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Abstract

We compute the Hilbert series of some algebras associated to directed graphs and related to factorizations
of noncommutative polynomials.
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1. Introduction

In [2] we introduced a new class of algebras A(Γ ) associated to layered directed graphs Γ .
These algebras arose as generalizations of the algebras Qn (which are related to factorizations of
noncommutative polynomials, see [1,3,6]), but the new class of algebras seems to be interesting
by itself.

Various results have been proven for algebras A(Γ ). In [2] we constructed a linear basis
in A(Γ ). In [4] we showed that algebras A(Γ ) are defined by quadratic relations for a large class
of directed graphs and proved that in this case they are Koszul algebras. It follows immediately
that the dual algebras to A(Γ ) are also Koszul and that their Hilbert series are related.

In this paper we continue to study algebras A(Γ ). In Section 2 we recall the definition of the
algebra A(Γ ) and the construction of a basis for A(Γ ) given in [2]. In Section 3 we prove the
main result of the paper, an expression for the Hilbert series, H(A(Γ ), t) of the algebra A(Γ )
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corresponding to a layered graph Γ with a unique element ∗ of level 0. In stating this we denote
the level of v by |v| and write v > w to indicate that v and w are vertices of the directed graph
Γ and that there is a directed path from v to w. Then we have:

H
(
A(Γ ), t

) = 1 − t

1 + ∑
v1>v2>···>vl�∗(−1)l t |v1|−|vl |+1

.

The proof uses matrices ζ(t) and ζ(t)−1 which generalize the zeta function and the Möbius
function for partially ordered sets.

In Section 4 we specialize our results to the case of the Hasse graph of the lattice of subsets
of a finite set, giving a derivation of the Hilbert series for the algebras Qn that is shorter and
more conceptual than that in [1]. In Section 5 we treat the case of the Hasse graph of the lattice
of subspaces of a finite-dimensional vector space over a finite field. Finally, in Section 6, we
define the complete layered graph C[mn,mn−1, . . . ,m1,m0] and compute the Hilbert series of
A(C[mn,mn−1, . . . ,m1,1]).

2. The algebra A(Γ )

We begin by recalling the definition of the algebra A(Γ ). Let Γ = (V ,E) be a directed
graph. That is, V is a set (of vertices), E is a set (of edges), and t :E → V and h :E → V are
functions. (t(e) is the tail of e and h(e) is the head of e.)

We say that Γ is layered if V = ⋃n
i=0 Vi , E = ⋃n

i=1 Ei , t :Ei → Vi , h :Ei → Vi−1. If v ∈ Vi

we will write |v| = i.
We will assume throughout the remainder of the paper that Γ = (V ,E) is a layered graph

with V = ⋃n
i=0 Vi , that V0 = {∗}, and that, for every v ∈ V+ = ⋃n

i=1 Vi , {e ∈ E | t(e) = v} �= ∅.
For each v ∈ V+ fix, arbitrarily, some ev ∈ E with t(ev) = v.

If v,w ∈ V , a path from v to w is a sequence of edges π = {e1, e2, . . . , em} with t(e1) = v,
h(em) = w and t(ei+1) = h(ei) for 1 � i < m. We write v = t(π), w = h(π). We also write
v > w if there is a path from v to w. Define Pπ(τ) = (τ − e1)(τ − e2) · · · (τ − em) ∈ T (E)[τ ]
and write

Pπ(τ) =
m∑

j=0

e(π, j)τm−j .

Let πv denote the path {e1, . . . , e|v|} from v to ∗ with e1 = ev, ei+1 = eh(ei ) for 1 � i < |v|, and
h(e|v|) = ∗.

Recall that R is the ideal of T (E) generated by{
e(π1, k) − e(π2, k)

∣∣ t(π1) = t(π2), h(π1) = h(π2), 1 � k � l(π1)
}
.

The algebra A(Γ ) is the quotient T (E)/R.
For v ∈ V+ and 1 � k � |v| we define ê(v, k) to be the image in A(Γ ) of the product e1 · · · ek

in T (E) where πv = {e1, . . . , e|v|}.
If (v, k), (u, l) ∈ V × N we say (v, k) covers (u, l) if v > u and k = |v| − |u|. In this case we

write (v, k) � (u, l). (In [2] we used different terminology and notation: if (v, l) � (u, l) we said
(v, l) can be composed with (u, l) and wrote (v, l) |= (u, l).)

The following theorem is proved in [2, Corollary 4.5].
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Theorem 1. Let Γ = (V ,E) be a layered graph, V = ⋃n
i=0 Vi, and V0 = {∗} where ∗ is the

unique minimal vertex of Γ . Then

{
ê(v1, k1) · · · ê(vl, kl)

∣∣ l � 0, v1, . . . , vl ∈ V+, 1 � ki � |vi |, (vi, ki) � � (vi+1, ki+1)
}

is a basis for A(Γ ).

3. The Hilbert series of A(Γ )

Let h(t) denote the Hilbert series H(A(Γ ), t), where Γ is a layered graph with unique mini-
mal element ∗ of level 0. If X ⊆ A(Γ ) is a set of homogeneous elements (so X = ⋃∞

i=0 Xi where
Xi = X ∩ A(Γ )i ), denote the “graded cardinality”

∑∞
i=0 |Xi |t i of X by ‖X‖. Let B denote the

basis for A(Γ ) described in Theorem 1 and, for v ∈ V+, let Bv = {ê(v1, k1) · · · ê(vl, kl) ∈ B |
v1 = v}. Then B = {1} ∪ ⋃

v∈V+ Bv . Let hv(t) denote the graded dimension of the subspace
of A(Γ ) spanned by Bv . Since B is linearly independent, we have ‖B‖ = h(t) and ‖Bv‖ = hv(t).

Then

‖B‖ = h(t) = 1 +
∑
v∈V+

hv(t).

Let Cv = ⋃|v|
k=1 ê(v, k)B . Then

‖Cv‖ = (
t + · · · + t |v|)h(t) = t

(
t |v| − 1

t − 1

)
h(t).

Now Cv ⊇ Bv . Let Dv denote the compliment of Bv in Cv . Then

Dv = {
ê(v, k)ê(v1, k1) · · · ê(vl, kl)

∣∣ 1 � k � |v|,
(v, k) � (v1, k1), ê(v1, k1) · · · ê(vl, kl) ∈ B

}
and so

Dv =
⋃

v>v1>∗
ê
(
v, |v| − |v1|

)
Bv1 .

Then ‖Dv‖ = ∑
v>v1>∗ t |v|−|v1|hv1(t) and so

hv(t) = ‖Bv‖ = ‖Cv‖ − ‖Dv‖ = t

(
t |v| − 1

t − 1

)
h(t) −

∑
v>w>∗

t |v|−|w|hw(t).

This equation may be written in matrix form. Arrange the elements of V in nonincreasing order
and index the elements of vectors and matrices by this ordered set. Let h(t) denote the column
vector with entry hv(t) in the v-position (where we set h∗(t) = 1), let u denote the vector with
t |v| in the v-position, e∗ denote the vector with δ∗v in the v-position, let 1 denote the column
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vector all of whose entries are 1, and let ζ(t) denote the matrix with entries ζv,w(t) for v,w ∈ V

where ζv,w(t) = t |v|−|w| if v � w and 0 otherwise. Note that

ζ(t)e∗ = u.

Then we have

ζ(t)
(
h(t) − e∗

) = t

t − 1
(u − 1)h(t)

and so

h(t) − e∗ = t

t − 1

(
u − ζ(t)−11

)
h(t).

Then

1T
(
h(t) − e∗

) = t

t − 1

(
1T u − 1T ζ(t)−11

)
h(t)

or

h(t) − 1 = t

t − 1

(
1 − 1T ζ(t)−11

)
h(t).

Consequently, we have

Lemma 2.

1 − t

h(t)
= 1 − t1T ζ(t)−11.

Now N(t) = ζ(t) − I is a strictly upper triangular matrix and so ζ(t) is invertible. In fact,
ζ(t)−1 = I − N(t) + N(t)2 − · · · and so the (v,w)-entry of ζ(t)−1 is

∑
v=v1>···>vl=w�∗

(−1)l+1t |v|−|w|.

Combining this remark with Lemma 2 we obtain the following result.

Theorem 3. Let Γ be a layered graph with unique minimal element ∗ of level 0 and h(t) denote
the Hilbert series of A(Γ ). Then

1 − t

h(t)
= 1 +

∑
v1>v2>···>vl�∗

(−1)l t |v1|−|vl |+1.

We remark that the matrices ζ(1) and ζ(1)−1 are well known as the zeta-matrix and the
Möbius-matrix of V (cf. [5]).

In the remaining sections of this paper we will use Theorem 3 to compute the Hilbert series
of the algebras A(Γ ) associated with certain layered graphs.
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4. The Hilbert series of the algebra associated with the Hasse graph of the lattice of
subsets of {1, . . . ,n}

Let Γn denote the Hasse graph of the lattice of all subsets of {1, . . . , n}. Thus the vertices
of Γn are subsets of {1, . . . , n}, the order relation > is set inclusion ⊃, the level |v| of a set v is
its cardinality, and the unique minimal vertex ∗ is the empty set ∅. Then the algebra A(Γn) is the
algebra Qn defined in [3]. In this section we will prove the following theorem (from [1]). The
present proof is much shorter and more conceptual than that in [1].

Theorem 4.

H(Qn, t) = 1 − t

1 − t (2 − t)n
.

Our computations depend on the following lemma and corollary.

Lemma 5. Let w be a finite set. Then∑
w⊃w2⊃···⊃wl=∅

(−1)l = (−1)|w|+1.

Proof. If |w| = 1, both sides are +1. Assume the result holds for all sets of cardinality < |w|.
Then ∑

w⊃w2⊃···⊃wl=∅
(−1)l =

∑
w⊃w2⊇∅

∑
w2⊃···⊃wl=∅

(−1)l

and, by the induction assumption, this is equal to∑
w⊃w2⊇∅

(−1)|w2|.

Since ∑
w⊃w2⊇∅

(−1)|w2| =
∑

w⊇w2⊇∅
(−1)|w2| − (−1)|w| = 0 + (−1)|w|+1 = (−1)|w|+1

the proof is complete. �
Corollary 6. Let v ⊇ w be finite sets. Then∑

v=v1⊃v2⊃···⊃vl=w

(−1)l = (−1)|v|−|w|+1.

Proof. Let w′ denote the complement of w in v. Sets u satisfying v ⊆ u ⊆ w are in one-to-one
correspondence with subsets of w′ via the map u �→ u ∩ w′. Thus∑

v=v1⊃v2⊃···⊃vl=w

(−1)l =
∑

w′=v′ ⊃···⊃v′=∅
(−1)l .
1 l



V. Retakh et al. / Journal of Algebra 312 (2007) 142–151 147
By the lemma, this is (−1)|w′|+1, giving the result. �
To prove the theorem we observe that

∑
v1⊃v2⊃···⊃vl⊇vl⊇∅

l�1

(−1)l t |v1|−|vl |+1 =
∑

{1,...,n}⊇v1⊇∅
t |v1|−|vl |+1

∑
v1⊃···⊃vl⊇∅

(−1)l .

By Corollary 6, this is

∑
{1,...,n}⊇v1⊇vl⊇∅

t |v1|−|vl |+1(−1)|v1|−|vl |+1.

Let u denote the compliment of vl in v1 and u′ denote the complement of u in {1, . . . , n}. Then
the coefficient of tk+1 in the above expression is the number of ways of choosing a k-element
subset u ⊆ {1, . . . , n} times the number of ways of choosing a subset v ⊆ u′. This is

(
n
k

)
2n−k.

Thus

∑
v1⊃v2⊃···⊃vl⊇∅

l�1

(−1)l t |v1|−|vl |+1 =
n∑

k=0

(
n

k

)
2n−k(−t)k+1 = −t (2 − t)k.

In view of Theorem 3, this completes the proof of the theorem.

5. The Hilbert series of algebras associated with the Hasse graph of the lattice of
subspaces of a finite-dimensional vector space over a finite field

We will denote by L(n,q) the Hasse graph of the lattice of subspaces of an n-dimensional
space over the field Fq of q elements. Thus the vertices of L(n,q) are subspaces of Fn

q, the order
relation > is inclusion of subspaces ⊃, the level |U | of a subspace U is its dimension, and the
unique minimal vertex ∗ is the zero subspace (0).

Theorem 7.

1 − t

H(A(L(n,q)), t)
= 1 − t

n∑
m=0

(
n

m

)
q

(1 − t)(1 − tq) · · · (1 − tqn−m−1).
Our proof depends on the following lemma and corollary.

Lemma 8. Let U be a finite-dimensional vector space over Fq. Then

∑
U=U1⊃U2⊃···⊃Ul=(0)

l�1

(−1)l = (−1)|U |+1q(|U |
2 ).

Proof. If |U | = 0, the sum occurring in the lemma has a single term corresponding to l = 1,
U = U1 = (0). Then both sides of the expression in the lemma are equal to −1. Now let U be
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a finite-dimensional vector space and assume the result holds for all spaces of dimension less
than |U |. Then

∑
U=U1⊃U2⊃···⊃Ul=(0)

l�1

(−1)l =
∑

U=U1⊃U2

∑
U2⊃···⊃Ul=(0)

l�1

(−1)l .

By the induction assumption, this is equal to

∑
U⊃U2

(−1)|U2|q(
|U2|

2 ).

It is well known that the number of m-dimensional subspaces of the space U is given by the
q-binomial coefficient

(|U |
m

)
q
.

Hence

∑
U=U1⊃U2⊃···⊃Ul=(0)

l�1

(−1)l =
|U |−1∑
|U2|=0

( |U |
|U2|

)
q

(−1)|U2|q(
|U2|

2 ).

Recall the q-binomial theorem

m−1∏
i=0

(
1 + xqi

) =
m∑

j=0

(
m

j

)
q

q(j
2)xj .

Set x = −1. Then the i = 0 factor in the product is 0 and so we have

m−1∑
j=0

(
m

j

)
q

(−1)j q(j
2) = (−1)m+1q(m

2).

Thus ∑
U=U1⊃U2⊃···⊃Ul=(0)

l�1

(−1)l = (−1)|U |+1q(|U |
2 )

as required. �
Corollary 9. Let V ⊇ W be subspaces of Fq. Then

∑
V =V1⊃V2⊃···⊇Vl=W

(−1)l = (−1)|V/W |+1q(|V/W |
2 ).

Proof. Since subspaces Y,V ⊇ Y ⊇ W , are in one-to-one correspondence with subspaces of
V/W via the map Y �→ Y/W , this is immediate from the lemma. �
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To prove the theorem, we observe that∑
V1⊃V2⊃···⊃Vl⊇(0)

l�1

(−1)l t |V1/Vl |+1 =
∑

Fn
q⊇V1⊇Vl⊇(0)

t |V1/Vl |+1
∑

V1⊃V2⊃···⊃Vl⊇(0)
l�1

(−1)l .

By Corollary 9, this is equal to∑
Fn

q⊇V1⊇Vl⊇(0)

t |V1/Vl |+1(−1)|V1/Vl |+1q(
|V1/Vl |

2 ).

Set |vl | = m and |V1/Vl | = k. Then the number of possible Vl is
(
n
m

)
q

and, for fixed Vl , the

number of possible V1 is the number of k-dimensional subspaces of Fn
q/Vl which is

(
n−m

k

)
q
.

Thus

∑
V1⊃V2⊃···⊃Vl⊇(0)

l�1

(−1)l t |V1/Vl |+1 =
∑

0<k,m
k+mn

�
(

n

m

)
q

(
n − m

k

)
q

(−t)k+1q(k
2)

= (−t)

n∑
m=0

(
n

m

)
q

n−m∑
k=0

(
n − m

k

)
q

(−t)kq(k
2).

Setting x = −t in the q-binomial theorem shows that

n−m∑
k=0

(
n − m

k

)
q

(−t)kq(k
2) =

n−m−1∏
i=0

(
1 − tqi

)
.

Therefore

∑
V1⊃V2⊃···⊃Vl⊇(0)

l�1

(−1)l t |V1/Vl |+1 = (−t)

n∑
m=0

(
n

m

)
q

n−m−1∏
i=0

(
1 − tqi

)
.

In view of Theorem 3, the theorem is proved.
Note that setting q = 1 in the expression in Theorem 7 gives 1 − t (2 − t)n. By Theorem 4,

this is 1−t
H(Qn,t)

.

Recall (cf. [7]) that if A is a quadratic algebra it has a dual quadratic algebra, denoted A! and
that if A is a Koszul algebra the Hilbert series of A and A! are related by

H(A, t)H
(
A!,−t

) = 1.

Since by [4] A(L(n,q)) is a Koszul algebra, we have the following

Corollary 10.

H
(
A

(
L(n,q)

)!
, t

) = 1 +
n−1∑
m=0

(
n

m

)
q

(1 + tq) · · · (1 + tqn−m−1).
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6. The Hilbert series of algebras associated with complete layered graphs

We say that a layered graph Γ = (V ,E) with V = ⋃n
i=0 Vi is complete if for every i,

1 � i � n, and every v ∈ V1, w ∈ Vi−1, there is a unique edge e with t(e) = v, h(e) = w.
A complete layered graph is determined (up to isomorphism) by the cardinalities of the Vi .
We denote the complete layered graph with V = ⋃n

i=0 Vi, |Vi | = mi for 0 � i � n, by
C[mn,mn−1, . . . ,m1,m0]. Note that the graph C[mn,mn−1, . . . ,m1,1] has a unique minimal
vertex of level 0 and so Theorem 3 applies to A(C[mn,mn−1, . . . ,m1,1]). We will show:

Theorem 11.

1 − t

H(A(C[mn,mn−1, . . . ,m1,1]), t)

= 1 −
n∑

k=0

n∑
a=k

(−1)kma(ma−1 − 1)(ma−2 − 1) · · · (ma−k+1 − 1)ma−kt
k+1.

Proof. We first compute

∑
v1>v2>···>vl�∅

l�1

(−1)l t |v1|−|vl |+1.

The coefficient of tk+1 in the sum is

∑
v1>v2>···>vl�∗
l�1, |v1|−|vl |=k

(−1)l =
n∑

|v1|=k

∑
v1>···>vl|v1|−|vl |=k

(−1)l .

Note that the number of chains v1 > · · · > vl with |vi | = ai for 1 � i � l is ma1ma2 · · ·mal
. Then,

writing k = |v1| − |vl | and a1 = a we have

∑
v1>v2>···>vl�∗

l�1

(−1)l t |v1|−|vl |+1 =
n∑

k=0

( ∑
v1>···>vl�∗

l�1, |v1|−|vl |=k

(−1)l
)

tk+1

=
n∑

k=0

( ∑
a1>···>al−1>a1−k�0

l�1

(−1)lma1ma2 · · ·mal−1ma1−k

)
tk+1

=
n∑

k=0

(
n∑

a=k

ma(1 − ma−1) · · · (1 − ma−k+1)ma−k

)
tk+1.

The theorem now follows from Theorem 3. �
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This result applies, in particular, to the case m0 = m1 = · · · = mn = 1. The resulting algebra
A(C[1, . . . ,1]) has n generators and no relations. Theorem 11 shows that

1 − t

H(A(C[1, . . . ,1]), t) = 1 −
n∑

a=0

t +
n∑

a=1

t2 = (1 − t)(1 − nt).

Thus H(A(C[1, . . . ,1]), t) = 1
1−nt

and we have recovered the well-known expression for the
Hilbert series of the free associative algebra on n generators.

Since by [4] the algebras associated to complete directed graphs are Koszul algebras, we have
the following corollary.

Corollary 12.

H
(
A

(
C[mn,mn−1, . . . ,m1,1])!

, t
)

= 1 +
n∑

k=1

n∑
a=k

ma(ma−1 − 1)(ma−2 − 1) · · · (ma−k+1 − 1)tk.
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