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Abstract

We construct the Fukaya category of a closed surface equipped with an area form using only elementary
(essentially combinatorial) methods. We also compute the Grothendieck group of its derived category.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Fukaya category which was introduced in [6] has seen increasing interest in recent years.
Much of the interest was sparked by Kontsevich’s homological mirror symmetry conjecture [11]
which relates the Fukaya category of a symplectic manifold to the category of coherent sheaves
of a conjectural mirror. However, there have been recent results that underscore the relevance of
this category to problems in pure symplectic topology (see [10,16], and [5] for example).

Despite this interest, there are very few compact symplectic manifolds whose Fukaya category
is well understood. Even linear invariants which can be extracted from it (of these, Hochschild
(co)-homology has attracted the most interest) are only known in very few situations, and then,
only as a result of a proof of homological mirror symmetry (although Picard–Lefschetz theory
yields an approach which should be sufficient to understand, say, the Hochschild cohomology
of the Fukaya category of Calabi–Yau complete intersections in projective space). This means
that the only compact symplectic manifolds for which computations have been performed are the
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elliptic curve [17,18], quartic surfaces [25], and abelian varieties [7,12]. Also as a consequence of
homological mirror symmetry, we also have a good understanding of the Fukaya–Seidel category
(which can be thought of as the Fukaya category of a symplectic manifold relative to a symplectic
hypersurface) for some (mostly two-dimensional) Lefschetz fibration [22,23,1], and [2].

In this paper, we consider another family of examples: Riemann surfaces. Beyond the fact
that there is a well-developed theory for the study of curves on surfaces (of which we use only
a small part), there are two motivations for studying these examples. From the point of view of
homological mirror symmetry, an understanding of the Fukaya category of higher genus Riemann
surfaces would give at least some indication as to what form the conjecture should take in the case
of complex manifolds of general type. This is a project whose main proponent for the moment is
Katzarkov. We also believe that studying this family of examples is interesting without reference
to mirror symmetry, as we can hope to use them as “building blocks” to understand the Fukaya
categories of higher dimensional symplectic manifolds.

The main result of the paper is the following

Theorem 1.1. If the Euler characteristic of Σ is negative, then the Grothendieck group of the
derived Fukaya category of Σ is isomorphic to

H1(SΣ,Z) ⊕ R,

where SΣ is the unit tangent bundle.

Remark 1.2. We will denote this Grothendieck group by

K
(
Fuk(Σ)

)
,

although we should strictly speaking write K0(Fuk(Σ)) to emphasize the fact that we are not
computing any higher K-groups.

Remark 1.3. The map to H1(SΣ,Z) is the map which takes every smooth embedded curve γ to
the homology class of its lift to SΣ , whereas that to R is given by computing the holonomy of a
connection 1-form, and hence is not canonical. In reality, we will prove the theorem by choosing
a (non-canonical) splitting

H1(SΣ,Z) ∼= H1(Σ,Z) ⊕ Z/χ(Σ)Z.

Remark 1.4. The Fukaya category we shall consider will have as objects essential closed em-
bedded curves equipped with the bounding spin structure. We hope to return in a future paper to
the subject of the Fukaya category in which U(1) local systems are allowed.

We end this introduction with an outline of the paper. In Section 2, we define Floer homol-
ogy for a certain class of immersed curves on Σ , and use this in the next section to define the
Fukaya category of Σ . The next two sections prove generalizations of well-known results about
Hamiltonian invariance and a geometric interpretation of some extensions in terms of resolving
singularities. The main technical part of the paper is Section 6, where we prove the existence of
the map from K(Fuk(Σ)) to H1(SΣ,Z) ⊕ R.

In Sections 7 and 8 we complete the proof of Theorem 1.1 by reducing it to some well-
known facts about the mapping class groups of surfaces. The remainder of the paper consists of
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Fig. 1. A “fish-tail.”

four appendices, in which we collect, for the convenience of the reader, some useful facts about
winding numbers, the symplectomorphism groups of surfaces, the A∞ pre-category formalism of
Kontsevich and Soibelman, and the construction of the derived category of an A∞ pre-category
using twisted complexes.

2. Floer homology for immersed curves

Floer homology is a homology theory which assigns a group to appropriate pairs of La-
grangian submanifolds of a symplectic manifold. The fact that these homology groups in di-
mension 2 are combinatorial in nature is well known among symplectic topologists and has
been used sporadically in the literature, for example in many of the aforementioned results on
homological mirror symmetry for elliptic curves, or for Lefschetz fibrations in dimension two.
However, the non-expert still has to parse through the literature on J -holomorphic curves, with
their compactness and regularity properties, in order to even get a definition of Floer homology,
not to mention the proofs of basic results.

It is in order to make the paper accessible to non-experts that we therefore begin with a con-
struction of Floer homology ab initio. We explain enough of the theory that the relevant ideas
and techniques may become clear. We hope that those unfamiliar with Floer theory will forgive
this partial state of affairs, while the expert will excuse the inclusion of detailed proofs of many
results which she will think are well known and established. Maybe she will accept the excuse
that Floer theory usually restricts itself to embedded Lagrangians, whereas we will need to use
some immersed curves in our arguments. It is possible to replace the use of immersed curves by
more algebraic arguments, but that would make the details more cumbersome.

Let Σ be a surface, possibly with boundary, equipped with a symplectic form ω.

Definition 2.1. An unobstructed curve γ ⊂ Σ is a properly immersed oriented smooth curve
which is the image of a properly embedded line in the universal cover of Σ .

As we will see later, our curves will always be equipped with one marked point. Strictly
speaking, we only care about closed curves. However, as we will be passing to infinite covers in
some of our arguments, we will also need to consider the non-closed case. For convenience, we
will adopt notation from homological algebra, and write γ [1] for the curve obtained by changing
the orientation of γ .

Lemma 2.2. A properly immersed smooth curve γ is unobstructed if and only if the following
conditions hold:

(1) γ is not null-homotopic, and
(2) γ does not bound an immersed “fish-tail” (see Fig. 1).
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Fig. 2.

Remark 2.3. Formally, a “fish-tail” is a map from the disc D to the surface Σ which takes the
boundary of D to γ and which is non-singular at every point except one point on the boundary.

Proof. Note that γ is null-homotopic if and only if it is the image of an immersed circle in the
universal cover, and hence cannot be unobstructed. If γ is not null homotopic, then it lifts to a
properly immersed curve γ̃ in the universal cover. The curve γ̃ is embedded if and only if it does
not bound a fish-tail, which would project to give an immersed fish-tail in Σ . For the converse,
choosing the basepoint to be the singular point of the fish-tail, it is easy to see that an immersed
fish-tail in Σ with boundary on γ lifts to such a fish-tail in the universal cover with boundary
on γ̃ . �

Let γ1 and γ2 be unobstructed curves which intersect transversally. Let c be such a transverse
intersection point. We will think of c as a “morphism from γ1 to γ2.” We always have an orienta-
tion preserving map from a neighbourhood of p to a neighbourhood of the origin in R

2 taking γ1
to the x-axis and γ2 to the y-axis. We call such a map a local model for the intersection p.

Definition 2.4. The degree of c is 1 if there is a local model for which the natural orientations
of the x and y axes and the orientations of γ1 and γ2 agree. The degree of c is 0 otherwise
(see Fig. 2).

Remark 2.5. Note that the degree of c as a “morphism from γ1 to γ2” is always different from its
degree as a “morphism from γ2 to γ1.” We are therefore abusing notation by assigning a degree
to c. In practice, however, this should cause no confusion as the intended meaning will be clear
from the context.

Ideally, we would define the Floer complex to be a complex over R generated by the inter-
section points. We would be able to define the differential since it involves only a finite sum
of contributions given by certain bigons. However, the higher products which we will discuss
in Section 3 may involve contributions of countably many polygons, and it is not clear that the
corresponding series converge. It is in order to address these convergence problems that the use
of Novikov rings was introduced in symplectic topology.

Definition 2.6. The universal Novikov ring Λ is the ring of formal power series of the form

∑
ait

λi
i∈Z
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Fig. 3. An element of M(q,p).

where the coefficients ai ∈ Z vanish for all sufficiently negative i, and λi are a sequence of real
numbers satisfying

lim
i→∞λi = ∞.

The idea is that the coefficients λi keep track of areas of polygons, and that if there are infi-
nitely many polygons that appear in some computation, there are still only finitely many whose
area is below a certain bound. In particular, the coefficients ai correspond to the finite number of
polygons of area λi . We now begin implementing these ideas:

Definition 2.7. The Floer complex of (γ1, γ2) is the free Z/2Z-graded module over the universal
Novikov ring Λ generated by intersection points of γ1 and γ2. It is denoted

CFi (γ1, γ2) =
⊕

deg(c)=i

[c] · Λ.

We define a differential

d : CFi (γ1, γ2) → CFi+1(γ1, γ2)

by counting immersed bi-gons. Formally, we have

Definition 2.8. Let p and q be intersection points between γ1 and γ2. We define

M(q,p)

to be the set of immersed discs (u, ∂u) which satisfy the following conditions (see Fig. 3):

• the points p and q lie on ∂u, and
• if we give (u, ∂u) the induced orientation from the inclusion into Σ , the clockwise path

from p to q along ∂u is an immersed path lying on γ1, while the counterclockwise path lies
on γ2, and

• both p and q are convex corners of the disc u.

Strictly speaking, we should think of u as an orientation preserving map

u : (D, ∂D) → (Σ,γ1 ∪ γ2)
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which maps 1 to p, −1 to q and satisfies the above conditions. In particular, we can assume that u

is an immersion away from ±1. Note that we would then have to consider such maps only up
to smooth reparametrization of the disc. We will sometimes use this point of view for additional
clarity.

Remark 2.9. If we choose a local model near q taking γ1 to the x-axis, and γ2 to the y-axis,
then for every v ∈ M(q,p) the image of a neighbourhood of −1 is contained in either the first
quadrant (x < 0 and y > 0) or the third quadrant (x > 0 and y < 0). Similarly, every u ∈M(r, q)

must locally lie entirely in one of the remaining quadrants in a local model at q .

We can now define the differential according to the formula

d[p] =
∑

q,u∈M(q,p)

(−1)s(u)tω(u)[q],

where we write ω(u) for the area of u given the induced orientation as a subset of Σ . In particular,
ω(u) is always positive. The sign (−1)s(u) is determined as follows: The sign is the product of a
−1 contribution coming from every marked point which appears on the boundary of u, and −1
contribution whenever the given orientation of γ2 disagrees with its orientation as the boundary
of u.

Remark 2.10. It is fairly easy to see that if M(q,p) is non-empty, then the degrees of p and q

differ by 1. One can also see that the differential may act non-trivially on both CF0(γ1, γ2) and
CF1(γ1, γ2).

The following lemma justifies our non-standard definition of unobstructed curves:

Lemma 2.11. The Floer differential satisfies d2 = 0.

Proof. In Floer theory, this is proved by considering discs which occur in 1-dimensional moduli.
In our case, this means considering immersed discs with one non-convex corner.

Let us choose a generator [p]. We have:

d2[p] =
∑

q,u∈M(q,p)

∑
r,v∈M(r,q)

(−1)s(u)+s(v)tω(u)+ω(v)[r].

We must show the vanishing of the coefficient of every generator [r] in the right-hand side of
the above equation. In particular, we will show that the above coefficients cancel pairwise.

Let us choose an intersection point q such that there exist u ∈ M(q,p) and v ∈ M(r, q). By
Remark 2.9, there are four possibilities for which quadrants u and v occupy near q . The argument
is the same in all cases, so let us assume that u lies in the first quadrant, and v in the fourth.

Since ∂u and ∂v both contain segments from γ1, and these segments overlap near q , we know
that one of these segments must be contained in the other. Again, there are two cases here, and
we will simply address the case where r lies on the boundary of u. In this case, the tangent
vector of γ2 at r must point towards the interior of u. This forces γ2 to intersect the boundary
of u transversally at yet another point (see Fig. 4). However, this point cannot lie on the part
of ∂u which lies on γ2 since this would create an immersed fish-tail. We must therefore have
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Fig. 4.

yet another intersection of γ2 with γ1 along the boundary of u. Let us denote this additional
intersection by q ′.

We now have two elements u′ ∈ M(q ′,p) and v′ ∈ M(r, q ′). It is clear that ω(u) + ω(v) =
ω(u′) + ω(v′). Further, if there are no marked points on the boundary of these four curves, s(u)

and s(u′) have the same parity, while the parities of s(v) and s(v′) must differ, so that the total
contribution of these four discs to the coefficient of r in d2[p] vanishes. Note that any marked
point contributes to two discs, so the result holds even in their presence. �
Remark 2.12. In order to avoid the case by case argument that we used, we could observe
that when we let w be the union of u and v, we obtain a new immersed polygon with bound-
ary on γ1 ∪ γ2, with corners at p and r . However, one of these corners is not convex. Say the
non-convex corner is p. Then there must be two segments starting at p which intersect ∂w

transversally, one along γ1 and the other along γ2. One of these segments recovers the decom-
position of w as u ∪ v, whereas the other yields a new decomposition of w as two polygons u′
and v′. These correspond to two terms whose contributions to d2[p] cancel each other.

Definition 2.13. The Floer cohomology of γ1 and γ2 is the cohomology of the complex
CF∗(γ1, γ2) with respect to the differential d . It is denoted

HF∗(γ1, γ2).

3. A∞ structure

The next step in constructing the Fukaya category is to describe how to compose morphisms.
However, such a composition will only be associative up to homotopy. There is an algebraic
theory of such categories which are only associative up to homotopy, but the theory works best
whenever there is in fact a whole sequence of higher homotopies which correct the failure of
associativity of the product. Let us therefore consider {γi}ki=0, unobstructed curves in general
position (it is enough to assume that there are no triple intersections).

We define a product

mk : CF∗(γk−1, γk) ⊗ · · · ⊗ CF∗(γ1, γ2) ⊗ CF∗(γ0, γ1) → CF∗(γ0, γk)

by counting immersed k + 1-gons all whose corners are convex. More precisely, let pi,i+1 be an
intersection point between γi and γi+1.
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Fig. 5. A polygon in M(p0,6,p5,6, . . . , p0,1).

Definition 3.1. Denote by

M(p0,k,pk−1,k, . . . , p0,1)

the set of immersed polygons u such that the boundary of u is a union of segments

[pi−1,i , pi,i+1] ⊂ γi

with convex corners at every pi,i+1 and such that the natural orientation of the boundary of u

corresponds to increasing i (see Fig. 5).

Remark 3.2. The orientation condition dictates that in a local model near each pi,i+1 taking γi to
the x-axis, and γi+1 to the y-axis, such a polygon lies in the second or fourth quadrant. At p0,k ,
we must consider the opposite local model in order for u to be contained in the even quadrants.

The contribution of such polygons is given by

mk

([pk−1,k], . . . , [p0,1]
) =

∑
p0,k

∑
u∈M(p0,k,pk−1,k ,...,p0,1)

(−1)s(u)tω(u)[p0,k], (1)

where ω(u) is the area of u as before, and the sign s(u) is determined as follows: Assign to every
odd degree intersection pi,j where i < j a sign (−1)s(pi,j ). This sign will be positive if and only
if the orientation of γj as the boundary of u agrees with the given orientation of γj . The total
sign (−1)s(u) is the product of the signs assigned to all odd degree intersections and to all marked
points which appear on the boundary of u.

Lemma 3.3. The degree of mk is equal to k mod (2).

Proof. Since u lies in one of the even quadrants, agreement of the orientation of ∂u with γi[a]
implies agreement of the orientation of ∂u with γi+1[a + 1 + deg(pi,i+1)]. Keeping in mind the
different convention for the last point, going all the way around the boundary of the polygon
implies

a0 = a0 + deg(p0,k) +
∑

1 + deg(pi,i+1) mod (2),
0�i<k
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which proves

deg(p0,k) = k +
∑

0�i<k

deg(pi,i+1) mod (2). �

When k = 1, we simply recover the differential which we constructed in the previous section.
The only non-trivial part is that the signs agree, but if M(q,p) is non-empty, then either p

or q (but not both) has even degree, hence contributes a sign to d[p] which is exactly the sign
which we used in the definition of the differential. When k = 2, we obtain the product which we
claimed would only be associative up to homotopy. First, we explain why the product respects
the differential. In other words, we prove:

Lemma 3.4. If γ0, γ1, and γ2 are transverse unobstructed curves, then

m2 : CF∗(γ1, γ2) ⊗ CF∗(γ0, γ1) → CF∗(γ0, γ2)

satisfies the formula:

m1
(
m2

([q], [p])) = (−1)deg(p)m2
(
m1

([q]), [p]) − m2
([q],m1

([p])).
Remark 3.5. The reader might have expected the usual conventions for differential graded alge-
bras for which the sign in the second term of the right-hand side is (−1)deg(q). One can recover
the usual sign conventions by defining a new differential ∂(q) = (−1)deg(q)m1(q) and a new
product q · p = (−1)deg(p)m2(q,p).

Proof. We rewrite the above formula as

m1
(
m2

([q], [p])) − (−1)deg(p)m2
(
m1

([q]), [p]) + m2
([q],m1

([p])) = 0,

and expand the left-hand side into the sum of three series

∑
r,u∈M(r,q,p)

∑
s,v∈M(s,r)

(−1)s(u)+s(v)tω(u)+ω(v)[s]

+ (−1)deg(p)
∑

r,u∈M(r,q)

∑
s,v∈M(s,r,p)

(−1)s(u)+s(v)tω(u)+ω(v)[s]

+
∑

r,u∈M(r,p)

∑
s,v∈M(s,q,r)

(−1)s(u)+s(v)tω(u)+ω(v)[s].

We must now show that the total coefficient of s in the above expression vanishes. As in the proof
of Lemma 2.11 one in fact shows that the terms cancel pairwise. As in the remark following that
lemma, we should therefore consider polygons with one non-convex corner. The only non-trivial
part is to check that the signs of the two terms that such polygons contribute are always opposite.
We will refer to the proof of Lemma 3.6 for the relevant argument. �
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Fig. 6.

In order to prove that the product is associative up to homotopy, we must show that there
exists a map

h : CF∗(γ2, γ3) ⊗ CF∗(γ1, γ2) ⊗ CF∗(γ0, γ1) → CF∗(γ0, γ3)

such that

m2
([r],m2

([q], [p])) − (−1)deg(p)m2
(
m2

([r], [q]), [p])
= −m1

(
h
([r], [q], [p])) − (−1)deg(q)+deg(p)h

(
m1

([r]), [q], [p])
+ (−1)deg(p)h

([r],m1
([q]), [p]) − h

([r], [q],m1
([p])).

Note that the left-hand side would vanish if the product was strictly (graded) associative, and that
the right-hand side should be interpreted as applying the total differential to h. In fact, we have
already constructed h; it is equal to m3. A generalization of this result is called the A∞ relation.

Lemma 3.6. The higher products mk satisfy the equation∑
l,d,j

(−1)�d ml

([pk−1,k], . . . ,mj

([pd+j,d+j+1], . . . , [pd,d+1]
)
, . . . , [p0,1]

) = 0,

where

�d = d +
d∑

i=1

deg(pi−1,i ).

Proof. The proof is essentially the same as the proof that m2
1 = 0, or that m2 respects the dif-

ferential. It will suffice to explain why, given a polygon with one non-convex corner, the two
contributions of the decomposition into a pair of convex polygons cancel each other. As usual,
the only issue is that of signs.

Let w be such a polygon with decompositions into u∪v and u′ ∪v′ as in Fig. 6 with additional
corners pd,d ′+1 and pd ′,d ′′ . We must show that

d +
d∑

deg(pi−1,i ) + s(u) + s(v) + d ′ +
d ′∑

deg(pi−1,i ) + s(u′) + s(v′) = 1 mod (2).
i=1 i=1
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Fig. 7.

Recall that s(u) was defined as the sum of the contributions of the corners of u which have
degree equal to 1 multiplied by the contribution of all the marked points. Since all the marked
points appear an even number of times, they can be safely ignored, so we assume that none exist.
In particular, every corner other than pd,d ′+1, pd ′,d ′′ , and pd ′,d ′+1 have the same contribution to
s(u)+ s(v) and s(u′)+ s(v′). From Fig. 7, we see that since the outgoing edge at pd,d ′+1 appears
with opposite orientations in the discs appearing in the two formulae, this intersection point
contributes its degree to s(u) + s(v). Similarly, pd ′,d ′+1 contributes its degree to s(v) + s(v′).
On the other hand, the outgoing edge at pd ′,d ′′ appears twice with the same orientation, so its
total contribution to s(u′) + s(v′) vanishes. Therefore, it suffices to show that

d +
d∑

1=i

deg(pi−1,i ) + deg(pd,d ′+1) + deg(pd ′,d ′+1) + d ′ +
d ′∑

i=1

deg(pi−1,i ) = 1 mod (2).

But this follows easily from Lemma 3.3 which implies that

deg(pd,d ′+1) = (d ′ + 1 − d) +
∑

d<i�d ′+1

deg(pi−1,i ). �

It would seem that we have constructed an A∞ category (see Appendix C for a definition).
However, the standing assumption in this section has been that the curves γi are transverse. While
this is a generic assumption, it certainly does not hold for all curves, so we have not even defined
the space of endomorphisms of an object leaving us in a situation where it does not make sense
to speak of units.

There are several solutions to this problem. The most elegant and geometric solution is to
introduce a “Morse–Bott” version of the theory, which is done for Lagrangian Floer theory in [9].
This theory is in fact of manageable complexity in dimension 2, but developing it with full rigour
is still a non-trivial task. Instead, we will opt for hiding the problem in the algebraic structure
by working with the A∞-pre-categories of Kontsevich and Soibelman [12]. We include a brief
review in Appendix C. The reader should be warned that the simplicity of working with A∞
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pre-categories is deceiving, and that we will pay the price in Section 6 for having chosen not
to develop a “Morse–Bott” theory of combinatorial Floer homology. In particular, the proof of
Lemma 6.8 is essentially a definition in the latter theory.

Definition 3.7. Let Σ be a surface equipped with a symplectic form. The Fukaya category of Σ

is the A∞-pre-category Fuk(Σ) given by the following data:

• The objects are all embedded unobstructed curves in Σ .
• The transverse subsets Ob(Fuk(Σ))tr

n are given by n-tuples of curves such that no three
curves have a common point.

• Among the transversal objects, the higher compositions are given as in Eq. (1).

We remark that unlike the case of a general A∞ pre-category, a reordering of transverse se-
quence is still transverse, so we may simply speak of transverse sets. The rest of the paper is
devoted to developing geometric techniques to compute the K-group (see Appendix D) of the
Fukaya category of a surface.

4. Quasi-isomorphic curves

Let us choose a connection 1-form A as in Appendix A. In this section, we prove the following
proposition, which is the appropriate generalization, in the presence of immersed curves, of the
Hamiltonian invariance of Floer homology:

Proposition 4.1. Assume that γ1 and γ2 are transverse unobstructed curves which are isotopic
and satisfy

holA(γ1) = holA(γ2).

Then γ1 and γ2 are quasi-isomorphic objects of Fuk(Σ).

We first prove the result assuming that Σ is the cylinder, that γ1 and γ2 are circles representing
the generator of the fundamental group. Note that in this case, γ1 and γ2 are embedded.

Lemma 4.2. If |γ1 ∩ γ2| > 2 then there exists a curve γ 1
2 which intersects γ2 in two points,

intersects γ1 in |γ1 ∩ γ2| − 2 points and has the same holonomy as γ2.

Proof. Since γ1 and γ2 represent the same homology class, their algebraic intersection number
vanishes. Consider a pair (p, q) of intersection points which are the corners of an embedded
disc u of minimal area a. One element of the pair will be a positive intersection point; the other
a negative intersection. We will construct the curve γ 1

2 as a small perturbation of a piecewise-
smooth curve γ which agrees with γ2 almost everywhere, except near u where it will agree with
γ1 and near a yet unspecified point where it will bound a disc u′ of area a along with γ2 in such
a way that the holonomy along γ agrees with the holonomy along γ2; see Fig. 8.

We must choose u′ in such a way as to ensure that γ ′
2 does not pick up any new intersection

with γ1 and γ2. Consider a trivialization of the cylinder as S1 × R such that γ1 is the fiber over 0
of the projection map to R, and let (m,M) be respectively points on γ2 which have minimal and
maximal R values. Note that these are points where γ2 is tangent to a translate of γ1.
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Fig. 8.

Claim. The orientation of γ2 at m (and M) agrees with the translate of γ1.

Proof. By lifting to R
2 with basepoint m̃ over m, we obtain a line γ̃2 which is tangent to some

y = c line at m̃. If the orientation of γ2 and the translate of γ1 do not agree at m, the curve γ̃2

“comes from” x = −∞, has tangent vector − ∂
∂x

at m̃, then heads towards x = +∞ without
crossing itself (no self intersections) or the y = c lines (since c was the minimal R value). This
is impossible. �

We can now modify γ2 near m (or M depending on the relative orientations of γ2 and the
boundary of u) to produce a curve γ which has the same holonomy as γ2 (see Fig. 8). The
desired conditions about intersection points follow from the fact that u was the disc of minimal
area. �
Corollary 4.3. There exists a sequence {γ2 = γ 0

2 , . . . , γ n
2 = γ1} of curves having the same

holonomy, such that |γ i
2 ∩ γ i+1

2 | = 2.

In particular, since quasi-isomorphisms are transitive it will suffice to prove that successive
curves in the above sequence are quasi-isomorphic. Since it will be needed later, we will be
constructing the explicit quasi-isomorphism in a slightly more general context:

Assume all the immersed discs bounded by γ1 and γ2 are in fact embedded with disjoint
interiors; this finite set of bigons {uk}2n−1

k=0 satisfies

∑
k

(−1)kω(uk) = 0.

The bigons uk are numbered such that k increases as one traverses the boundary of γ1 according
to its orientation. Let {pi}n−1

i=0 be the corners of uk which have degree 0 in CF∗(γ1, γ2) and let
qi be those corners of degree 1. Since the position of the two marked points does not affect the
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quasi-isomorphism type we may assume that they both lie on the boundary of the same disc uk

so that their signed contributions cancel. Working mod (2n), we have:

m1(pi) = −tω(u2i−1)qi−1 + tω(u2i )qi .

In particular, we compute:

m1

(
n−1∑
i=0

t
∑2i−1

k=0 (−1)kω(uk)pi

)
=

∑
i

−t
∑2i−2

k=0 (−1)kω(uk)qi−1 + t
∑2i

k=0(−1)kω(uk)qi

= −tω(u2n−1)qn−1 + t
∑2n−2

k=0 (−1)kω(uk)qn−1

= 0.

This proves that

e1,2 =
n−1∑
i=0

t
∑2i−1

k=0 (−1)kω(uk)pi

is a closed morphism. In the rest of this section, we will prove that it is a quasi-isomorphism.
First we will choose a curve γ ′

1 which is C1-close to γ1 and which satisfies holA(γ ′
1) = holA(γ1).

We assume that all bigons bounded by γ1 and γ ′
1 have the same area, and construct morphisms

e1,1′ and e1′,1 which we will prove are quasi-isomorphisms. We begin with

Lemma 4.4. If {αn} ∪ γ1 is a finite collection of mutually transverse curves and γ ′
1 satisfies the

above conditions then

mk

([xk], . . . , [xd+2], e1,1′ , [xd ], . . . , [x1]
) = 0

whenever k > 2 and xi ∈ αni
∩ αni+1 .

Remark 4.5. Of course, the C1-closeness of γ1 and γ ′
1 is with respect to the curves αn.

Proof. We will in fact prove that the sets

M(x′, xk, . . . , xd+2,p, xd, . . . , x1)

are empty whenever k > 2 and p is an intersection point between γ1 and γ ′
1 which yields a degree

0 morphism from γ1 to γ ′
1. In order to do this, we begin by observing that an immersed polygon u

in one of the above sets agrees, near p with one of the bigons w which γ1 and γ ′
1 bound. Assume

that q is the other corner of w. If the segment along γ1 from p to xd and the segment along γ ′
1

both pass through q , then we see that u must in fact agree with the bigon from p to q , since
otherwise the inverse image of q would contain a line connecting distinct points on the boundary
of the D2, contradicting the assumption that u is an immersion.

We therefore assume that the segment from p to xd lies on the subset of the boundary labeled
by γ1. Since we chose γ ′

1 to be C1 close to γ1, xd corresponds to an intersection point x′
d between

αnd
and γ ′. The curve αnd

separates w into two triangles. Let us denote by v the triangle corners
1
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p, xd and x′
d . In addition, we assume that x′

d lies on the segment from p to xd+2 (if this is not
true, we can simply reverse the rôles of xd and xd+2).

We think of u as a map from a disc D and consider the component D′ of the inverse image
of v under u which contains the marked point zp corresponding to p. By our assumption, there
are two points z1 and z2 on the boundary of D′, and segments from zp to zi along the boundary
of the original disc D which map to γ1 ∪ αnd

and γ ′
1 respectively. The map u only has critical

points at p, xd , and xd+2, and at marked points that map to intersections between αni
and αnd

.
By C1 closeness, none of these other possible marked points lie in w, so there can be no critical
points on the remaining segment of ∂D′ which connects z1 and z2. The map u is therefore an
immersion on this remaining segment, but this means that this segment must consist of a single
point, i.e. that z1 and z2 are in fact the same point. In particular, there are only three marked
points, so we’ve proved the desired result. �
Corollary 4.6. If β is transverse to γ1, and γ ′

1 is as above, then the morphism e1,1′ induces an
isomorphism of chain complexes:

m2(e1,1′ ,_ ) : CF∗(β, γ1) → CF∗(β,γ ′
1

)
.

Note that the proof of the above lemma did not require the assumption that Σ is a cylinder.
We re-impose this condition in order to ensure that the curves are embedded. The next result will
allow us to conclude that γ1 and γ2 are also quasi-isomorphic. For simplicity, we choose γ ′

1 to
intersect γ1 in exactly two points which we denote p and q .

Lemma 4.7. Let γ1, γ ′
1 and γ2 be closed embedded curves of equal holonomy, representing the

generator of the first homology of the cylinder, such that γ1 and γ2 only bound embedded discs
with disjoint interiors, and γ1 and γ ′

1 are C1 close. Up to possibly rescaling one of the terms
by ±tλ for some λ

m2(e2,1′ , e1,2) = e1,1′ .

Proof. We label the bigons uk with boundary γ1 ∪ γ2 and their corners pi and qi as in the dis-
cussion following Corollary 4.3. For the curves γ ′

1 and γ2 we also have corresponding bigons u′
k ,

and intersection points p′
i and q ′

i which are C0 close to their unprimed analogues. We must prove
that ∑

i,j

m2
(
t
∑2j−1

k=0 (−1)kω(u′
k)[q ′

j ], t
∑2i−1

k=0 (−1)kω(uk)[pi]
) = ±tλ[p].

In fact, the only term in the left-hand side which does not vanish is the one corresponding to
the corners of the bigon uk on whose boundary p lies, see Fig. 9. This proves the lemma. �
Lemma 4.8. Let β be an arbitrary unobstructed curve such that {β,γ1, γ2} is a transverse set.
Then

m2(e1,2,_ ) : CF∗(β, γ1) → CF∗(β, γ2),

m2(_, e1,2) : CF∗(γ2, β) → CF∗(γ1, β)

induce isomorphisms in homology.
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Fig. 9.

Proof. We will only prove that m2(e1,2,_ ) is injective on homology, since the remaining parts of
the lemma can be proved along the same line. Let γ ′

1 be C1-close to γ1. Then, there is a bijection
between γ1 ∩ β and γ ′

1 ∩ β , so that, CF∗(β, γ ′
1) and CF∗(β, γ1) are isomorphic as graded vector

space.
Let us now pass to homology, and observe that Lemma 3.6 implies that m2 descends to a

product on homology which is associative. The previous lemma implies that we can factor mul-
tiplication by e1,1′ as multiplication by e1,2 followed by multiplication by e2,1′ . We conclude
that

m2(e1,2,_ ) : CF∗(β, γ1) → CF∗(β, γ2)

is injective on homology. �
Note that this completes the proof for embedded curves in the cylinder. We now prove the

general case.

Proof of Proposition 4.1. Let β be an arbitrary unobstructed curve such that {β,α1, α2} is a
transverse set. We need to show that

m2(e1,2,_ ) : CF∗(β,α1) → CF∗(β,α2)

induces an isomorphism in homology.
For every c ∈ CF∗(β,αi) we note that the inclusion of α1 ⊂ Σ induces a homomorphism

Z → π1(Σ, c)

so we may consider the associated cover Σ̃c of Σ . Consider a lift of c. We obtain uniquely
determined lifts α̃c

1 and β̃c since both α1 and β pass through c. Further, any of the intersection
points ai between α1 and α2 determine the same lift α̃c

2 of our given curves (other intersection
points which do not appear in our morphism e1,2 could determine other lifts, but that is of no
concern to us). Further, α̃c

1, α̃c
2 are embedded circles in Σ̃c.

We define the following equivalence relation on the intersection points c: c ∼= c′ if the unique
basepoint preserving map from Σ̃c to Σ̃c′

which is compatible with the projection to Σ carries
the curves (α̃c

1, α̃
c
2, β̃

c) to (α̃c′
1 , α̃c′

2 , β̃c′
). Let

CF∗[c](β,αi)
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denote the subgroup of CF∗(β,αi) which is generated by points in the equivalence class of c.
Since holomorphic discs lift to the universal cover, the decomposition

CF∗(β,αi) =
⊕
[c]

CF∗[c](β,αi)

is a decomposition into sub-complexes. In fact, lifting holomorphic triangles also shows that
m2(e1,2,_ ) respects this decomposition. So it suffices to show that m2(e1,2,_ ) induces an iso-
morphism on homology for each sub-complex CF∗[c](β,αi). But

CF∗[c](β,αi) ∼= CF∗(β̃c, α̃c
1

)
.

We are now in the situation of Floer homology for embedded curves in the cylinder, so the
proposition follows from the previous lemma. �
5. Cones and connect sums

In this section, we consider the connection between twisted complexes and connect sums of
curves. For general symplectic manifolds, these results take the form of a long exact sequence
for Floer homology [24]. For related consideration, see [26] and [27].

Proposition 5.1. Let α and β are unobstructed curves which intersect transversally and min-
imally, and assume further that β is embedded. If {ci}ni=1 and {bj }mj=1 are the natural bases

of CF1(α,β) and CF1(α,β[1]) then the Dehn twist τ−1
β (α) is quasi-isomorphic to the twisted

complex

α
([c1],...,[cn],[b1],...,[bm])

β⊕n ⊕ β[1]⊕m.

This result follows from iteratively applying Lemma 5.4 which we will state and prove
presently. First, we need a definition.

Definition 5.2. If α and β are immersed oriented curves which intersect at c, then α #c β is the
immersed oriented curve which is obtained by resolving c as in Fig. 10 and which satisfies

holA(α #c β) = holA(α) + holA(β).

Remark 5.3. The above equality simply says that the shaded triangles in Fig. 10 have equal area.
Note that the curve α #c β is only well defined up to isotopies which preserve area, and hence up
to quasi-isomorphism in the Fukaya category by the results of the previous section.

Lemma 5.4. Let α and β be unobstructed curves which intersect transversally and minimally,
and let c be an intersection point which has degree 1 in CF∗(α,β). Then α #c β is quasi-
isomorphic in T w(Fuk(Σ)) to the twisted complex

Cone(c) = α
[c]

β.
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Fig. 10.

Proof. Since the intersection point a which appears in Fig. 10 has degree 0 in CF∗(α #c β,α),
we can consider it as an element of CF0(α #c β,Cone(c)).

α #c β

[a]

α
[c]

β.

Proving that [a] is a closed element is equivalent to showing:

m1
([a]) = 0,

m2
([c], [a]) = 0.

Since α and β intersect minimally, there can be no bigon with boundary on α and α #c β ,
so m1([a]) necessarily vanishes. As for the second term, there are two triangles u and v that
contribute to it, corresponding to the two shaded regions in Fig. 10. Our assumption that the
holonomy of the connection 1-form A on α #c β is the sum of the holonomies on α and β im-
plies that these two triangles have the same area. Neglecting the marked point, one checks that
both discs are assigned a positive sign. Since there are three marked points (one for each curve),
the signed contributions cancel. The same idea proves that [b] defines a closed morphism in
CF0(Cone(c),α #c β).

α
[c]

β

[b]
α #c β.

Let γ be an arbitrary curve which is transverse to α and β . We will prove that

m̂2
([b], m̂2

([a],_
)) : HF∗(γ,α #c β) → HF∗(γ,α #c β)
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is an isomorphism, which establishes that m2([a],_ ) is injective on homology. One should check
its surjectivity, as well as the isomorphism of m2(_, [a]), but the proofs are entirely analogous,
so we shall omit them. Note that the following lemma clearly implies the desired result. �
Lemma 5.5. If α #c β is C1 close to α ∪ β away from a small neighbourhood of c then

m̂2
([b], m̂2

([a],_
)) : CF∗(γ,α #c β) → CF∗(γ,α #c β)

is an isomorphism of Λ modules.

Proof. The condition of C1 closeness implies that, to an intersection point x between γ

and α #c β , there corresponds a unique closest intersection point x′ between γ and α or β . As-
sume that x′ lies on β (the case where it lies on α is similar). Note that the segment between x

and x′ separates the triangle u into a square u1 with corners x, a, c and x′, and a triangle u2
with corners b, x′ and x. In the simplest case, these are the only polygons that contributes to the
composition, and we easily compute

m3
([c], [a], [x]) = ±tω(u1)[x′],
m2

([b], [x′]) = ±tω(u2)[x]
which is the desired result. However, there may be other polygons. To understand why these
other polygons do not affect out result, we observe that C1 closeness implies that any other
polygons must have area larger than the area of u. Indeed, by passing to the universal cover, it
is easy to see that any such polygons must either wrap around α or β more than once, in which
case they clearly have area larger than the area of u, or they must have corners which include
an intersection point which is close to α, and one which is close to β , which means that such a
polygon has area approximately equal to the area of a corresponding polygon with one corner
at α, the other at β , and the last corner being c. It is clear that we can choose u to have area
arbitrarily smaller than the area of all such polygons.

This implies that the lowest order term in the determinant of the matrix of the composition
m̂2([b], m̂2([a],_ )) is given exactly by

±tω(u)|γ ∩α #c β|

which is clearly non-zero. �
6. Trivial objects in the derived category

We would like to define homomorphisms from K(Fuk(Σ)) to the groups mentioned in the
Introduction. In order to do this, we choose a vector field ν which vanishes at only one point (see
Appendix A). Consider the map

Z
|Ob(Fuk(Σ))| → H1(Σ,Z) ⊕ R ⊕ Z/χ(Σ)Z

defined by

Γ = (γk) → ([Γ ],holA(Γ ),wdν(Γ )
) ≡

∑([γk],holA(γk),wdν(γk)
)
,

k
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Fig. 11.

where Γ is an arbitrary twisted complex over the Fukaya category of Σ . Recall that this means
that we have a finite collection of unobstructed curves {γk} and morphisms of degree 1, Δ = (δk,l)

for k < l such that m̂1(Δ) = 0. In this section, we prove

Proposition 6.1. If Γ is quasi-isomorphic to the zero object then

([Γ ],holA(Γ ),wdν(Γ )
) = 0.

We begin with some preliminary remarks. For a fixed k, consider the set of intersections⋃
l (γk ∩ γl). This is a finite set of points on the curve γk which subdivides it into segments. Let

Iγk denote the set of such segments. Let us choose C1 small Hamiltonian perturbations γ ′
k of the

curves γk satisfying the following conditions:

• The curves γk and γ ′
k intersect twice in each segment I ∈ Iγk . Further, if we orient I accord-

ing to the orientation of γk , then the intersection point which has degree 0 in CF∗(γk, γ
′
k)

occurs before the intersection point which has degree 1.
• There is a constant λ independent of k such that all the bigons bounded by γk and γ ′

k have
area λ.

• Consider a local model for an intersection point ck,l between γk and γl . There is a constant λ′
independent of k, l, and the intersection point ck,l such that all the triangles shaded in Fig. 11
have the same area.

We decompose the differentials δk,l in terms of the generators corresponding to the intersec-
tions between γk and γl

δk,l =
∑

c ∈γ ∩γ

Pck,l
[ck,l].
k,l k l
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Of course, by definition, Pck,l
vanishes whenever ck,l does not have degree 1 in CF∗(γk, γl).

Our assumption of C1 closeness implies that there is a unique intersection point c′
k,l between γ ′

k

and γ ′
l corresponding to ck,l . We define

δ′
k,l =

∑
c′
k,l∈γ ′

k ∩γ ′
l

Pck,l

[
c′
k,l

]
.

Let Γ ′ be the collection of curves γ ′
k , and Δ′ be the collection of morphisms δ′

k,l .

Lemma 6.2. (Γ ′,Δ′) is a twisted complex.

Proof. Each ck,l that contributes to δk,l has degree 1, so Fig. 11 is an accurate model for the
input corners of each polygon that contributes to m̂1(Δ). In addition, since the output of m̂1(Δ)

has degree 0, this is also an accurate model for the output if we let the horizontal curve be the
target, and the vertical curve be the source. Note that in the local model near every intersection
point, each polygon u which contributes to m̂1(Δ) lies in the second or fourth quadrant.

Such a polygon can be uniquely perturbed to a polygon u′ which contributes to m̂1(Δ
′). We

simply go along the curves γ ′
k instead of γk . Our assumption that all the triangles in Fig. 11 have

the same area implies that u and u′ have the same area. This can be proved by considering a
neighbourhood of each corner ck,l . For example, if u locally lies in the second quadrant, then u′
contains the bigon that lies on the negative x-axis, but misses the union of two triangles and a
square. The bigon has area λ, but this is exactly the sum of the area of the two triangles and the
square. It is clear that the respective signed contributions of u and u′ to m̂1(Δ) and m̂1(Δ

′) are
equal, so the vanishing of the first implies the vanishing of the second. �

Let ek be the quasi-isomorphism of CF(γk, γ
′
k) constructed in Lemma 4.1. Since all the bigons

bounded by γk and γ ′
k have the same area, we can set

ek =
∑

p∈|γk ∩γ ′
k |�deg(p)=0

[p].

We define

E =
⊕

k

ek ∈
⊕

k

CF∗(γk, γ
′
k

) ⊂ CF∗(Γ,Γ ′).
Lemma 6.3. E is a closed morphisms of twisted complexes.

Proof. Since the chosen perturbation is C1-small the argument of Lemma 4.4 implies that the
map

m2(ek,_ ) : CF∗(γl, γk) → CF∗(γl, γ
′
k

)
is an isomorphism of vector spaces, and hence has an inverse. Further, since C1 closeness of γ ′

i

and γi relative to γj for i �= j implies C1 closeness relative γ ′
j , Lemma 4.4 implies that the

higher products ml+1(x
′, . . . , x′ , ek, xk−1, . . . , x1) vanish whenever l > 1 and all the morphisms
l k
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other than ek are either amongst curves γj for j � k or γ ′
j for j � k. In particular, proving that

m̂1(E) = 0 is equivalent to

m1(ek) = 0,

m2(el, δk,l) + m2
(
δ′
k,l , ek

) = 0.

The first condition only involves the curves γk and γ ′
k , and hence holds by construction. The

second condition follows from observing that for each pl , there exists at most one ck,l that con-
tributes to the first term of the above equation. This intersection point ck,l must be one of the
endpoints of the segment of γl on which pl lies. The consistent choice of area of bigons implies
that

m2(pl, ck,l) + m2
(
c′
k,l , pk

) = 0

whenever ck,l is a morphism that contributes to δk,l and pk is the degree 0 intersection between
γk and γ ′

k which is adjacent to ck,l . The argument of Lemma 4.4 implies that no other degree 0
intersection between γk and γ ′

k pairs non-trivially with c′
k,l . So the computation reduces to the

local model of Fig. 11. We leave it to the reader to check the local computation, and simply
comment that one triangle of area λ′ contributes to each of the its terms, and that the only thing
to check is that they have opposite signed contributions. �
Remark 6.4. Using these ideas, one can easily prove that E is a quasi-isomorphism. We do not
need this fact. Also, one can approach these constructions from a more algebraic point of view.
Using Lemma 4.1, one can formally construct a new twisted complex Γ ′ that is quasi-isomorphic
to Γ .

Let K be the collection of increasing indices among the integers that label the curves γk . In the
notation of Appendix D, the fact that (Γ,Δ) is a twisted complex corresponds to the vanishing
of ∑

K∈K
m|K|(ΔK).

We write C for the collection of all sequences (ckn,kn+1) with kn < kn+1. Every element of C is
labeled by some increasing sequence K ∈K. The vanishing of m̂1(Δ) is equivalent to

∑
CK∈C

PCK
m|K|(CK) = 0,

where

PCK
=

∏
ck,l∈CK

Pck,l
.

We will sometimes write C for CK when the notation becomes sufficiently cumbersome. We
therefore have
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Lemma 6.5. The sets of polygons

M(g,CK) = M(g, ck|K|−1,k|K| , . . . , ck0,k1)

with CK ∈ C are exactly those that contribute to m̂1(Δ).

The assumption that Γ is quasi-isomorphic to the 0-object implies that there exists
H ∈ CF∗(Γ,Γ ′) such that m̂1(H) = E. As above, the sets of polygons that contribute to m̂1(H)

are

M
(
x,C′

K1
, h,CK2

)
.

If x = pk , then the first element of K1 and the last element of K2 agree. In particular, since Ki

are both increasing sequences, h must lie in CF1(γl, γ
′
k) where k � l in order to contribute to

〈
m̂1(H), [pk]

〉 = 1,

where the left-hand side is the coefficient of [pk] in m̂1(H). Further, since the differential van-
ishes identically in CF1(γl, γ

′
l ), we may assume that we have strict inequality. Let F be the sum

of the terms in H which lie in CF1(γl, γ
′
k) for k < l. We write

F =
∑

f ∈γl ∩γ ′
k |deg(f )=1

Pf [f ].

By construction, we still have

〈
m̂1(F ), [pk]

〉 = 1 (2)

for every degree 0 intersection pk between γk and γ ′
k .

Again, there is a canonical bijection between γl ∩ γ ′
k and γk ∩ γl . Let f̄ be the intersection

point between γk and γl corresponding to f . [f̄ ] is a generator of degree 0 in CF∗(γk, γl). The
next lemma, though seemingly innocuous, is the key to our arguments in this section.

Lemma 6.6. If k ∈ K and the sequences K1 and K2 consist respectively of the elements which
are smaller and larger than k, then every polygon u in

M(f̄ ,CK)

corresponds to a finite set of polygons {vr} in

M
(
pk,C

′
K1

, f,CK2

)
.

Further, all the polygons corresponding to u have the same area which differs from that of u

by λ − λ′.
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Fig. 12.

We will denote this finite number of polygons by |nu(pk)|. The notation is justified by

Definition 6.7. If u is a polygon with a boundary edge on γ , and p is a point on γ , then nu(p) is
the signed multiplicity of p as a point on the edge of ∂u which lies on γ .

Thinking of u as an orientation preserving map from the disc, there is a segment on ∂D labeled
by γ . The non-negative number |nu(p)| is the number of points on this edge of ∂D which are
mapped to p. The sign is positive if and only if the orientation of γk agrees with that of boundary
of D at p.

Proof of Lemma 6.6. Let us assume for simplicity that nu(pk) = 1. We can perturb every u

in M(f̄ ,Ck) to a polygon v whose boundary acquires a new convex corner between γk and γ ′
k

at pk . Because pk is our output, as we are moving along the boundary of the polygon, we are
in fact moving from γ ′

k to γk at pk . The boundary of the polygon then continues along the
curves γl for k < l going through the corners which appear in CK2 . Eventually, we arrive in a
neighbourhood of f . While u has a corner at f̄ and picks up a boundary segment along γk1

where k1 is the first element of K , v has a corner at the nearby intersection point f , and its next
boundary segment is along γ ′

k1
. The remaining segments of the boundary of v lie on the curves γ ′

l

for l < k with corners at C′
K1

.
In order to prove that the difference between the area of u and v is λ − λ′, one computes this

difference locally in a neighbourhood of each corner as in the local model of Fig. 11. Instead of
writing the argument, we illustrate the case with four corners in Fig. 12. The dark (red) regions
lie in u but not in v, and vice versa for the light (blue) regions. The areas of these regions cancel
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Fig. 13.

pairwise except for the top right corner. By construction, it has area λ − λ′. One can perform the
same computation if the multiplicity in negative, as in Fig. 13.

If |nu(pk)| > 1, then the boundary of u wraps around γk more than once. Say for specificity
that nu(pk) = 2. Then we can choose our perturbed polygons to either switch from γ ′

k to γk at
pk then wrap around γk once, or to wrap around γ ′

k before switching at pk to γk . The difference
between the areas of these two polygons is exactly the area between γk and γ ′

k , which vanishes
by assumption. �

We will use the sets of polygons of the above lemma to construct a 2-chain U whose boundary
is

∑
k[γk]. First, we write,

Pf =
∑
j

b
f
j t

β
f
j .

Similarly, we can decompose

Pck,l
=

∑
ik,l∈Z

a
ck,l

ik,l
t
α

ck,l
k,l .

We can therefore compute

Pf

〈
m̂1(Δ), f̄

〉 = ∑
C∈C, u∈M(f̄ ,C)

PCPf (−1)s(u)tω(u)

=
∑

¯
(−1)s(u)aC

i b
f
j t

ω(u)+αC
i +β

f
j ,
C∈C, i,j,u∈M(f ,C)
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where PC is the product of the Laurent series Pck,l
and is decomposed as

∑
i

aC
i tα

C
i .

Note that aC
i is a products of monomials a

ck,l

ik,l
for all ck,l that appear in C, and αC

i is the sum of

the corresponding exponents α
ck,l

ik,l
. The vanishing of m̂1(Δ) is equivalent to the vanishing of

∑
C,u∈M(f̄ ,C)|ω(u)+αC

i =τ

(−1)s(u)aC
i (3)

for fixed f̄ and for any τ . This will be particularly useful if we let τ = b
f
j for some j .

There are only finitely many polynomials that contribute to the t0 component of
Pf 〈m̂1(Δ), f̄ 〉. We introduce sets of polygons:

Uf,C,i,j = {
u ∈ M(f̄ ,C)

∣∣ ω(u) + αC
i + β

f
j = −(λ − λ′)

}
,

U =
⋃

f,C,i,j

Uf,C,i,j .

Note that every u ∈ U determines f and C which essentially correspond to its corners, but not i

and j . We define integers

Mi,j (u) = (−1)s(u)aC
i b

f
j

whenever u ∈ Uf,C,i,j and their sum

M(u) =
∑
i,j

Mi,j (u).

This allows us to consider the finite 2-chain

U =
∑
u∈U

M(u)[u]

where [u] carries the restriction of the orientation of Σ .

Lemma 6.8. U is a 2-chain with boundary
∑

k[γk].

Proof. Pick a generic point p on γk . We must show that the (weighted) number of discs which
pass through p is precisely one. In other words, we must show that:

∑
M(u)nu(p) = 1. (4)
u∈U
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Note that p lies on a segment I ∈ Iγk and hence lies on the same segment a unique generator pk

of CF0(γk, γ
′
k). Since every disc passing through p also passes through pk , we may assume that

p = pk for some degree 0 intersection pk between γk and γ ′
k .

It will suffice to show that the left-hand side of Eq. (4) is the coefficient of pk in the Novikov
series expansion of the left-hand side of

m̂1(H) = E.

Except for the signs, this is the content of Lemma 6.6. Indeed, the condition

ω(u) + αC
i + β

f
j = −(λ − λ′)

implies the discs vr satisfy

ω(vr) + αC
i + β

f
j = 0.

The proof would therefore be complete if we check that the sign that each vr in the statement
of Lemma 6.6 contributes to m̂1(H) is (−1)s(u)+s′(u) where s(u) is the sign that u contributes
to m̂1(Δ) and which already appears in Eq. (4), and s′(u) is a correction which vanishes mod 2
if and only if the given orientation of γk and its induced orientation as the boundary of u agree
at pk .

Since pk has degree 0 in CF∗(γk, γ
′
k), it does not affect the sign of the contribution of vr . Also,

every intersection point which appears in C will contribute the same sign to m̂1(H) and m̂1(Δ).
Therefore, s′(u) is just the difference between the contribution of f̄ to the sign of u and of f

to the sign of vr . But f̄ has vanishing degree, so s′(u) is just the contribution of f to the sign
of vr . This contribution vanishes if and only if the orientation of γ ′

k1
at f agrees with its induced

orientation as the boundary of vr . Since every intersection point which appears in C has degree 1,
agreement of orientations at f implies agreement of orientations at pk , which was the desired
result (see Fig. 12 for one of the two possible cases when considering squares). �

This proves the first part of Proposition 6.1. We now prove the second part.

Lemma 6.9. The signed area of the 2-chain U vanishes.

Proof. We must prove that ∑
u∈U

∑
i,j

Mi,j (u)ω(u) = 0. (5)

We replace ω(u) by αC
i + β

f
j − (λ − λ′), and observe that, following Eq. (3), the vanishing

of the [f̄ ] component of m̂1(Δ) implies that for fixed j∑
u∈Uf ,i

Mi,j (u) = 0,

so the term containing β
f
j − (λ − λ′) vanishes. We now recall that αC

i is itself the sum of contri-

butions α
ck,l . Our goal is to show that the total coefficient of each α

ck,l vanishes.
ik,l ik,l
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For simplicity, let us assume that we have a monomial

Pck,l
= ack,l tα

ck,l
.

In this case, αck,l appears in every exponent αC
i whenever c ∈ C, so we will want to show

∑
u∈U |ck,l∈∂0u

M(u) = 0, (6)

where ∂0u are the corners of u. Topologically, this expression corresponds to the signed multi-
plicity of the chain U in the four quadrants surrounding ck,l . By the previous lemma, the total
sum therefore vanishes.

The general case where Pck,l
is not a monomial is addressed similarly. Indeed, assume that

u ∈ U contains ck,l as a corner, and define C′ = C − {ck,l}. Just as we attached a Laurent series
to C, we define

PC′ =
∑
i′

aC′
i′ t

αC′
i′

as the product of the Laurent series associated to each corner in C′. Note that the coefficient
of a

ck,l

ik,l
α

ck,l

ik,l
in Eq. (5) is

∑
u∈U ,i′,j |ck,l∈∂0(u)

(−1)s(u)b
f
j aC′

i′

where the corner locus of u consists of ck,l , f̄ , and the elements of the set C′, while the coeffi-
cients i′ and j are required to satisfy

β
f
j + αC′

i′ + ω(u) + (λ − λ′) = −α
ck,l

ik,l
.

This series is therefore exactly a coefficient of t
−α

ck,l
ik,l in

∑
u∈U ,ck,l∈∂0u

(−1)s(u)tω(u)+(λ−λ′)Pf PC′ .

Our goal is to show that this series vanishes. Since the Novikov ring has no zero divisors, there
is not harm in multiplying the above with Pck,l

. But the resulting polynomial is

∑
u∈U ,ck,l∈∂0u

(−1)s(u)tω(u)+(λ−λ′)Pf PC.

Using the proof of the previous lemma, we see that this is exactly the difference between the
coefficient of p0

k and p1
k in m̂1(H) and hence vanishes. �
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Corollary 6.10.

holA(Γ ) = 0.

Proof. For an immersed polygon u, we have

holA(∂u) = ω(u).

The result therefore follows from Lemma 6.8 and the previous lemma. For details, the reader
should go through the proof of the next lemma, replacing the winding number with the holonomy
of the connection. �

We now complete the proof of Proposition 6.1.

Lemma 6.11.

wdν(Γ ) = 0.

Proof. The strategy is to relate the winding number around the curves γi to the winding number
around the boundaries of polygons u ∈ U . First, we observe that

∑
u∈U

M(u)wdν(∂u) = 0

since wdν(∂u) = −1 and the above sum of coefficients therefore vanishes by Eq. (3). We can
summarize this by writing

wdν(∂U) = 0.

On the other hand, we can compute the winding number by using the decomposition of ∂u

into piecewise smooth curves which lie on the curves γi as

wdν(∂u) =
∑

ck,l∈C

wdν

(
I (γk, ∂u)

) − θ(ck,l),

where I (γk, ∂u) is the segment between two successive corners of u along γk oriented as a
boundary of u, and θ(ck,l) is the angle between the two boundary segments of u that share ck,l

as a vertex. Because we are not taking the orientations of γk and γl at ck,l into account, this angle
θ(ck,l) is the same for all polygons that have a corner at ck,l and contribute to m̂1(Δ).

Using this formula, we compute

wdν(∂U) =
∑
ck,l

−θ(ck,l)
∑

u∈U ,ck,l∈∂0u

M(u) +
∑
γk

∑
u∈U

M(u)wdν

(
I (γk, ∂u)

)
.

The first series vanishes as in the previous lemma. As for the second series, we note that
I (γk, ∂u) may not have the same orientation as γk . But the sign difference is s′(u) which we
introduced in the proof of Lemma 6.8. After decomposing I (γk, ∂u) into minimal segments I
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we see that the signed contribution of each such minimal segment is weighted by nu(p
I
k ), where

pI
k ∈ I is the degree 0 intersection between γk and γ ′

k that occurs in I . So,

wdν(∂U) =
∑

γk∈|Γ |

∑
I∈Iγk

∑
u∈U

M(u)nu

(
pI

k

)
wdν(I ).

Note that in our proof that ∂U = ∑[γ ], we proved that for a fixed I ∈ Iγk ,

∑
u∈U

M(u)nu

(
pI

k

) = 1.

In particular, we may now conclude

wd(U) =
∑

γk∈|Γ |

∑
I∈Iγk

wdν(I ) =
∑

γk∈|Γ |
wdν(γk),

thereby completing the proof that this last sum vanishes. �
7. Relations from the mapping class group

We will prove the following

Proposition 7.1. If α1 and α2 are homologous embedded curves such that

(
holA(α1),wdν(α1)

) = (
holA(α2),wdν(α2)

)
then α1 and α2 represent the same class in K(Fuk(Σ)).

Remark 7.2. The reader may wonder what value to give a pictorial proof along the lines of
Fig. 15. Such techniques are standard in the proofs of theorems about isotopy classes of curves,
whereas we need to keep track of area. But we already proved in Lemma 4.1 that any two isotopic
curves for which the holonomies of the connection A are equal must be quasi-isomorphic, so our
proofs are valid.

We will need several lemmata in order to prove this result. We begin by obtaining the first
non-trivial relation in K(Fuk(Σ)).

Lemma 7.3. If γ1 and γ2 are unobstructed simple closed curves which bound symplectomorphic
submanifolds of Σ , then they represent the same class in K(Fuk(Σ)).

Proof. There exists an element φ of the Hamiltonian mapping class group which maps γ1 to γ2.
Since we can factor φ as a product of symplectic Dehn twists, it suffices to show that if α is any
simple closed curve on Σ , then τα(γ1) represents the same element of γ1 in K-theory. Since γ1
is separating, the intersection number γ1 ·α vanishes for any curves α, so the result follows from
Proposition 5.1. �

This lemma easily generalizes as follows
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Fig. 14.

Lemma 7.4. If S1 and S2 are unions of simple closed curves which bound symplectomorphic
submanifolds of Σ , then S1 and S2 represent the same class in K(Fuk(Σ)).

Note that this lemma implies that given any real number Ω less than the area of Σ , there is
a well defined class in K-theory which represents the difference between isotopic curves which
form the boundary of a embedded cylinder of area Ω .

Lemma 7.5. The subgroup of K-theory generated by boundaries of embedded cylinders is iso-
morphic to R.

Proof. By restricting the holonomy map to this subgroup, we have a surjection to R. To prove
that this map is injective, we consider an element of K-theory mapping to 0 under the holonomy
map. Without loss of generality, all the terms are boundaries of cylinders that have the property
that the absolute value of their area is less than ΩΣ

2 . Since the total holonomy vanishes, there
must be at least two terms, one of which has positive, and the other negative holonomy. By the
previous lemma we can represent the sum of these two terms as the boundary of one cylinder,
which still has area at most ΩΣ

2 . Proceeding inductively, we end up with the boundary of a
cylinder of vanishing area. The corresponding element of K-theory vanishes by Lemma 4.1. �

We denote the class of the boundary of a cylinder of area Ω by Ωρ. Also, the class of a
curve bounding a torus of zero area is a well-defined element in K(Fuk(Σ)). We will denote this
element by T .

Lemma 7.6. If α1, α2 and α3 bound a pair of pants of area Ω , then, in K-theory

[α1] + [α2] + [α3] = T + Ωρ.

Proof. Assume none of the curves is separating. If the genus of Σ is more than 2, then we can
find a curve α4 as in Fig. 14. The intersections between α4 and α2 are essential since otherwise
α3 bounds a torus.
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Fig. 15.

Since we are not in the genus 2 case, there must be an additional curve γ as in Fig. 15. The
left-hand side corresponds to starting with α1[1], then successively “adding” γ and α4, whereas
the right-hand side starts with γ and “adds” α2 and α3 to it. Since the final curves of the left- and
right-hand columns of Fig. 15 are isotopic, we conclude that,

[α2] + [α3] + [γ ] = [−α1] + [α4] + [γ ]

as long as α4 bounds a torus of appropriate area. But additivity of the holonomy map implies that
the appropriate area is the area of the pair of pants bounded by α1, α2 and α3. This establishes the
desired result. In the genus 2 case, if the curves are non-separating, then we are in the situation of
Fig. 16. We have labeled the curves α4 and γ which need to be used to complete the argument.

Assume that only one of the curves is separating. Without loss of generality, we relabel the
curves so that α3 bounds a subsurface which contains α1 and α2. If the subsurface containing
these three curves is not a torus, then we can find curves α4 and γ as above and apply the same
argument. If α3 bounds a torus containing the other two curves, then the result follows easily
since α1 and α2 bound a cylinder of signed area Ω1, so

[α1] + [α2] = Ω1ρ

while α3 bounds a torus whose area is exactly Ω − Ω1.
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Fig. 16.

The last remaining case is that each curve αi bounds a surface Σi . It is easy to decompose each
Σi into pairs of pants (each having exactly one separating boundary component), and inductively
prove that

[αi] = −Ωiρ + χ(Σi)T .

The result then easily follows from additivity of area and Euler characteristic, together with
Lemma 7.7 which we now prove. �

This is the only place where we have used immersed curves. As we stated in the Introduction,
we could have avoided the use of immersed curves by finding the algebraic quasi-isomorphism
which follows from the area-preserving isotopy which is implicit in comparing the final curves
of Fig. 15. Since we did not include immersed curves in our Fukaya category, only the quasi-
isomorphism which follows from that figure is in fact used in our arguments.

Lemma 7.7. The subgroup of K(Fuk(Σ)) generated by Rρ and T maps isomorphically to
R ⊕ Z/χ(Σ)Z under the holonomy and winding number maps. In particular,

ΩΣρ − χ(Σ)T = 0.

Proof. The winding number map is surjective since the image of a bounding curve under the
winding number map determines the Euler characteristic of the surface that it bounds modulo
χ(Σ), and we can certainly find unobstructed curves (or pairs of curves) bounding surfaces of
Euler characteristic for an integer from 1 to χ(Σ) − 1. To prove that the map (hol,wd) is a
surjection, we must find a twisted complex mapping to

(Ω,n)

for any n ∈ Z/χ(Σ)Z and real number Ω . To achieve this, we simply choose a bounding curve
γ0 with winding number n and add to it an element of the subgroup of K-theory generated by
boundaries of cylinders as in Lemma 7.5. We must now prove injectivity.

Assume that Σ has even genus. Then there exists a curve γ which separates Σ into two sym-
plectomorphic surfaces. The previous lemma (only the part which does not require the present
lemma) implies that

γ = ΩΣ
ρ − χ(Σ)

T .

2 2
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By considering a symplectomorphism which permutes the two surfaces, we conclude that
γ = γ [1], which implies that in the K-group,

ΩΣρ − χ(Σ)T = 0.

In the odd genus case, instead of a separating curve, we consider a separating pair of curves
to obtain the same relation. Once we impose this relation, we obtain a group that is isomorphic
to the desired product. �

We now understand the subgroup of K-theory generated by collections of curves which bound
a subsurface. We use this to prove the main proposition of this section.

Proof of Proposition 7.1. It suffices to express the differences between the K-theory classes
represented by any two homologous curves α1 and α2 as a linear combination of T and ρ. There
is an element φ of the Hamiltonian Torelli group mapping α1 to α2. Since this group is generated
by Dehn twists about separating curves γi and by pairs of twists about bounding curves βj

and β ′
j , Lemma 5.1 proves

[α2] = [
φ(α1)

] = [α1] +
∑
j

[βj ] − [
β ′

j

]
.

By the previous lemma the sum in right-hand side vanishes since it can be expressed in terms
of ρ and T , and we know its holonomy and winding number both vanish since the holonomies
and winding numbers of α1 and α2 are equal. �
8. Computing the K-theory

We are left with some technical details that need to be cleaned up in order to complete the

Proof of Theorem 1.1. We have constructed a map to the desired direct sum of groups which is
clearly surjective. To prove injectivity, it will suffice to prove that a twisted complex mapping to
the trivial homology class of Σ lies in the subgroup of K-theory generated by ρ and T . Since
we already know that the classes representing separating curves lie in the subgroup generated
by T and ρ, we may assume that [Γ ] can be expressed as a sum of classes corresponding to
non-separating curves.

We now use the Lickorish generators of the mapping class group introduced in [15]
(see Fig. 17). Since the mapping class group acts transitively on isotopy classes of non-separating
curves, Lemma 5.1 implies that the non-separating curves that appear in [Γ ] can be written as a
linear combination of the Lickorish generators and their translates. Note that the curves αi and
βi are a basis for H1(Σ,Z), and γi bounds a pair of pants with two of these basis elements, so
that

[αi] − [αi+1] + [γi] = T + Ωiρ

where Ωi is the area of the pair of pants. In particular, if [Γ ] represents the trivial class in
homology, then we can decompose it as a linear combination of the left-hand side of the above
equation (these relations suffice), which implies that Γ does indeed lie in the subgroup generated
by T and ρ. �
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Fig. 17.
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Appendix A. Winding number and holonomy

Let γ be an immersed piecewise smooth curve in a surface Σ . We may therefore write γ as a
union of smooth segments

Im : [0,1] → Σ

which intersect at corners cm lying on Im ∩ Im+1. Let θm be the angle from the tangent vector
of Im to the tangent vector of Im+1.

We can trivialize the restriction of the tangent space of Σ to each segment Im with the tangent
vector of Im corresponding to the x-axis. A smooth vector field ν which does not vanish on Im

therefore yields a map from the closed interval to S1. This map lifts to a map ν̃m : I → R.

Definition A.1. The winding number of ν around the curve γ is the integer

wdν(γ ) =
∑
m

ν̃m(1) − ν̃m(0) − θm.

We now specialize to the case that ν has a unique zero on Σ . It is well known that the degree
of vanishing of ν must equal the Euler characteristic of Σ . In particular, if we choose a small
disc centered at the vanishing point, and orient its boundary circle γ as the boundary of the
complement, then we can explicitly check that

wdν(γ ) = 1 − χ(Σ).

The following results are classical, and detailed discussions can be found in [20,21,3], and [4].
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Theorem A.2.

• Modulo the Euler characteristic, the winding number is an invariant of the isotopy class of
a curve.

• If Σ ′ ⊂ Σ is an oriented subsurface which does not include the zero of ν and which has
boundary

⋃
i γi , then

χ(Σ ′) = −
∑

i

wdν(γi).

Sketch of proof. The first result can be checked locally by observing that the winding number
changes by ±χ(Σ) when a family of curves “passes through the zero.” To prove the second part,
we fill in the boundary components of Σ ′ with discs, and extend ν to a vector field ν̄ on this
closed surface Σ ′. The winding number of ν around each boundary component determines the
(weighted) number of zeros in Σ ′ allowing us to compute the Euler characteristic of this surface
in terms of the winding numbers around γi . On the other hand, the Euler characteristic of Σ and
its number of boundary components also determine the Euler characteristic of Σ̄ ′. �

The other auxiliary choice we make is that of a 1-form on the unit tangent bundle of Σ whose
differential equals to pull-back of ω. Such a 1-form corresponds to a connection A on the tangent
bundle whose curvature gives our desired symplectic form. This choice constrains the area of Σ ,
but it is obvious that the Fukaya category is insensitive to the total area. Given a segment I of a
piecewise smooth curve γ the tangent vector and the connection A induce two trivializations of
the tangent space. Comparing them allows us to define a real number

holA(I).

As above, taking the sum over all segments I and adding the angles at every vertex allows us to
define the holonomy of any piecewise smooth curve γ . If γ were smooth, the above holonomy
would equal the integral of the connection 1-form over the unique lift of γ to the unit sphere
bundle.

Lemma A.3. If γ and γ ′ bound a cylinder of area Ω , then

holA(γ ) − holA(γ ′) = Ω.

Proof. This is an immediate consequence of Stokes’s theorem. �
Appendix B. Symplectomorphism groups

We collect some elementary facts about the group of symplectomorphisms of a surface and
its various sub-quotients. For an overview of these facts from a slightly different point of view,
see [13].

Definition B.1. The Hamiltonian mapping class group of a symplectic manifold Σ is the quotient

Symp(Σ)/Ham(Σ).
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We will now construct a set of generators for this group. Let γ be a simple closed curve in Σ .
Choose a symplectomorphism between a collar neighbourhood of γ (where the two sides of the
collar have equal area) and an annulus of area 2ε such that the image of γ is the core curve.
Choose a δ < ε

2 . Let us give the annulus radial coordinate r ∈ [−ε, ε] and angle coordinate
θ ∈ [0,1]/{0,1} and choose a C∞ function f on R with even derivative such that

f (r) = 0 ⇐⇒ r � −δ,

f (r) = 1 ⇐⇒ r � δ.

Definition B.2. The map

(r, θ) → (
r, θ + f (r)

)
is a symplectic Dehn twist about γ .

Note that the symplectic Dehn twist is constant away from the width-δ collar of γ , hence
extends to Σ .

Lemma B.3. Any two symplectic Dehn twists about γ are Hamiltonian isotopic.

Sketch of proof. Any two collar neighbourhoods of the same area are Hamiltonian isotopic, so
one can prove the result for the annulus by explicitly producing the desired Hamiltonian function.
Alternatively, one can use the characterization of the group of Hamiltonian symplectomorphisms
as the Kernel of the Flux homomorphism, and check that the flux of a Dehn twist followed by
the inverse of a Dehn twist vanishes. �

We therefore have a well-defined lift of the Dehn twist about γ to the Hamiltonian mapping
class group. We will use τγ for this symplectomorphism.

Lemma B.4. The Hamiltonian mapping class group is generated by symplectic Dehn twists.

Proof. Moser’s theorem implies that we have a short exact sequence,

1 → Symp0(Σ) → Symp(Σ) → Mod(Σ) → 1.

Taking the quotient of the first two groups by Ham(Σ), and using the Flux homomorphism to
identify the first quotient with first cohomology, we obtain:

0 → H 1(Σ,R) → Symp(Σ)/Ham(Σ) → Mod(Σ) → 1.

Since Dehn twists generate the mapping class group, it suffices to show that the subgroup
of Symp(Σ)/Ham(Σ) generated by symplectic Dehn twists contains the first term in the above
exact sequence. Indeed, if γ and γ ′ are non-separating simple closed curves which are isotopic
through a cylinder of area Ω , then

φ = τγ ◦ τ−1
′
γ
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is an element of Symp(Σ)/Ham(Σ) which represents the Poincaré dual of Ω × [γ ] in
H 1(Σ,R). Such elements clearly generate H 1(Σ,R). �
Remark B.5. Note that is suffices to have lifts of Dehn twist about curves which generate the
mapping class group. In particular, the lifts of curves which are isotopic to the Lickorish elements
generate the Hamiltonian mapping class group.

Definition B.6. The Hamiltonian Torelli group is the subgroup of the Hamiltonian mapping class
group which acts trivially on the homology of Σ .

This group also has a convenient set of generators.

Corollary B.7. The Hamiltonian Torelli group is generated by symplectic Dehn twists about
bounding curves and by bounding symplectic twists.

Remark B.8. Recall that a bounding twist is an element of the mapping class group which is
the composite of a Dehn twist along a curve α1 with the inverse Dehn twist along a curve α2
where α1 and α2 form the boundary of an embedded submanifold of Σ .

Proof. This is an immediate consequence of the proof of the previous lemma, and a classical
result of Powell, [19], that the Torelli group is generated by Dehn twist along separating curves
and by bounding twists. �
Appendix C. A∞ pre-categories

Our definition of A∞ category differs from the usual notion since we do not work with Z-
graded complexes. To fix the notation, we will say that an A∞ category A consists of a set of
objects Ob and morphisms Mor(A,B) between any two objects which are Z/2Z graded vector
spaces, together with a collection of maps

mn :Mor(An−1,An) ⊗ · · · ⊗Mor(A0,A1) → Mor(A0,An)

satisfying the A∞ equation which appears in Lemma 3.6. For more on A∞-categories, see [14].
The A∞ categories that are usually studied satisfy an additional axiom analogous to the ex-

istence of a unit morphism in an ordinary category. However, the Fukaya category of a surface
is not an A∞ category. In particular, since a curve is never transverse to itself, the morphism
space CF∗(γ, γ ) is never defined, so it does not make sense to discuss the existence of units
from a naive point of view. We will adopt the framework of A∞-pre-categories introduced by
Kontsevich and Soibelman [12].

Definition C.1. An A∞ pre-category consists of the following data:

• A set of objects Ob.
• For each integer k � 1, a set of transversal objects Obtr

k ⊂ Obk satisfying the recursive
conditions that under the projection map (which forgets any k − i elements),

Im
(
Obtr

k

) ⊂ Obtr
i .
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• For each transversal pair (A,B), a Z/2Z graded vector space Mor(A,B).
• A collection of maps mn for each transversal multiplet (A0, . . . ,An)

mn : Mor(An−1,An) ⊗ · · · ⊗Mor(A0,A1) →Mor(A0,An)

which satisfy the A∞ equation.

Note that the last condition only makes sense because we have required the set of transversal
objects to satisfy the appropriate recursive property. We have the following notion of quasi-
isomorphism.

Definition C.2. An element f of Mor(A,A′) satisfying m1(f ) = 0 is called a quasi-
isomorphism if the maps

m2(_, f ) :Mor(A′,B ′) →Mor(A,B ′),

m2(f,_ ) :Mor(B,A) → Mor(B,A′)

are quasi-isomorphisms of complexes (i.e. induce isomorphisms on homology) whenever
(B,A,A′) or (A,A′,B ′) are transverse triples.

An A∞ pre-category is said to be unital if there are enough quasi-isomorphisms. Formally,
we require

Definition C.3. An A∞ pre-category is unital if for any object A, and a finite collection of
transversal sequences {Si} there exist objects A+ and A−, quasi-isomorphic to A such that the
sequences

{
A−, Si,A

+}
are transversal for every i.

We note that in a unital A∞ pre-category, quasi-isomorphism is an equivalence relation among
transversal objects.

Lemma C.4. Assume that {A1,A2,A3} are a transversal triple such that

e1,2 ∈Mor(A1,A2),

e2,3 ∈Mor(A2,A3)

are quasi-isomorphisms. Then

e1,3 = m2(e2,3, e1,2) ∈ Mor(A1,A3)

is also a quasi-isomorphism.
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Proof. The fact that m2 is a chain map implies that e1,3 is a closed morphism. Choose an ar-
bitrary B which is transversal to (A1,A3). It may not be transverse to A2. However, there
exists B ′ with a quasi-isomorphism e ∈ Mor(B ′,B) such that the sequences (B ′,B,A1,A3)

and (B ′,A1,A2,A3) are transverse. The result now follows from the fact that the following dia-
gram commutes up to homotopy, and all but one of its arrows are known to induce isomorphisms
on homology

Mor(B ′,A1)
m2(e1,2,_ )

Mor(B ′,A2)
m2(e2,3,_ )

Mor(B ′,A3)

Mor(B,A1)
m2(e1,3,_ )

m2(_ ,e)

Mor(B,A3).

m2(_,e)

�
Appendix D. Twisted complexes and K-theory

We will use twisted complexes to derive any A∞ pre-category. Since this is the same con-
struction as for A∞ categories, we follow [8] closely, and the only concern is to define transversal
sequences.

We begin by constructing a category which is closed under shifts. The shift A[1] of an object
A has morphisms defined by

Mor
(
A[1],B) = Mor(A,B)[1]

where the right-hand side is the Z/2Z-graded vector space whose graded pieces are exactly those
of Mor(A,B) shifted by 1, and similarly for morphisms with target A[1]. A sequence containing
A[1] is transversal if and only if the corresponding sequence with A is transversal.

From now on, we will assume that the pre-category A is closed under shifts, since we can
enlarge it using the previous construction.

Definition D.1. A twisted complex C over an A∞-pre-category A is a finite set of objects {Ai}ni=0
together with a collection morphisms of degree 1 which we write as Δ = (δi,j )i<j such that

∑
i1<···<ik

mk(δik−1,ik , . . . , δi2,i1) = 0.

Given twisted complexes A = (Ai,Δ
A) and B = (Bk,Δ

B), such that every sequence of ob-
jects

(Ai1 , . . . ,Aid ,Bk1 , . . . ,Bke )

is transverse, we define

Mor(A,B) =
⊕

Mor(Ai,Bk).
i,k
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The morphisms ΔA and ΔB induce a differential on this graded module. Given an element
F = (fi,k) of the above module we define

m̂1(F )i,k =
∑

i<i1<···<id−1<id , k1<···<ke<k

md+e

(
δB
ke,k

, . . . , δB
k1,k2

, fid ,k1 , δ
A
id−1,id

, . . . , δA
i,i1

)
,

and extend m̂1 linearly. As a shorthand, we will write I for an increasing sequence i1 < · · · <

id < id+1, and ΔA
I for the corresponding sequence (δA

id ,id+1
, . . . , δA

i1,i2
).

Definition D.2. Given an increasing sequence of integers I , its length (written |I |) is the number
of elements.

Using this notation, the above formula becomes

m̂1(F ) =
∑
I,K

m|I |+|K|+1
(
ΔB

K,fi,k,Δ
A
I

)

where the sum is taken over all meaningful choices of sequences I and K ; in particular, the last
morphism in I has Ai as target, while the first morphism in K has Bk as source. We refer to [8]
for the proof that m̂1 squares to zero and for the proof of the A∞ category analogue of

Lemma D.3 (Definition-Lemma). If A is an A∞ pre-category, then twisted complexes over A
also form an A∞ pre-category T w(A) satisfying the following conditions:

• Objects are twisted complexes with transversal pairs and morphisms between them defined
as above.

• A sequence (Ci = (ci,j ))
n
i=1 of twisted complexes is transverse if and only if every sequence

of the form

(c1,1, . . . , c1,j1 , . . . , ci,1, . . . , ci,ji
, . . . , cn,1, . . . , cn,jn)

is transverse. It is understood that the second index in each subsequence (ci,1, . . . , ci,ji
) is

always increasing.
• The higher products m̂k are defined among transversal objects in analogy with m̂1 (we omit

the explicit formulae which appear in [8]).

Further, if A is unital, then so is T w(A).

The only higher product for which we will need a formula is m̂2. If (A,ΔA), (B,ΔB) and
(C,ΔC) is a transverse triple of twisted complexes, then

m̂2(G,F ) =
∑

N,K,I

m|N |+|K|+|I |+2
(
ΔC

N,gl,n,Δ
B
K,fi,k,Δ

A
I

)

for F = (fi,k) ∈Mor(A,B) and G = (gl,n) ∈Mor(B,C), and where the sum is taken, as usual,
over all possible increasing sequences of labels N , K and I .
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The main advantage of the category of twisted complexes is that it is triangulated. This is
proved in [8] for example. We will restrict ourselves to explaining what the distinguished trian-
gles are, and will not prove all the analogous results in the pre-category setting.

Given a closed morphism of twisted complexes F ∈ Mor(A,B), we construct Cone(F ) as
the twisted complex consisting of the sequence of objects

(A1, . . . ,An,B1, . . . ,Bm)

and with morphisms

δi,j =

⎧⎪⎨
⎪⎩

δA
i,j if i, j � n,

fi,j−n if i � n and j > n,

δB
i−n,j−n if i, j > n.

Definition D.4. Let A be an A∞-pre-category, G the free abelian group generated by quasi-
isomorphism classes of objects in T w(A), and H the subgroup of G generated by elements
[A] + [B] − [C] where C is the cone of a closed morphism from A to B . The K-theory of A is
the quotient

K
(
T w(A)

) = G/H.

This ad-hoc definition can be formalized by introducing the appropriate notion of triangulation
on an A∞ pre-category. We will not take up this task here since it would involve rather technical
homological algebra. We complete this appendix by proving some relatively straight forward
results that will allow us to simplify the computation of K(Fuk(Σ)).

Lemma D.5. K(A) is generated by objects of A.

Proof. Every twisted complex is an iterated cone on objects of A. �
Lemma D.6. Assume that I : A → A′ is a closed morphism in A such that the maps

m̂2(_ , I ) :Mor(C,A) → Mor(C,A′),

m̂2(_ , I ) :Mor(D,A) → Mor(D,A′)

are both isomorphisms in homology. If F : C → D is any closed morphism, then

m̂2(_ , I ) :Mor
(
Cone(F ),A

) →Mor
(
Cone(F ),A′)

is an isomorphism in homology.

Proof. We apply the 5 lemma to the diagram:

Hi−1(D,A) Hi(C,A) Hi(Cone(F ),A) Hi(D,A) Hi+1(C,A)

H (D,A′) H (C,A′) H (Cone(F ),A′) H (D,A′) H (C,A′). �

i−1 i i i i+1
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Corollary D.7. If A and A′ are quasi-isomorphic in A, then they are quasi-isomorphic
in T w(A).

Corollary D.8. Let F : A → A′ be a morphism between objects of T w(A) such that m2(_,F )

and m2(F,_ ) induce chain isomorphisms between Mor(B,A) and Mor(B,A′) and between
Mor(A′,C) and Mor(A,C) whenever A and B are objects of A for which the triples
{B,A,A′} and {A,A′,C} are transverse. Then A and A′ are quasi-isomorphic in T w(A).

Remark D.9. This means that it suffices to test a quasi-isomorphism using objects of A, instead
of testing it on arbitrary twisted complexes.
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