteristics, data sources, measure-
mentmethods and types of analyses. The variability of study results
requires the identification of the structural variables that were
associated with the conflicting outcomes found in these studies.

Three papers have reported the results of meta-analyses of
studies investigating differences in the environmental effects of
organic and conventional farming systems. A number of perfor-
mance measures were assessed, including biodiversity and abun-
dance (Bengtsson et al., 2005), GHGE and environmental pressure
(Mondelaers et al., 2009), and nutrient losses, effects on biodiver-
sity, GHGE, eutrophication potential, acidification potential, energy
use and land use (Tuomisto et al., 2012). The results of these meta-
analyses revealed that organic farming was associated with better
outcomes for per unit of land but that therewere no differences per
unit of output. However, none of the meta-analyses identified the
structural variables that accounted for the conflicting results of
previous studies.

This study performed a meta-analysis to investigate the struc-
tural variables that contributed to the conflicting findings in the
literature on the environmental effects of organic farming to
determine which structural characteristics were associated with
different environmental performance. The structural variables
investigated in previous studies were examined, which included
data sources (Wood et al., 2006; Pimentel et al., 2005), duration of
the data collection years (Bertilsson et al., 2008), measurement
methods (Reganold et al., 2001; Deike et al., 2008; Litskas et al.,
2011), measurement unit (Gomiero et al., 2008; MacRae et al.,
2011; Mondelaers et al., 2009), environmental impact measures
(Lynch et al., 2011; Gomiero et al., 2008; Mondelaers et al., 2009),
and various farm characteristics. Product (Lynch et al., 2011),
location (Petersen et al., 2006; Weiske et al., 2006), size (Mousavi-
Avval et al., 2011), and cropping pattern (Bertilsson et al., 2008) of
the research farm are included in the farm characteristics. We have
added sample size to reflect differences in the statistical sufficiency
and study period to check the consistency over time in the studies.
These variables are included as they are appeared in all 107 studies
used for this meta-analysis. The variables are explained further in
the next section.

Other variables are investigated in previous studies, including
longitude and latitude, precipitation, temperature, humidity,
amount of biomass, soil nutrition and acidification, irrigation,
tillage, rainfall, intensity of farming, farm slope, and altitude
(Kaltsas et al., 2007; Pimentel et al., 2005; Guzman and Alonso,
2008; Zentner et al., 2011; Moreno et al., 2011; Deike et al.,
2008). However, these variables are not considered as they
appear insufficient (1e15 times) in the 107 studies used for the
meta-analysis.

2.2. Structural variables

In this study, structural variables that have been frequently
investigated in comparative studies were classified into the five
different categories presented in Table 1: farm characteristics, study
characteristics, dependent variables, data sources, and data ana-
lyses. Fig. 1 presents the structural categories and their in-
terconnections that served as a framework for analyzing
differences in the results of studies on the environmental effects of
organic farming.

2.2.1. Farm characteristics
Studies differ with respect to the type of farm employing organic

practices and the methods used to measure subsequent environ-
mental effects. Farm characteristics such as geographic location,
type of products, farm size, and cropping patternmight affect study
results. Farming systems also substantially differ with respect to the
type of product and affect on environmental performance. Live-
stock farming generally uses more energy and emits more green-
house gasses than crop farming. Previous studies on the
environmental effects of organic farming have produced different
findings, which depend on the type of product. The types of
products examined in this meta-analysis were classified into six
categories: field crops, vegetables, fruits, dairy, livestock, andmixed
crops.

Because farming is highly dependent on geographic location,
which determines natural conditions such as climate, soil, mois-
ture, and environment, the environmental performances of organic
farming might also differ. We classified the samples of previous
studies into three regions: the EU, North and South America and
Oceania, and Asia. Farming systems in these three regions vary
markedly with respect to average intensity. Farm size, which differs
across countries and continents, also affects the environmental
performance of organic farming. Farm sizes in North and South
America and Oceania as well as in many European regions are
considerably larger for field crops and livestock than in most re-
gions in Asia and certain European regions such as Austria and
Switzerland, which exhibit considerably smaller farm sizes.
Comparative studies of energy efficiency (EE) have found that farm
size has a modest but insignificant effect on EE (Mousavi-Avval
et al., 2011).

Cropping patterns also influence the environmental outcomes
of farming systems. Monocrop-based industrial agricultural prac-
tices have been identified as the key drivers of agricultural GHGE
(UNCTAD, 2010). In contrast, crop rotation is one of the most
essential and common regulatory norms required for organic
farming certification (Codex, 2004; IFOAM, 2005). Thus, cropping
pattern, which is classified as either monocropping or multi-
cropping, was selected as a variable that might affect the



Table 1
Structural categories and variables.

Categories Variables

Dependent variables Environmental effect measures: EE and GHGE
Study characteristics Sample size: 1e20, 21e100, more than 100

Duration of data collection: one year, more than one year
Farm Characteristics Location: Europe, North & South America and Oceania, Asia and Central America

Products: field crops, vegetables, fruits, dairy, livestock, mixed crops
Farm size: less than 10 ha, more than 10 ha
Cropping pattern: monocropping, multicropping

Data source Study period: before 2005, after 2005
Data source: field surveys, field experiment farms, secondary data (Database)

Data analysis Measurement unit: area-based (ratio/ha), output-based (ratio/ton)
Measurement method: EAM (LCCI), LCA, emergy and others

Environmental effects Differences in environmental effects of organic and conventional farms

EAM (Energy Analysis Method): The amounts of input and output are converted into input and output energy levels using “energy
coefficient” (Moreno et al., 2011) to calculate EE.
LCCI (Life Cycle Climate Impact): Calculates the amount of GHGE using GHG “conversion factors” for each input material and adds the
direct emissions generated during the production process.
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environmental performance of organic farming. Monocropping
refers to single crop farming without rotation and multicropping
refers to multiple crop farming with the same rotation during the
research periods to compare organic and conventional farming.

2.2.2. Study characteristics
The period during which studies capture and analyze data has

also varied considerably. Approximately 72% of the previous studies
collected data for less than one year. Because organic systems often
have lower nutrient inputs and rely on nutrients added to the soil
before conversion to organic agriculture, it might take decades for
yields to decline to levels reflecting true organic practices. Due to
potential overestimation, surveys based on short-term data
collection might produce results that are more favorable to organic
farming (Bertilsson et al., 2008). Previous studies employing data
from field surveys and secondary sources were more likely to limit
cross-sectional comparisons to one year or to one crop season,
which is not sufficient to capture the spillover effect of nutrient
residues in the soil. Only a few studies using secondary sources
have employed databases with multi-year data (Meisterling et al.,
2009). In contrast, previous studies using data from farms with
crop rotation and experimental farms were more likely to perform
multi-year comparisons. Studies conducted on the experimental
farms of research centers have sample periods ranging from 10 to
30 years (Cavigelli et al., 2009; Gelfand et al., 2010; Hoeppner et al.,
2005; Küstermann et al., 2007; Moreno et al., 2011; Nemecek et al.,
2011; Nguyen and Haynes, 1995; Pimentel et al., 2005; Reganold
et al., 2001; Robertson et al., 2000; Stalenga and Kawalec, 2008;
Zentner et al., 2011). In the present study, the duration variable
Fig. 1. A framework for the structural factors influencing environmental outcomes for
organic farming.
included two categories: one year and multi-year.
Studies with smaller sample sizes tended to exhibit larger

standard errors, making it more difficult to distinguish the effects of
organic farming from random noise. Thus, sample size, which is the
number of case farms, might affect the comparison results of
organic and conventional farming effects. We have classified the
sample size variable into three categories: small size (1e20), me-
dium size (21e100), and large size (more than 100). The large
sample size represents most national level studies and the medium
sample size represents most regional level studies with secondary
data. The small size sample usually represents field surveys and
experiments. The classification evenly spreads the previous studies
into the three designated categories.

2.2.3. Data source
Because study accuracy depends upon the quality of the data

analyzed, data should be accurate and contain few and minor er-
rors. Consequently, the type of data source was critical for the
analysis. Objective data from secondary sources is easier to obtain.
These sources provide more farm samples, which increases the
generalizability of the study results. However, data from secondary
sources lack detail and flexibility due to the use of predetermined
categories. Previous studies were based on three types of data
sources: field surveys, field experiments, and secondary databases.
These three categories were also used in our meta-analysis. Data
collected from uncontrolled selected farm studies are included in
farm studies and data from controlled field experiments are
included in the field experiments.

Compared to earlier studies, later studies generally exhibited
improvements in themodels, methods and data employed. The first
published comparison of EE for organic and conventional farming
systems was reported by Klepper et al. (1977). A few studies were
performed after 1977 and before 2000 (Berardi, 1978; Nguyen and
Haynes, 1995; Pimentel et al., 1983; Refsgaard et al., 1998), and the
number of studies doubled after 2006 compared to the early 2000s.
To compare the consistency of the research findings obtained
before 2005 and after 2006, the analysis included a study period
variable.

2.2.4. Dependent variables
The reported environmental effects of organic farming might be

influenced by the effect measures used in the assessment. Although
many potential environmental indicators are available, EE and
GHGE have been used most frequently in studies that compare
organic and conventional farming. A search of over 100 studies on
the environmental effects of organic farming based on the Google



Table 2
Variable coding.

Structural variables Coding

Sample size 0 1e20
1 21e100
2 More than 100

Duration 0 One year
1 Multi-year

Location 0 Europe
1 North & South America, and Oceania
2 Asia and Central America

Products 0 Field crops
1 Vegetables
2 Fruits
3 Dairy
4 Livestock
5 Mixed crops

Farm size 0 Less than 10 ha
1 More than 10 ha

Cropping patterns 0 Monocropping
1 Multicropping

Study period 0 Prior to 2005
1 After 2005

Data source 0 Field survey
1 Field Experiments
2 Secondary data

Measurement unit 0 Area-based (ratio/ha)
1 Output-based (ratio/ton)

Measurement method 0 EAM (for EE) or LCCI (for GHGE)
1 LCA
2 Emergy & others

Environmental effects 0 Neutral or negative
1 Positivea

a Positive outcomes for organic farming represented higher EE and lower GHGE
for organic farming in comparison to conventional farming.
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Scholar database and the reference lists of previous studies
revealed that 45 studies used EE, 40 studies used GHGE, and 22
studies used both EE and GHGE as outcome measures. This body of
literature included working papers, research articles and doctoral
dissertations published from 1977 through 2012. Consequently, our
meta-analysis used EE and GHGE to compare the environmental
effects of different farming systems.

2.2.5. Data analysis
The use of EE or GHGE to assess the environmental effects of

farming systems required consideration of the unit and the
methods of measurement employed because previous studies have
used different units and methods to measure EE and GHGE. Several
studies measured EE and GHGE based on area (ha). Others
measured EE and GHGE based on output (ton). Because the yields of
conventional and organic farming might differ, output-based
measures often do not favor organic farming, particularly for
GHGE (Lynch et al., 2011). Brentrup et al. (2001) used an output-
based measure rather than an area-based measure to assess land
use efficiency. We employed both output-based and area-based
measurement units to compare the results.

Although previous studies have employed different measure-
ment methods to assess the environmental effects of agricultural
practices, only a few measurement methods have been used to
compare organic and conventional farming systems. In this anal-
ysis, the Energy Analysis Method (EAM), Life Cycle Assessment
(LCA), Emergy, and other methods, including Life Cycle Climate
Impact (LCCI), are compared.

3. Methods

3.1. Meta-analysis

Meta-analysis refers to a set of statistical methods specifically
designed to compare and synthesize the results of multiple studies.
The method is rooted in the fundamental values of the scientific
enterprise: replicability, quantification, and causal and correlative
analysis (Bangert-Drowns and Rudner, 1991; Benbasat and Lim,
1993; Kohli and Devaraj, 2003). Meta-analysis enables re-
searchers to test theories based on past research and provides di-
rections for future research (Hunter and Schmidt, 1990). Because
earlier studies independently compared the environmental effects
of organic and conventional farming systems, this meta-analysis
seeks to identify the structural dimensions that were associated
with conflicting results in these previous studies. This meta-
analysis focused on identifying the structural variables that
distinguished studies that found positive environmental effects for
organic farming systems and those that did not.

Following Glass et al. (1981), the meta-analysis in this study
consists of the following steps:

(1) The development of a framework identifying the structural
variables explaining differences in the results of previous
studies (described above);

(2) A literature search identifying the prior studies to be
included in the analysis;

(3) Coding of variables representing the structural variables
included in the meta-analysis;

(4) Statistical procedures for meta-analyses based on regression
(here, logistic regression); and

(5) Presentation of the meta-analysis findings and recommen-
dations for future research.

Our meta-analysis compared environmental effects by focusing
on farm-level studies that employed EE and/or GHGE as
environmental effect measures. The analysis was based on research
articles, recent working papers, and doctoral dissertations pub-
lished through December 2012, which were obtained through a
literature search based on the Google Scholar database. The anal-
ysis also included studies identified by screening the bibliographies
of previously published review papers (Azeez and Hewlett, 2008;
Gomiero et al., 2008; Hill, 2009; Lynch et al., 2011, 2012; Niggli
et al., 2009; Ziesemer, 2007) and other relevant articles. The final
analysis was based on 107 studies published from 1977 through
2012 that compared organic and conventional farming systems
using EE and/or GHGE as outcomemeasures, and thus providing 67
EE studies and 62 GHGE studies overall.

3.2. Variable coding and analysis

The independent variables used in the analyses were as follows:
(a) sample size, (b) duration of the data collection years, (c) farm
location, (d) type of product, (e) farm size, (f) cropping pattern, (g)
study period, (h) data source, (i) measurement unit, and (j) mea-
surement method. Table 2 presents these variables, which were
identified and coded as described above. The independent variables
were fitted into two separate models, one for EE and one for GHGE.

The environmental effect variable, which represented the dif-
ference between the environmental performance of organic and
conventional farmingmethods, served as the dependent variable in
the meta-analysis. The environmental performance difference
might be positive (i.e., organic farming was superior), neutral (i.e.,
no difference between organic and conventional farming), or
negative (i.e., conventional farming was superior). In this study, the
outcome variable was binary with a value of 1 (positive) or
0 (neutral or negative).

The logistic regression analysis provided the statistical basis for
identifying the structural variables that distinguished between the
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EE and GHGE studies that found beneficial effects for organic
farming and those that did not.

4. Results

Farm-level research that compares environmental effects for
organic and conventional farming systems has been conducted
since the late 1970s. The number of studies increased sharply
during the late 2000s (Fig. 2). Some of the 67 EE studies and 62
GHGE studies examined multiple farm products and included both
area-based (/ha) and output-based (/ton) measures of environ-
mental effects, which increased the number of observations in the
meta-analysis to 165 for EE and 195 for GHGE.

Research interest in this issue was stronger in the European
countries than in other regions. Of the 165 observations in the EE
sample, 124 were located in Europe, 30 were located in North and
South America and Oceania, and 11were located in Asia and Central
America. Of the 195 observations in the GHGE sample, 162 were
located in Europe, 24 were located in North and South America and
Oceania, and 9 were located in Asia and Central America.

4.1. Meta-analysis results for EE

Although several authors used both EE and GHGE, it is more
meaningful to examine these environmental effect measures
separately. Thus, we performed a logistic regression analysis to
determine the effect of the structural variables on the EE benefits of
organic farming.

Table 3 presents the frequency distributions of the structural
and outcome variables in the studies that use EE as an effect
measure. In these studies, 67.3% of the 165 observations exhibited
positive outcomes, and 32.3% exhibited neutral or negative out-
comes. That is, in terms of EE, organic farming was favored over
conventional farming. For the EE comparisons, 45% involved field
crops and 66% of the comparisons involved farm sizes over 10 ha.

To identify the structural variables that contributed to the EE
superiority of organic farming, a logistic regression analysis was
performed. Table 4 presents the results, which identify the struc-
tural variables that significantly influence findings of superior EE in
organic farming. The logistic regression model provided a good fit.
The Chi-square test statistic was significant (p ¼ .000) and the
HosmereLemeshow test statistic was not significant (p ¼ .835).

The goodness of fit of the model was confirmed by the accuracy
of classifications, which was 78.18% (Table 5). The model was highly
predictive with 90.99% accuracy for cases in which EE for organic
farming was superior in predicting the effect variable. However, the
accuracy of the model was poor for cases in which EE for organic
Fig. 2. The number of relevant studies publis
farming was neutral or negative. The structural variables in the
logistic regression predicted the effect variable with only 51.85%
accuracy. Thus, further research is needed to identify the de-
terminants of neutral or negative EE for organic farming compared
to conventional farming.

The structural variables of product, data source, and sample size
were statistically significant. The vegetables and fruits categories
exhibited negative statistically significant values, indicating that EE
benefits of organic farming were less likely for the categories of
vegetables and fruits compared to the category of field crops.
Although the values for the dairy, livestock, and mixed crop cate-
gories were positive, they were not statistically significant. Overall,
organic farming was more likely found to be superior for field crops
and livestock than vegetables and fruits.

The logistic regression results also revealed that the EE benefits
of organic farming were strongly associated with characteristics of
the data. Sample sizes of more than 100 were significantly associ-
ated with the EE superiority of organic farming (p ¼ .006)
compared to sample sizes of 1e20. Data source also significantly
affected the EE benefits of organic farming. The significant value for
secondary data was negative, indicating that the EE benefits of
organic farming were less likely to be supported by secondary data
than by field surveys or experiments.

Although other structural variables in the analysis exhibited the
expected values, theywere not statistically significant. Study period
(p ¼ .944), location (p ¼ .799 and .650), measurement method
(p ¼ .561 and .540), and farm size (p ¼ .818) did not contribute to
the EE benefits of organic farming. The EE benefits of organic
farming were modest but not statistically significant for duration
(p ¼ .164), measurement unit (p ¼ .160), and cropping pattern
(p ¼ .272). These findings suggest that study period and location,
measurement unit and method used to estimate EE were not
associated with EE benefits for organic farming. However, the EE
benefits of organic farmingwere slightly greater for multi-year data
compared to one-year data, monocropping compared to multi-
cropping, and output-based outcome measures (/ton) compared to
area-based measures (/ha).

The results of the analysis indicate that the EE benefits of
organic farming were more marked for larger samples and primary
data from field studies for the categories of field crops, livestock and
multiple crops. However, none of the EE studies from field surveys
or experiments had sample sizes over 100. As Table 6 indicates, 27
of 33 studies with sample sizes over 100 (81.8%) exhibited EE
benefits for organic farming. Of the studies with sample sizes over
100, 28 studies examined field crops, dairy, livestock, and mixed
crops, and 25 of these studies (89.3%) found better EE effects for
organic farming. Field studies with more samples in these crop
hed each year from 1977 through 2012.



Table 3
Frequency distribution of structural variables for studies of EE.

Structural variables Dimension Number of observations (%)

Sample size 1e20 60 (35.4)
21e100 72 (43.6)
More than 100 33 (20.0)

Duration One year 112 (67.9)
Multi-year 53 (32.1)

Location Europe 124(75.2)
America and Oceania 30 (18.1)
Asia and Central America 11(6.7)

Products Field crops 75 (45.5)
Vegetables 21 (12.7)
Fruits 22 (13.3)
Dairy 19 (11.5)
Livestock 19 (11.5)
Mixed crops 9 (5.5)

Farm size Less than 10 ha 56 (33.9)
More than 10 ha 109 (66.1)

Cropping pattern Monocropping 82 (49.7)
Multicropping 83 (50.3)

Study period Prior to 2005 59 (35.8)
After 2005 106 (64.2)

Data source Field survey 91 (55.2)
Field Experiments 36 (21.8)
Secondary data (DB) 38 (23.0)

Measurement unit Area-based (EE/ha) 92 (55.8)
Output-based (EE/ton) 73 (44.2)

Measurement method EAM 102 (61.8)
LCA 51 (30.9)
Emergy & others 12 (7.3)

Environmental effects (EE superiority of organic farming Positive 111 (67.3)
Neutral or negative 54 (32.7)

Table 4
Results of the logistic regression analysis of the EE benefits of organic compared to conventional farming.

Structural variables B S.E. p-value

Study publication date �.036 .511 .944
Location (Compared to Europe)
N. & S. America & Oceania �.170 .671 .799
Asia & Central America .392 .864 .650

Duration .779 .559 .164
Data source (compared to field surveys)
Field experiments 1.024 .801 .201
Secondary data (DB) ¡2.815 1.366 .040**

Measurement method (compared to EAM)
LCA �.307 .528 .561
Emergy & others .576 .940 .540

Sample size (compared to 1e20)
21e100 .236 .444 .595
More than 100 4.059 1.467 .006***

Products (compared to field crops)
Vegetables ¡1.994 .707 .005***
Fruits ¡1.261 .686 .066*
Dairy .715 .801 .372
Livestock .044 .715 .951
Mixed crops .001 .825 .999

Farm Size �.139 .605 .818
Cropping pattern (multicropping compared to monocropping) �.563 .512 .272
Measurement unit (output compared to area) .635 .452 .160
(Constant) .671 .863 .437

�2 Log likelihood ¼ 164.533, Cox & Snell's R2 ¼ .235, Nagelkerke R2 ¼ .327.
Model Chi-square ¼ 44.103, p-value ¼ .000(HosmereLemeshow test Chi-square ¼ 3.505, p-value ¼ .835).
Dependent variable: EE superiority of organic farming (positive vs. neutral/negative).
*p < .10, **p < .05, ***p < .01.
The bold represents the statistically significant variables at p¼.10
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categories may have a better chance to find superior EE effects for
organic farming.

4.2. Meta-analysis results for GHGE studies

Table 7 presents the frequency distributions for the structural
and outcome variables of the GHGE studies. Of the 195 observa-
tions, 67.7% exhibited positive outcomes and 32.3% exhibited
neutral or negative outcomes. That is, in terms of GHGE, organic
farming was favored over conventional farming. In all, 43.1% of the
GHGE comparisons involved field crops and 72.8% of the compar-
isons involved farm sizes of more than 10 ha. The frequency



Table 5
Results of classifications based on the logistic regression model for EE effects.

Predicted EE superiority Classification Accuracy

Neutral/negative Positive

Actual EE Superiority Neutral/negative 16.97% 15.76% 51.85%
Positive 6.06% 61.21% 90.99%

Overall Correct Classification 78.18%

Table 6
Studies with better EE effects for organic farming by structural characteristic.

Structural characteristics No. of samples No. with better EE outcomes for organic farming % With better EE outcomes for organic farming

1.Field Surveys and Experiments 127 73 57.5
2.Sample Sizes greater than 100 33 27 81.8
3.Field Crops, Dairy, Livestock, & Mixed Crops 122 93 76.2
Satisfying both 2 and 3 above 28 25 89.3

Table 7
Frequency distribution of structural variables for studies on GHGE.

Structural variables Categories Number of samples (%)

Sample size 1e20 94 (48.2)
21e100 49 (25.1)
More than 100 50 (25.6)

Duration One year 147 (75.4)
Multi-year 48 (24.6)

Location Europe 162 (83.1)
America and Oceania 24 (12.3)
Asia and Central America 9 (4.6)

Products Field crops 84 (43.1)
Vegetables 23 (11.8)
Fruits 11 (5.6)
Dairy 34 (17.4)
Livestock 19 (11.2)
Mixed crops 11 (5.6)

Farm size Less than 10 ha 53 (27.9)
More than 10 ha 142 (72.8)

Cropping pattern Monocropping 106 (54.4)
Multicropping 89 (45.6)

Study publication date Before 2005 35 (17.9)
After 2005 160 (82.1)

Data source Field surveys 73 (37.4)
Field experiments 53 (27.2)
Secondary data (DB) 69 (35.4)

Measurement unit Area basis (ha) 74 (37.9)
Output basis (kg, ton, litter) 121 (62.1)

Measurement method LCCI 60 (30.8)
LCA 119 (61.0)
Other 16 (8.2)

Environmental effects (GHGE superiority of organic farming) Positive 132 (67.7)
Neutral or negative 63 (32.3)
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distribution of the structural variables in the GHGE studies was
similar to that of EE studies except for the variables of measure-
ment unit and measurement method. EE studies more often
employed area-based outcome measures with EAM as the mea-
surement method, whereas GHGE studies more often used output-
based outcome measures with LCA as the measurement method.

A logistic regression analysis was employed to identify the
structural variables that were associated with GHGE benefits for
organic farming. The analysis results (Tables 8 and 9) identified the
structural variables that were significantly associated with better
GHGE effects for organic farming. The logistic regression model
provided a good fit. The Chi-square value was statistically signifi-
cant (p ¼ .000) and the result of the HosmereLemeshow test was
not significant (p ¼ .341).

The goodness of fit for the logistic regression model was
confirmed by the accuracy of classifications based on the model,
which was 72.72% (Table 9). The model did very well in predicting
cases in which GHGE organic farming outcomes were superior,
predicting the outcome variable with 86.90% accuracy. However,
the structural variables in the logistic regression were poor pre-
dictors of neutral and negative GHGE outcomes, exhibiting an ac-
curacy of only 42.20%. Thus, further research is needed to identify
the determinants of neutral or negative GHGE outcomes for organic
farming versus conventional farming. The classification accuracy of
the GHGE model was similar to that of the EE model.

The structural variables of product, cropping pattern and mea-
surement unit were statistically significant. Livestock exhibited a
negative statistically significant value (p ¼ .004), which indicated
that better GHGE effects for organic farming were less likely for
livestock than for field crops. Although the values for the vegetable
and fruit categories were negative, they were not statistically sig-
nificant. GHGE effects for organic farming might be less likely for



Table 8
Results of the logistic regression analysis of the GHGE benefits of organic compared to conventional farming.

Structural variables B S.E. p-value

Study publication date .122 .534 .820
Location (compared to Europe)
N. & S. America & Oceania �.115 .650 .860
Asia & Central America �.615 .989 .534

Duration .082 .593 .890
Data source (compared to field surveys)
Field experiments �.246 .592 .679
Secondary data (DB) .298 .781 .703

Measuring method (compared to LCCI)
LCA �.411 .495 .407
Other �.121 .842 .886

Sample size (compared to 1e20)
21e100 .569 .564 .313
More than 100 1.288 .852 .131

Products (compared to field crops)
Vegetables �.991 .647 .126
Fruits �.268 1.026 .794
Dairy .376 .605 .534
Livestock ¡1.691 .584 .004***
Mixed crops .801 1.006 .426

Farm size (compared to 10 ha) .140 .600 .816
Cropping pattern (multicropping compared to monocropping) ¡1.108 .506 .028**
Measurement unit (output compared to area) ¡1.931 .453 .000***
(Constant) 2.491 1.000 .013**

�2 Log likelihood ¼ 199.427, Cox & Snell's R2 ¼ .216, Nagelkerke R2 ¼ .301.
Model Chi-square ¼ 47.404, p-value ¼ .000(HosmereLemeshow test: Chi-square ¼ 9.013, p-value ¼ .341).
Dependent variable: GHGE superiority of organic farming (positive vs. neutral/negative).
*p < .10, **p < .05, ***p < .01.
The bold represents the statistically significant variables at p¼.10

Table 9
Results of classifications based on the logistic regression model for GHGE effects.

Predicted GHGE superiority Classification accuracy

Neutral/negative Positive

Actual GHGE Superiority Neutral/negative 13.85% 18.97% 42.20%
Positive 8.72% 57.87% 86.90%

Overall correct classification 72.72%

Table 10
Studies with better GHGE effects for organic farming by structural characteristic.

Structural characteristic No. of samples No. with better GHGE outcomes for organic farming % With better GHGE outcomes for organic farming

1.Monoculture cropping pattern 104 77 72.6
2.Area-based measurement 74 60 81.1
3.Field crops, dairy, mixed crops 129 94 72.9
Satisfying 1, 2, and 3 above 12 11 91.7%
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vegetables (p ¼ .126) than for field crops. The values for other
product categories, which included dairy (p ¼ .534) and mixed
crops (p ¼ .426), were positive but not statistically significant,
which suggests that the GHGE effects for organic farming for these
categories were similar to the outcomes for field crops.

The logistic regression results indicated that superior GHGE
effects for organic farming were highly dependent on the mea-
surement unit. Output-based (ratio/ton) outcome measures
significantly reduced the superiority of GHGE effects for organic
farming (p ¼ .000) in comparison to area-based (ratio/ha) mea-
sures. These results are consistent with Lynch et al. (2011), which
found output-based measures do not favor organic farming,
particularly with respect to GHGE, due to the yield differences
between conventional and organic farming. The significant value
for cropping pattern was negative (p ¼ .028), indicating that the
GHGE superiority of organic farming was higher for monocropping
than for multicropping.
Other structural variables in the analysis exhibited the expected
values but were not statistically significant. Study period (p¼ .820),
location (p ¼ .860 and .534), duration (p ¼ .890), data source
(p ¼ .679 and .703), measurement method (p ¼ .407 and .886) and
farm size (p ¼ .816) were not associated with better GHGE effects
for organic farming. Superior GHGE effects for organic farming
were modestly related to sample size but were not statistically
significant (p ¼ .313 and .131). These findings suggest that study
period, location, duration, data source, farm size, and measurement
method were not strongly associated with superior GHGE effects
for organic farming. However, superior GHGE effects for organic
farming might be associated with larger sample sizes.

The results of the analysis indicated that superior GHGE effects
for organic farming were more marked for studies that involved
monocropping rather than multicropping and for studies that used
area-based rather than output-based effect measures. The meta-
analysis results confirmed the results of earlier meta-analyses



Table 11
Comparison of meta-analysis findings regarding the superiority of organic farming.

Structural variables Outcome measures

EE GHGE

Study period n.s. n.s.
Location n.s. n.s.
Duration n.s. n.s.
Data source ** n.s.
Measurement method n.s. n.s.
Sample size *** n.s.
Products *** ***
Farm size n.s. n.s.
Cropping pattern n.s. **
Measurement unit n.s. ***

*p < .10, **p < .05, ***p < .01; n.s. ¼ not significant.
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that found superior environmental effects for organic farming per
unit of land (Bengtsson et al., 2005; Mondelaers et al., 2009;
Tuomisto et al., 2012) rather than per unit of output. Superior
GHGE effects for organic farming were less marked for livestock in
comparison to other product categories. As Table 10 indicates,
better GHGE effects for organic farming were found for 91.7% of the
farm-level studies that involved monoculture cropping patterns,
area-based measures, and the product categories of field crops,
dairy, and mixed crops.

4.3. Comparison of meta-analyses for EE and GHGE

Table 11 presents comparison results of themeta-analyses for EE
and GHGE. The structural variables of data source, sample size and
product type significantly affected the EE of organic farming in
comparison to conventional farming, whereas product type, crop-
ping pattern, and measurement unit significantly affected the
GHGE of organic farming in comparison to conventional farming.
The better EE effects for organic farming were primarily associated
with the field study's data source and sample size of more than 100,
whereas better GHGE effects for organic farming were primarily
associated with monoculture in cropping patterns and area based
measurement unit. The results support previous studies that
investigated EE with superior performances for organic farming
when the data were obtained from field surveys and experiments
rather than from secondary data. However, there were no differ-
ences based on data sources for studies that investigated GHGE.

Increases in sample size were significantly associated with su-
perior EE effects for organic farming, whereas increases in sample
size were only modestly associated with superior GHGE effects for
organic farming. The superiority of organic farming was signifi-
cantly reduced for output-basedmeasurement of GHGE andweakly
reduced for area-based measurement of EE. These findings support
the Lynch et al. (2011) claim that output-based measures typically
do not find benefits of organic farming, particularly for GHGE, due
to yield differences between conventional farming and organic
farming. Earlier studies found superior performances for organic
farming with monocropping compared to multicropping patterns.
However, this finding was only significant for GHGE.

For EE, the analysis indicated that superior performances for
organic farming were associated with field crops, livestock, and
mixed crop farms compared to vegetable and fruit farms. For GHGE,
better performances for organic farming were associated with field
crops, dairy, and mixed crop farms, whereas poorer performances
were associated with livestock, vegetable and fruit farms. None of
the other structural variables influenced differences in EE or GHGE
between organic and conventional farming. Study publication date,
location, measurement method, farm size, and duration did not
significantly influence environmental effects for organic farming,
which indicates that the influence of these variables on the differ-
ences between organic and conventional farming were negligible.

5. Conclusions

In this paper, logistic regressions were estimated to identify the
structural variables that were associated with superior environ-
mental effects for organic farming compared to conventional
farming. Data source, sample size, and farm products were signif-
icant for EE performance and farm products, cropping patterns, and
measurement unit were significant for GHGE outcomes of organic
farming.

In the EE studies, the superiority of organic farming was more
likely to be found in studies with larger samples, field studies, and
experiments rather than secondary data. In the GHGE studies, the
superiority of organic farming was more likely to be found for
studies with monocropping compared to multicropping and with
outcome measures based on area rather than output.

The results suggest that future studies should employ enough
samples to improve confidence on the performance of organic
farming compared to conventional farming. Future studies, espe-
cially on GHGE, should be cautious in identifying the appropriate
measurement unit because output-based measures often do not
favor organic farming (particularly for GHGE) due to yield differ-
ences between conventional and organic farming. When land use
efficiency and energy productivity are considered, output-based
(per weight) measures are more appropriate for assessing EE and
GHGE than area-based (per ha) measures. The cropping pattern has
a significant impact on GHGE. Therefore, we recommend that
future studies investigate monocropping for direct and unbiased
comparisons of the environmental effects of organic and conven-
tional farming.

EE studies were more likely to find that organic farming was
superior for field crops and dairy farms and less likely for vegetable
and fruit farms. GHGE studies were more likely to find that organic
farming was superior for field crops, dairy, and mixed crop farms
and less likely for livestock, vegetable, and fruit farms. These
findings indicate that the comparisons of the environmental effects
of organic and conventional farming should take the type of farm
product (e.g., field crops, livestock, fruits, or vegetables) into ac-
count and that comparisons should be based on the same types of
farm products.

The variable of duration is not statistically significant but posi-
tive, indicating that longer periods of data collection were associ-
ated with positive organic farming performance. However, because
these findings did not achieve statistical significance, we recom-
mend that future studies employ long-term data collection and
larger sample sizes to obtain reliable data in order to compare
organic and conventional farming. Because most organic farms
have been converted from conventional farms, time series data are
more appropriate to accurately evaluate the effects of organic farms
in comparative studies that use EE and GHGE as performance
measures.

In summary, future studies should employ larger samples from
primary sources, and compare the environmental effects of organic
farming for different types of products, cropping patterns, and
performance measures.

This paper exhibits several limitations. First, asmost samples are
from Europe, the logistic regression could not classify the location
variable by country, and could not reflect the meteorological and
natural conditions. As studies are increasing recently in regions
other than Europe, future research should consider country level
comparisons.

Second, most studies (67.9% of the EE studies and 75.4% of the
GHGE studies) used cross-sectional data and thus did not consider



K.S. Lee et al. / Journal of Environmental Management 162 (2015) 263e274272
nutrient spillover effects. To compare the environmental effects of
organic and conventional farming and to determine the influence
of the length of the data collection period accurately, future studies
should obtain longitudinal data that examine the effects of multi-
seasonal practices.

Third, other structural variables might also affect the environ-
mental performance of farming systems. That is, performance
measures other than EE and GHGE should be investigated. Future
research should identify additional structural variables and a
broader range of environmental indicators to obtain more detailed
and comprehensive information on this issue.

Despite these limitations, this meta-analysis identified struc-
tural variables that were associated with better environmental ef-
fects for organic farming compared to conventional farming. Our
empirical findings should improve the reliability of future studies
that compare the environmental effects of conventional and
organic farming.
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