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Abstract

We describe explicitly the algebras of degree zero operations in connective and periodicp-local complexK-theory.
Operations are written uniquely in terms of certain infinite linear combinations of Adams operations, and we give
formulas for the product and coproduct structure maps. It is shown that these rings of operations are not Noetherian.
Versions of the results are provided for the Adams summand and for realK-theory.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The complexK-theory of a space or spectrum may be usefully endowed with operations. The most
well-known of these are the Adams operations�j arising out of the geometry of vector bundles. As
originally constructed byAdams, these areunstableoperations.A stable operation is given by a sequence
of maps, commuting with the Bott periodicity isomorphism. For an Adams operation�j to bestable
requiresj to be a unit in the coefficient ring one is working over. Integrally, we only have�1 and�−1,
corresponding to the identity and complex conjugation. Following work of Adams et al.[3] in which the
structure of the dual object, the algebra of cooperations, was determined, Adams and Clarke[2] showed
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that there are uncountably many integral stable operations. It is remarkable that, after more than forty
years of topologicalK-theory, no-one knows explicitly any integral stable operations, apart from linear
combinations of the identity and complex conjugation.

In this paper, we give a new description ofK-theory operations in thep-local setting. This is con-
siderably closer to the integral situation and more subtle than the rather better understood case ofp-
adic coefficients; see[7,14]. In p-local connectiveK-theory, the degree zero operationsk0

(p)(k(p)) form

a bicommutative bialgebra, which we denote byk0(k)(p). Note, however that this is not thep-localisation
of thebialgebrak0(k)of integral operations, but is isomorphic to thecompletedtensorproductk0(k)⊗̂Z(p).
In the periodic theory, the corresponding objectK0(K)(p) =K0

(p)(K(p))=K0(K)⊗̂Z(p) is a bicommu-
tative Hopf algebra, as it also possesses an antipode. We provide explicit descriptions for both of these
algebras of operations, together with formulas for all their structure maps. These results build on our
recent paper[8], in which we gave new additive bases for the ring of cooperations inp-localK-theory.
Such an understanding of the degree zero operations is sufficient to determine the whole ofK∗(K)(p)
and the torsion-free part ofk∗(k)(p); see[13].

Since we have a stable Adams operation�� for each� ∈ Z
×
(p), and since these multiply according to

the formula���� = ���, the group ringZ(p)[Z×
(p)] is a subring of the ring of operations. Our results

express operations in terms of certain infinite sums involving Adams operations and thus describe the
ring of operations as a completion of the group ring. This idea is certainly not new; Johnson[11] also has
basis elements forp-local operations of this form. However, our description has considerable advantages
in the form of explicit formulas, which in the connective case are particularly nice. We note that Madsen
et al.[14] have also considered operations defined as infinite sums of Adams operations, but for them the
p-adic context is essential.

Our results will be used in a later paper to give a re-working of Bousfield’s study of theK(p)-local
category; see[6].

We now outline the structure of the paper.
Sections 2 and 3 are concerned with the case of operations in connectiveK-theory. In Section 2 we

describe the bialgebrak0(k)(p) in an explicit form which enables us to describe the structure maps. We
also give formulas for the action on the coefficient ring and on the Hopf bundle overCP∞. In Section 3
we show that, as a ring,k0(k)(p) is not Noetherian, and we characterise its units. We also indicate how it
can be considered as a completion of a polynomial ring.

In Section 4 we consider the idempotents in connectiveK-theory which were introduced by Adams,
and we show how the results of Sections 2 and 3 extend to the algebra of operations on the Adams
summand. We prove in Section 5 that the ring of operations on thep-adic Adams summand is a power
series ring.

In Section 6 we show how the results of Sections 2–4 generalise to periodicK-theory, and in Section
7 we discuss the relation between the connective and periodic cases.

In Sections 8 and 9 we work over the prime 2. We outline how our results from the preceding sections
need to be adapted, and we consider operations inKO-theory.

Finally, in an appendix we give some general relations among polynomials which underpin a number
of the formulas given in the preceding sections.

Unless otherwise stated,p is assumed to be an odd prime. Having chosenp, we fix q to be an integer
which is primitive modulop2, and hence primitive modulo any power ofp.
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2. Degree zero operations in connectiveK-theory

For each non-negative integern, we define�n(X) ∈ Z[X] by

�n(X)=
n−1∏
i=0

(X − qi),

whereq, as stated in the Introduction, is primitive modulop2. The notation derives from[9]. Generali-
sations of these polynomials are considered later in this paper.

The Gaussian polynomials in the variableq (or q-binomial coefficients) may be defined as[
n

j

]
= �j (qn)

�j (qj )
.

Definition 2.1. Define elements�n ∈ k0(k)(p), for n�0, by

�n = �n(�
q),

where�q is the Adams operation.

Thus, for example,�0 = 1, �1 = �q − 1 and�2 = (�q − 1)(�q − q).

Theorem 2.2. The elements ofk0(k)(p) can be expressed uniquely as infinite sums∑
n�0

an�n,

wherean ∈ Z(p).

Proof. The bialgebrak0(k)(p) = K0(k)(p) is the Z(p)-dual of the bialgebraK0(k)(p); see[7,11]. In
Proposition 3 of[8] we gave a basis forK0(k)(p), consisting of the polynomialsfn(w)= �n(w)/�n(qn),
for n�0. The theorem follows from the fact (which is implicit in[9]) that the�n are dual to this basis. To
see this, recall that a coalgebra admits an action of its dual which, in the case ofK0(k)(p), is determined
by �r · f (w)= f (rw). By a simple induction onm, this implies that

�m · fn(w)= qm(m−n)wmfn−m(w),

wherefi(w) is understood as 0 ifi <0, so that�m · fn(w)= 0 if n<m. The Kronecker pairing can be
recovered from this action by evaluating atw = 1, hence

〈�m, fn(w)〉 = qm(m−n)fn−m(1)=
{

1 if m= n,

0 otherwise. �

Remark 2.3. Operations inK-theory are determined by their action on coefficients[10]. It is therefore
instructive to see how an infinite sum

∑
n�0 an�n acts. Since�q acts on�2i(k(p)) as multiplication
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by qi , we see that
∑

n�0 an�n acts on the coefficient group�2i(k(p)) as multiplication by

i∑
n=0

an�n(q
i).

The sum is finite since�n(qi)= 0 for n> i.
In particular, the augmentation� : k0(k)(p) → Z(p) given by the action on�0(k(p)), satisfies

�(
∑

n�0 an�n)= a0.

It is easy to see by induction that�n(X) = ∑n
j=0 (−1)n−j q

(
n−j

2

) [
n
j

]
Xj ; see[4, (3.3.6)] and also

[8, Proposition 8]. Hence we can express each�n explicitly as a linear combination ofAdams operations.

Proposition 2.4. For all n�0,

�n =
n∑

j=0

(−1)n−j q
(
n−j

2

) [
n

j

]
�qj .

Conversely, our proof of Theorem 2.2 shows how to express all the stable Adams operations in terms
of the�n.

Proposition 2.5. If j ∈ Z
×
(p),

�j =
∑
n�0

�n(j)

�n(qn)
�n.

In particular, for i ∈ Z,

�qi =
∑
n�0

[
i

n

]
�n.

Note that this is a finite sum fori�0.

Additive operations inK-theory are determined by their action on the Hopf bundle overCP∞; see[5].
Writing

k0(CP∞)(p) =K0(CP∞)(p) = Z(p)[[t]],
where 1+ t is the Hopf bundle, we have the following formula for the action ofk0(k)(p) on the Hopf
bundle.

Proposition 2.6. For all n�0,

�n(1+ t)=
∑
i�n

 n∑
j=0

(−1)n−j q
(
n−j

2

) (
qj

i

)[
n

j

] t i .
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Proof. Since�r acts on line bundles by raising them to therth power, Proposition 2.4 shows that

�n(1+ t)=
n∑

j=0

(−1)n−j q
(
n−j

2

) [
n

j

]
(1+ t)q

j

.

The formula now follows by using the binomial expansion and reversing the order of summation. That
the coefficient oft i in �n(1+ t) is zero fori < n can be proved by a simple induction, using the identity
�n+1 = (�q − qn)�n. �

The product structure onk0(k)(p) is determined by the following formula.

Proposition 2.7.

�r�s =
min(r,s)∑
i=0

�i(qr)�i(qs)

�i(qi)
�r+s−i =

r+s∑
j=max(r,s)

�r+s−j (qr)�r+s−j (qs)
�r+s−j (qr+s−j )

�j .

Proof. This result is essentially a fact about thepolynomials�n(X). Since thealgebraof thesepolynomials
underlies many of our results, we have gathered together the relevant facts, in appropriate generality, in
AppendixA. Inparticular,weneed touseherePropositionA.4withm=0,X=�q andc=q=(1, q, q2, . . .).

To show that thecoefficientAr,j−s(q,q[s])givenby that proposition is equal to�r+s−j (qr)�r+s−j (qs)/
�r+s−j (qr+s−j ), it is only necessary to verify that this expression satisfies the recurrence (A.5), i.e., taking
i = r + s − j that

�i+1(q
r+1)�i+1(q

s)

�i+1(qi+1)
= (qr+s−i − qr)

�i(qr)�i(qs)

�i(qi)
+ �i+1(q

r)�i+1(q
s)

�i+1(qi+1)
.

Using the identities

�i+1(q
s)= �i(q

s)(qs − qi) and �i+1(q
r+1)= �i(q

r)(qr+i+1 − qi),

this is easy to check.�

Proposition 2.7 clarifies how it is that infinite sums can be multiplied without producing infinite
coefficients:∑

r�0

ar�r

∑
s�0

bs�s

=
∑
j �0

 ∑
r,s� j
r+s� j

arbs
�r+s−j (qr)�r+s−j (qs)

�r+s−j (qr+s−j )

�j ,

where the important point is that the inner summations are finite.
The multiplicative structure ofk0(k)(p) is very intricate; we study it in more detail in Section 3, in

which we will use the following generalisation of Proposition 2.7.



156 F. Clarke et al. / Topology 44 (2005) 151–174

Proposition 2.8. For all r, s�m,

�r�s = �m

r+s−m∑
j=max(r,s)

c
m,j
r,s �j ,

where the coefficients are given by

c
m,j
r,s = �r+s−j (qr)�r+s−j (qs)

q(r+s−j−m)m�r+s−j−m(qr+s−j−m)�m(qr)�m(qs)
.

Proof. Interchanging the role ofr ands if necessary, we may assume thats�r. Then Proposition A.4
provides the given expansion for�r�s with c

m,j
r,s = Ar−m,j−s(q[m],q[s]). The formula forcm,jr,s holds

since this expression satisfies the recurrence (A.5).�

The multiplication formula for thefn(w) (Proposition 7 of[8]) leads by duality to the following result.

Proposition 2.9. The coproduct satisfies

��n =
∑
r,s�0
r+s�n

�r+s(qn)
�r (qr)�s(qs)

�n−r ⊗ �n−s .

The bounds in this summation ensure that the formula determines a map fromk0(k)(p) into the com-
pleted tensor productk0(k)(p)⊗̂k0(k)(p), whose elements may be written as doubly infinite sums of the
�i ⊗ �j . It is unreasonable to expect a coproduct to map into the usual tensor product in this setting,
so we will take the terms coalgebra, bialgebra and Hopf algebra to mean structures where the coproduct
maps into the completed tensor product.

3. The ring structure of k0(k)(p)

In this section we writeI for the augmentation ideal of the algebrak0(k)(p) of stable operations of
degree zero inp-local connectiveK-theory. ThusI/I2 is the module of indecomposables. The ring of
p-adic integers is denoted byZp.

Theorem 3.1. (1) The ringk0(k)(p) is not Noetherian.
(2) Its module of indecomposables is isomorphic toZp.

To prove this theorem, we define a sequence of ideals ofk0(k)(p).

Definition 3.2. Form�0 let

Bm =
{∑
n�m

an�n : an ∈ Z(p)

}
.
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ThusB0 ⊃ B1 ⊃ B2 ⊃ · · ·, with B0 = k0(k)(p) andB1 = I . It is clear from Remark 2.3 thatBm

consists of those operations which act as zero on the coefficient groups�2i(k(p)) for 0�i <m. Thus this
filtration is independent of our choice ofq.

Proposition 3.3. For each0�n�m, we haveBnBm = �nBm. In particular, Bm is an ideal ofk0(k)(p).

Proof. Clearly�nBm ⊆ BnBm, since�n ∈ Bn.
Suppose that� =∑

r�n ar�r ∈ Bn and� =∑
s�m bs�s ∈ Bm, then, using Proposition 2.8,

�� =
∑
r �n
s�m

arbs�r�s =
∑
r �n
s�m

arbs�n

r+s−n∑
j=max(r,s)

c
n,j
r,s �j = �n

∑
j �m

 ∑
r,s� j

r+s� j+n

arbsc
n,j
r,s

�j ,

which belongs to�nBm, as the inner summation is finite.�

Lemma 3.4. For eachm�1, the quotientBm/�1Bm is isomorphic toZp.

Proof. Define aZ(p)-module homomorphism�m : Bm → Zp by

�m :
(∑
n�m

an�n

)
�→

∑
n�m

an(1− qm)(1− qm+1)...(1− qn−1).

Note that the sum does indeed convergep-adically.
By Proposition 2.7,�1�n = (qn − 1)�n + �n+1. Hence�m(�1�n)= 0, if n�m, and ker�m ⊇ �1Bm.
Now suppose� =∑

n�m an�n ∈ ker�m. We will show that there exists� =∑
n�m bn�n ∈ Bm such

that� = �1�. This is equivalent to showing that the equations

bn−1 + (qn − 1)bn = an (n�m) (3.5)

may be solved for{bn ∈ Z(p) : n�m}, wherebn = 0 for n<m.
Suppose that we have foundbr ∈ Z(p) satisfying (3.5) form�r <n. It follows then that

0= �m(�)= (an − bn−1)(1− qm)...(1− qn−1)+ an+1(1− qm)...(1− qn)+ · · · .
Thus ifM = �p((1− qm)...(1− qn−1)) andN = �p(1− qn),

0 ≡ (an − bn−1)p
M modpM+N,

so thatan ≡ bn−1 modpN , and (3.5) may be solved forbn ∈ Z(p).
This shows that ker�m = �1Bm; it remains to prove that�m is surjective.
LetM = �p((1− q)...(1− qm−1)) and chooseRsuch thatm�pR−1(p − 1).
For anyr�R we can write

pr−1(p−1)∏
j=m

(1− qj )= urp
pr−1
p−1 −M

,

whereur ∈ Z
×
(p).



158 F. Clarke et al. / Topology 44 (2005) 151–174

If x ∈ Zp, by grouping thep-adic digits ofx we can write

x = x0 + xRp
pR−1
p−1 −M + xR+1p

pR+1−1
p−1 −M + · · · + xrp

pr−1
p−1 −M + · · · ,

wherexr ∈ N for r = 0, and forr�R. Now let

� = x0�m +
∑
r�R

xr

ur
�pr−1(p−1)+1.

It is clear that� ∈ Bm and�m(�)= x. �

Proposition 3.6. For m�1, the idealBm is not finitely generated.

Proof. By Proposition 2.8,k0(k)(p) acts on the quotientBm/�1Bm=Zp via the augmentation� : k0(k)(p)
→ Z(p) and the inclusionZ(p) ⊂ Zp.Thus ifBm wereafinitely generatedk0(k)(p)-ideal, thenZp wouldbe
a finitely generatedZ(p)-module. But a finite subset ofZp can only generate a countableZ(p)-submodule
of Zp. �

Proof of Theorem 3.1. Part (1) follows immediately. For part (2) we note that Proposition 3.3 shows
thatI2 = �1B1, so thatI/I2 = B1/�1B1 ∼= Zp by Lemma 3.4. �

It is interesting to note how far the augmentation idealI is from being generated by�1 = �q − 1.
Before carrying out the completion givingk0(k)(p), the augmentation ideal inZ(p)[�q − 1] is principal,
and it is so again afterp-completion; see Section 5. In contrast, we have

Corollary 3.7. The quotientI/〈�1〉 is isomorphic toZp/Z(p), where〈�1〉 is the ideal ofk0(k)(p)
generated by�1.

Proof. It is clear thatk0(k)(p) = Z(p) + I . �

We remark that the abelian groupZp/Z(p) is torsion free and divisible. It is thus aQ-vector space.

The intersection of the idealBm with the polynomial subalgebra ofk0(k)(p) generated by�q is the
principal ideal generated by�m = �m(�q). Theorem 2.2 exhibitsk0(k)(p) as the completion ofZ(p)[�q]
with respect to the filtration by these ideals. But note that this filtration is not multiplicative, in the sense
of [16], and hence there is no associated graded ring. It is for this reason that the completion fails to be
Noetherian, and contains zero divisors, as we see in Section 4.

Of course the Adams operations�r , wherer is ap-local unit, generate insidek0(k)(p) a copy of the
group ringZ(p)[Z×

(p)]which is dense in theBm-filtration topology. Thusk0(k)(p) is naturally a completion

of Z(p)[Z×
(p)].

In the following theorem we identify the units ofk0(k)(p) in terms of our basis. This formulation is
closely related to Theorem 1 of[12].

Theorem 3.8. The element
∑

n�0 an�n is a unit in the ringk0(k)(p) if and only if
∑i

n=0 an�n(q
i) is a

p-local unit for i = 0,1, ..., p − 2.
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Proof. If � =∑
n�0 an�n is a unit, then, by Remark 2.3,

∑i
n=0 an�n(q

i) represents the action of� on
�2i(k(p)), and so must be invertible for alli.

Conversely, assume
∑i

n=0 an�n(q
i) ∈ Z

×
(p) for i = 0,1, ..., p − 2, then, since�n(qi) ≡ �n(qj )modp

if i ≡ j modp − 1 and�n(qi)= 0 if n> i, this holds for alli�0.
Now suppose, inductively, that we have foundb0, b1, ..., bi−1 ∈ Z(p) such that∑

n�0

an�n

 (b0 + b1�1 + · · · + bi−1�i−1) ∈ 1+ Bi.

Then, using Proposition 2.7, we see that, for anybi in Z(p),∑
n�0

an�n

 (b0 + b1�1 + · · · + bi�i) ∈ 1+ Bi,

with the coefficient of�i having the form

bi

(
i∑

n=0

an�n(q
i)

)
+ terms involvingb1, ..., bi−1.

Thus, by our assumption, it is possible to choosebi ∈ Z(p) so that∑
n�0

an�n

 (b0 + b1�1 + · · · + bi�i) ∈ 1+ Bi+1.

Repeating this process ad infinitum yields the required inverse.�

4. The Adams splitting and the Adams summand

Idempotent operations which splitp-localK-theory (forpodd) intop−1 summands were constructed
in [1]. We show how to write the connective version of these idempotents in terms of our basis elements.

Proposition 4.1. If � ∈ {0,1, ..., p − 2}, the Adams idempotente� ∈ k0(k)(p) is given by

e� =
∑
n�0

cn,��n,

where

cn,� = 1

�n(qn)

∑
(−1)n−iq

(
n−i
2

) [
n

i

]
,

the summation being over all integers i for which0�i�n andi ≡ �modp − 1.
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Proof. If an operation� ∈ k0(k)(p) acts on the coefficient group�2i(k(p)) by multiplication by	i , then
〈�, wi〉 = 	i . Hence Proposition 8 of[8] shows that

〈�, fn(w)〉 = 1

�n(qn)

n∑
i=0

(−1)n−iq
(
n−i
2

) [
n

i

]
	i .

The result now follows by duality, sincee� acts as the identity on�2i(k(p)) if i ≡ �modp − 1, and as
zero otherwise. �

The spectraK(p) andk(p) are each split byAdams’s idempotents intop−1 suspensions of a multiplica-
tive spectrumdenoted byGandg, respectively.1 The coefficient ringG∗ canbe identifiedwith the subring
Z(p)[up−1, u−p+1] ⊂ Z(p)[u, u−1]=�∗(K(p)), andg∗ is identifiedwithZ(p)[up−1] ⊂ Z(p)[u]=�∗(k(p)).

There is an algebra isomorphism
 : g0(g) → e0k
0(k)(p), under which�q ∈ g0(g) maps toe0�q , but

e0k
0(k)(p) is not a sub-bialgebra ofk0(k)(p). However, composing the projectionk0(k)(p) → e0k

0(k)(p)
with the inverse of
, exhibitsg0(g) as a quotient bialgebra ofk0(k)(p). Thusg0(g) is a summand of
k0(k)(p) as an algebra, but not as a bialgebra.

Note that ifp>3, then, in contrast to thep-adic case[15,7], the algebrak0(k)(p) is not isomorphic to
g0(g)⊗̂Z(p)[Cp−1]. This can be seen by considering the action on the coefficient ring, which shows that
k0(k)(p) contains no elements of orderp − 1.

The results of Section 2 have analogues for the algebrag0(g) of degree zero stable operations on the
Adams summand. We need first to adapt the ideas of[8] to provide a basis forG0(g). Let z = wp−1 ∈
G0(g).

Recalling that we have chosenq to be primitive modulop2, we writeq̂ = qp−1 and let

�̂n(X)=
n−1∏
i=0

(X − q̂i).

Proposition 4.2. A Z(p)-basis forG0(g) is given by the elements

f̂n(z)= �̂n(z)

�̂n(q̂n)
for n�0.

Proof. We have

G0(g)= {f (z) ∈ Q[z] : f (1+ pZ(p)) ⊆ Z(p)}.
The multiplicative group 1+ pZp is topologically generated bŷq, and�p(q̂n − 1) = 1+ �p(n) for all
n�1. The rest of the proof parallels that of[8, Proposition 3]. �

We now identify the dual basis for the algebrag0(g)=G0(g).

1 The notationsE(1) ande(1), or L andl, are also used.
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Definition 4.3. Define�̂n ∈ g0(g), for n�0, by

�̂n = �̂n(�
q)=

n−1∏
i=0

(�q − q̂i).

To avoid any misunderstanding, we emphasise that theq indexing the Adams operation is hatless.

Theorem 4.4(Lellmann [13, Theorem 2.2]). The elements ofg0(g) can be expressed uniquely as infinite
sums∑

n�0

an�̂n,

wherean ∈ Z(p).

Proof. The proof is just as for Theorem 2.2:g0(g)=G0(g) is Z(p)-dual to the bialgebraG0(g), and the
�̂n are dual to thef̂n(z), the action being given bŷ�m · f̂n(z)= q̂m(m−n)zmf̂n−m(z). �

The formulas for the product and coproduct of the�̂n in g0(g) are, of course, just like those of Section 2
for the�n, but with the primitive elementq replaced bŷq. Similarly the proof of Theorem 3.1 generalises
to show thatg0(g) is not Noetherian.

The proof of Theorem 3.8 simplifies in the split context, since�̂n(q̂i) is divisible byp for all i�0 and
all n>0. Hence we have

Theorem 4.5. An element ofg0(g) is a unit if and only if its augmentation is a unit.

This result was proved by Johnson[12]; it shows thatg0(g) is a local ring. Johnson also showed in that
paper thatg0(g) is an integral domain.

5. Operations inp-adic K-theory

Thep-adic completion ofg0(g), which we denote byg0(g)p, is the ring of degree zero operations in
p-adicK-theory. In fact, in this case the algebra of operations in the connective theory does not differ
from the algebra of operations in the periodic theory; see[11] and Section 7 below. We give here an
algebraic proof of the result due to Clarke[7] and Mitchell[15] thatg0(g)p is a power series ring.

Theorem 5.1. g0(g)p is the power series ring overZp generated by�q − 1.

Proof. Retaining the notation of Section 4, we lets(n, i), S(n, i) ∈ Z(p) be such that, forn�1,

�̂n(X)=
n∑
i=1

s(n, i)(X − 1)i and (X − 1)n =
n∑
i=1

S(n, i)�̂i(X).

These constants are analogues of the Stirling numbers of the first and second kinds, respectively. (In the
notation of AppendixA,s(n, i)=An,i(q̂,1) andS(n, i)=An,i(1, q̂), whereq̂ is the sequence(q̂i−1)i�1
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and1 is the constant sequence(1)i�1.) It is clear thats(n, n)= S(n, n)= 1, S(n,1)= (q̂ − 1)n−1, and
s(n,1)= (1− q̂)(1− q̂2)...(1− q̂n−1). Moreover, the two lower triangular matrices(s(n, i))n,i�1 and
(S(n, i))n,i�1 are mutually inverse.

In these cases, the recurrence of Proposition A.2 becomes

s(n+ 1, i)= s(n, i − 1)− (q̂n − 1)s(n, i)

and S(n+ 1, i)= S(n, i − 1)+ (q̂i − 1)S(n, i).

Sinceq̂n − 1 is divisible byp for all n, it follows easily that�p(s(n, i))�n− i and�p(S(n, i))�n− i.
Let (p, Y ) denote the maximal ideal ofZp[[Y ]]. Since�̂n(Y + 1)= Y (Y + 1− q̂)...(Y + 1− q̂n−1),

we havê�n(Y + 1) ∈ (p, Y )n for all n. As a result, there are ring homomorphisms forming the following
commutative diagram:

Zp[X]/(�̂n(X)) −→ Zp[[Y ]]/(p, Y )n� �
Zp[X]/(�̂n+1(X)) −→ Zp[[Y ]]/(p, Y )n+1

in which the horizontal maps are defined byX �→ Y + 1. In the limit there is a ring homomorphism

g0(g)p = lim← Zp[X]/(�̂n(X)) → lim← Zp[[Y ]]/(p, Y )n = Zp[[Y ]]
which, we will show, is an isomorphism. The variableX corresponds to�q , and thusY to �q − 1.

The kernel ofZp[X]/(�̂n(X)) → Zp[[Y ]]/(p, Y )n, which we denote byIn, is the freeZp-module
generated by the elements{[pn−i(X − 1)i] : 0�i�n − 1}, where[g(X)] denotes the coset ofg(X) in
the quotient ringZp[X]/(�̂n(X)). Under the homomorphismIn+1 → In, the element[pn+1−i(X − 1)i]
maps top[pn−i(X − 1)i], if i < n, but [p(X − 1)n] maps to

−
n−1∑
j=1

p
s(n, j)

pn−j
[pn−j (X − 1)j ].

Note here thats(n, j)/pn−j ∈ Z(p) by the remarks above. This shows that the image ofIn+1 lies inpIn,
and hence, since no non-zero element ofIn is infinitely divisible byp, that lim← In= 0. Thusg0(g)p maps
injectively intoZp[[Y ]].

To prove that it does so surjectively we define mapsZp[[Y ]] → Zp[X]/(�̂n(X)) by

∑
r�0

crY
r �→ c0 +

n−1∑
i=1

 ∞∑
j=i

S(j, i)cj

 [�̂i(X)].

It is here, of course, that we need to be working overZp. The convergence of the infinite series is
guaranteed sincepj−i dividesS(j, i).

It will turn out that we have a ring homomorphism. But at this point we need only to know that it
is a homomorphism ofZp-modules, and this is trivial. It is also trivial that the maps factor through the
projection

Zp[X]/(�̂n+1(X)) → Zp[X]/(�̂n(X))
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and so define aZp-module homomorphism

Zp[[Y ]] → lim← Zp[X]/(�̂n(X))= g0(g)p.

To verify that this is the inverse of the ring homomorphism constructed earlier we need to verify that the
composition

Zp[[Y ]] → Zp[X]/(�̂n(X)) → Zp[[Y ]]/(p, Y )n
coincides with the natural map. But sinceS(j, i) ≡ 0modpn for j�i + n, the composition sends∑

r�0 crY
r to

c0 +
n−1∑
i=1

i+n−1∑
j=i

i∑
k=1

S(j, i)s(i, k)cj [Y k] = c0 +
n−1∑
k=1

2n−2∑
j=k

min(j,n−1)∑
i=max(k,j−n+1)

S(j, i)s(i, k)cj [Y k],

where[Y k] denotes the coset ofY k in Zp[[Y ]]/(p, Y )n, and we note that[Y k] = 0 for k�n.
Now [Y k] has orderpn−k in Zp[[Y ]]/(p, Y )n, andS(j, i)s(i, k) is divisible bypj−k. This means that

if j�n, thenS(j, i)s(i, k)[Y k] = 0, and the image of
∑

r�0 crY
r is

c0 +
n−1∑
k=1

n−1∑
j=k

j∑
i=k

S(j, i)s(i, k)cj [Y k] = c0 +
n−1∑
k=1

ck[Y k],

since
∑j

i=k S(j, i)s(i, k)= �j,k. This completes the proof.�

6. Operations in periodicK-theory

We now turn our attention to the periodic case. We letK0(K)(p) denote the algebra of degree zero
operations inp-local periodicK-theory. We show in this section how the results of Sections 2–4 extend
to this context. Here the degree zero operations determine all stable operations, andK0(K)(p) is a Hopf
algebra so we determine the antipode as well as the other parts of the structure.

For each non-negative integern, we define the polynomial�n(X) by

�n(X)=
n∏
i=1

(X − q̄i),

whereq̄i is theith term of the sequence

q̄= (1, q, q−1, q2, q−2, q3, q−3, q4, . . .)= (q(−1)i�i/2�)i�1,

i.e.,�n(X)= �n(X; q̄) in the notation of the appendix.

Definition 6.1. Define elementsn ∈ K0(K)(p), for n�0, by

n = �n(�
q).

Thus, for example,0=1,1=�q−1,2=(�q−1)(�q−q) and3=(�q−1)(�q−q)(�q−q−1).
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Theorem 6.2. The elements ofK0(K)(p) can be expressed uniquely as infinite sums∑
n�0

ann,

wherean ∈ Z(p).

Proof. The proof is analogous to that of Theorem 2.2. The polynomialsFn(w)= w−�n/2�fn(w) form a
Z(p)-basis forK0(K)(p) according to Corollary 6 of[8], and then are, modulo multiplication by units,
dual to this basis. In fact the Kronecker pairing satisfies

〈n, Fj (w)〉 =
{
q−n�n/2� if n= j,

0 otherwise.

As in the proof of Theorem 2.2, this follows from a study of the action of the dual onK0(K)(p), but the
details are a little more complicated and are given in the following result.�

Lemma 6.3.

(1) n · Fj (w)= 0 if j <n;

(2) n · Fn(w)=
{
q−nkw−k if n= 2k,
q−nkwk+1 if n= 2k + 1;

(3) n · Fj (w) is divisible byfj−n(w) for j >n.

Proof. (1) Recall that�q acts as�q · f (w)= f (qw). If j <n and−�j/2��i��j/2 , then�q − qi is
a factor ofn, so thatn · wi = 0. ButFj (w) is a Laurent polynomial of codegree−�j/2� and degree
j − �j/2� = �j/2 .

(2) By the proof of (1), all monomials occurring inFn(w) are annihilated byn except one. Ifn= 2k,

this is the lowest degree monomialw−k, whose coefficient isf2k(0)= q

(
2k
2

)
/�2k(q

2k), and we have

2k · F2k(w)= 2k · (f2k(0)w
−k)= q

(
2k
2

)
�2k(q

−k)
�2k(q2k)

w−k = q−2k2
w−k.

If n= 2k+ 1, it is the highest degree monomialwk+1 which must be considered. The leading coefficient
is 1/�2k+1(q

2k+1), and

2k+1 · F2k+1(w)= �2k+1(q
k+1)

�2k+1(q2k+1)
wk+1 = q−(2k+1)kwk+1.

(3) The proof is by (finite) induction onn. Note that0 · Fj (w) = Fj (w) is certainly divisible by
fj (w). Now assume thatn · Fj (w) = fj−n(w)Gn,j (w) for some Laurent polynomialGn,j (w). Then,
sincen+1 = (�q − qi)n for somei,

n+1 · Fj (w)= (�q − qi) · fj−n(w)Gn,j (w)

= fj−n(qw)Gn,j (qw)− qifj−n(w)Gn,j (w).

But this is zero forw = 1, q, q2, ..., qj−n−2 and therefore divisible byfj−n−1(w). �
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Remark 6.4. The action of the infinite sum
∑

n�0 ann on the coefficient group�2i(K(p)) is multipli-
cation by the finite sum

2|i|∑
n=0

an�n(q
i).

Clearly the augmentation sends
∑

n�0 ann to a0.

We have the following analogue of Proposition 2.4.

Proposition 6.5. For all n�0,

n =
n∑

j=0

(−1)n−j qe(n,j)
[
n

j

]
�qj ,

where

e(n, j)=
{−(n− j)(j − 1)/2 if n is even,
−(n− j)j/2 if n is odd.

Proof. Assuming, inductively, that the result holds for evenn= 2k, since2k+1 = 2k(�q − q−k), the
coefficient of�qj in 2k+1 is

(−1)j+1
(
q−(2k−j+1)(j−2)/2

[
2k

j − 1

]
+ q−k−(2k−j)(j−1)/2

[
2k
j

])
= (−1)j+1q−(2k+1−j)j/2

(
q2k−j+1

[
2k

j − 1

]
+
[
2k
j

])
= (−1)j+1q−(2k+1−j)j/2

[
2k + 1
j

]
.

The argument to show that the odd case implies the next even case is similar.�

Conversely, the proof of Theorem 6.2 yields

Proposition 6.6. If j ∈ Z
×
(p),

�j =
∑
n�0

qn�n/2�j−�n/2� �n(j)

�n(qn)
n.

In particular, for i ∈ Z,

�qi =
∑
n�0

q(n−i)�n/2�
[
i

n

]
n.

Note that this is a finite sum fori�0.
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We now consider the antipode� of the Hopf algebraK0(K)(p). In the dualK0(K)(p) the antipode is

given byw �→ w−1(see[3]), while ��j = �j−1
.

Proposition 6.7. The antipode inK0(K)(p) is determined by

�n =
∑

j �2�(n−1)/2�+1

(
n∑

i=0

(−1)n−iq(i+j)�j/2�+e(n,i)
[
n

i

] [−i
j

])
j ,

wheree(n, i) is defined in Proposition6.5.

Proof. Proposition 6.5 shows that

�n =
n∑

i=0

(−1)n−i
[
n

i

]
qe(n,i)�q−i ,

and, by Proposition 6.6,

�q−i =
∑
j �0

q(i+j)�j/2�
[−i
j

]
j .

The required formula, with summation overj�0, now follows by substitution.
To see that in fact the coefficients are zero untilj = 2�(n − 1)/2� + 1, we note that by duality the

expansion of�n can also be obtained from expressingFj (w
−1) as a linear combination of theFn(w).

The remarks in the proof of Lemma 6.3 (1) show that the Laurent polynomialFj (w
−1) can be written

as aZ(p)-linear combination of theFn(w) for n�j + 1 if j is odd, and forn�j if j is even. Thus we
may write�n as an infinite linear combination of thej for j�n if n is odd, and forj�n − 1 if n is
even. �

The same approach, using Propositions 6.5 and 6.6, yields the following formulas for the product and
coproduct.

Proposition 6.8. For all r, s�0,

rs =
r+s∑

k=max(r,s)

Ak
r,sk,

where

Ak
r,s =

r∑
i=0

s∑
j=0

(−1)r+s−i−j qe(r,i)+e(s,j)+(k−i−j)�k/2�
[
r

i

] [
s

j

] [
i + j

k

]
.



F. Clarke et al. / Topology 44 (2005) 151–174 167

Proposition 6.9. The coproduct inK0(K)(p) satisfies

�n =


∑
r,s�0
r+s�n

C
r,s
n n−r ⊗ n−s if n is even,∑

r,s�0
r+s�n

C
r,s
n n−r ⊗ n−s + ∑

r,s�2
r+s=n+1

C
r,s
n n−r ⊗ n−s if n is odd,

where

Cr,s
n =

min(r,s)∑
k=0

(−1)kq(e(n,n−k)+(k−r)�
n−r
2 �+(k−s)� n−s2 �)

[
n

k

] [
n− k

n− r

] [
n− k

n− s

]
.

The results of Section 3 also apply in the periodic case.

Theorem 6.10.

(1) The ringK0(K)(p) is not Noetherian.
(2) Its module of indecomposables is isomorphic toZp.

Proof. The proof exactly parallels that of Theorem 3.1. We define the family of ideals ofK0(K)(p)

Am =
{∑
n�m

ann : an ∈ Z(p)

}
.

Then we haveAnAm=nAm if 0�n�m. Just as in Section 3, we show that, form�1,Am/1Am
∼= Zp,

and thusAm is not finitely generated. �

We can give criteria analogous to those of Theorem 3.8 for when a general element ofK0(K)(p) is a
unit, but we omit the details.

We can now generalise the results of Section 4 to the periodic case.

Proposition 6.11. If � ∈ {0,1, ..., p − 2}, the Adams idempotentE� in K0(K)(p) is given by

E� =
∑
n�0

Cn,�n,

where

Cn,� = 1

�n(qn)

∑
(−1)�n/2 −iqn�n/2�+

( �n/2 −i
2

) [
n

�n/2� + i

]
,

the summation being over all integers i for which−n− 1<2i�n+ 1 andi ≡ �modp − 1.

Recall that we let̂q = qp−1, whereq is primitive modulop2.
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Definition 6.12. Let

̂n =
n∏
i=1

(�q − q̂(−1)i�i/2�).

Theorem 6.13.The elements ofG0(G) can be expressed uniquely as infinite sums∑
n�0

an̂n,

wherean ∈ Z(p).

It is possible to write down formulas generalising those above for the antipode, product and coproduct
in G0(G), but we omit the details. We can also show easily thatG0(G) is a non-Noetherian local ring.

7. The relation between the connective and periodic cases

We consider now the relation between the connective and periodic cases, focussing on the non-split
setting, although it is clear that similar results hold for the relation betweeng0(g) andG0(G).

The covering mapk → K leads to an inclusion

K0(K)(p) ↪→ K0(k)(p) = k0(k)(p)

which is described by the following formula.

Proposition 7.1. For n>0,

n =
n∑

i=�n/2�+1

 n∑
j=i

(−1)n−j qe(n,j)
[
n

j

] [
j

i

]�i ,

wheree(n, j) is as defined in Proposition6.5.

Proof. We obtain the stated formula by combining Propositions 6.5 and 2.5, but with a summation from
i = 0 ton.

To see that the coefficients are zero fori=0, ..., �n/2�, we note that�n(X) is divisible by��n/2�+1(X),
and the quotient is��n/2 −1(X, (q

−1, q−2, . . .)), in the notation of Appendix A. Writing this quotient as
a linear combination of the�r (X, (q�n/2�+1, q�n/2�+2, . . .)), and substitutingX = �q , gives rise to the
formula

n =
n∑

i=�n/2�+1

An,i−�n/2�−1

(
(q−1, q−2, . . .), (q�n/2�+1, q�n/2�+2, . . .)

)
�i . �
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An arbitrary element ofK0(K)(p) can then be written as

∑
n�0

ann =
∑
i�0

 2i∑
n=i

 n∑
j=i

(−1)n−j qe(n,j)
[
n

j

] [
j

i

] an

�i .

Note that the inner summations are finite.
Since they are polynomials in�q , the basis elements�i lie in the image of the inclusion and can be

expressed in terms of our basis forK0(K)(p) as follows.

Proposition 7.2.

�n =
n∑

i=0

q�(i+3)/2�(n−i)�n−i(q−i−1)

[
n− �i/2 − 1

n− i

]
i .

Proof. It is merely necessary to verify that the given coefficients satisfy the recurrence given by Propo-
sition A.2 forAn,i(q, q̄), and this is routine. �

Note that the summation here runs fromi = 0. It is not the case that the coefficients are zero fori
small enough. So any attempt to write an arbitrary infinite sum

∑
an�n in k0(k)(p) in terms of thei

will lead to infinite sums for the coefficients. This reflects the fact that the mapK0(K)(p) ↪→ k0(k)(p) is
a strict monomorphism. However, if we completep-adically, the highlyp-divisible factor�n−i(q−i−1)

ensures that these inner sums converge. Thus we recover the fact that, by contrast,K0(K)p → k0(k)p is
an isomorphism, as discussed in[7,11].

8. 2-local operations

Here we provide a description of operations in 2-localK-theory. This is a little more complicated than
for odd primes, essentially because instead of the single ‘generator’�q one has to deal with both�3

and�−1.
Throughout this section and the next, the variableq occurring implicitly in the polynomial�n(X)

will be set equal to 9, and we let�̄n(X) = ∏n−1
i=0 (X − 32i+1). Thus, in the notation of the appendix,

�n(X) = �n(X;a) and �̄n(X) = �n(X;b), wherea is the sequence of even powers of 3 andb is the
sequence of odd powers of 3. These choices are related to the fact that{±3i : i�0} is dense inZ

×
2 ;

see[8].

Definition 8.1. Define elements�n ∈ k0(k)(2), for n�0, by

�2m+1 = (�−1 − 1)�̄m(�
3),

�2m = �m(�
3)+

m∑
i=1

�i(3)�i(9m)

2�i(9i)
�2m−2i+1.
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Theorem 8.2. The elements ofk0(k)(2) can be expressed uniquely as infinite sums∑
n�0

an�n,

wherean ∈ Z(2).

Proof. The proof mirrors that of Theorem 2.2. We show that the given elements form the dual basis to
the basis{f (2)

n (w) : n�0} obtained forK0(k)(2) in [8, Proposition 20]. This may be proved by induction
arguments using the following formulas, describing the action ofk0(k)(2) onK0(k)(2).

�−1 · f (2)
2m (w)= f

(2)
2m (w),

�−1 · f (2)
2m+1(w)= f

(2)
2m (w)− f

(2)
2m+1(w),

�3 · f (2)
2m (w)= 9mf (2)

2m (w)+ f
(2)
2m−2(w),

�3 · f (2)
2m+1(w)= 32m+1f

(2)
2m+1(w)− 9mf (2)

2m (w)+ f
(2)
2m−1(w). �

Remark 8.3. The operation�n acts on the coefficient group�2i(k(2)) as multiplication by the values
given in the following table.

n = 2m n = 2m + 1

i even �m (3i ) 0

i odd �̄m (3i ) −2�̄m (3i )

Thus�n acts as zero on�2i(k(2)) for all i < n.

The following proposition gives product formulas.

Proposition 8.4.

�2m�2n =
min(m,n)∑

i=0

dim,n

(
�2m+2n−2i − 3i − 1

2
�2m+2n+1−2i

)
,

�2m+1�2n =
min(m,n)∑

i=0

3idim,n�2m+2n+1−2i ,

�2m+1�2n+1 = −2
min(m,n)∑

i=0

3idim,n�2m+2n+1−2i ,

wheredim,n = �i(9m)�i(9n)

�i(9i)
.

Proof. These formulas are proved by long but straightforward induction arguments.�

Since�2n+1 = �1�2n, the following proposition completely determines the coproduct.
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Proposition 8.5.

��1 = �1 ⊗ 1+ �1 ⊗ �1 + 1⊗ �1,

��2n =
∑
r,s�0
r+s�n

�r+s(9n)
�r (9r )�s(9s)

�2n−2r ⊗ �2n−2s .

Proof. These formulas may be deduced from the product formula for the dual basis of cooperations just
as in the proof of Proposition 2.9.�

In principle, similar methods will give a description of the periodic caseK0(K)(2). However, this will
be even more complicated, and we omit the details.

9. Operations inKO-theory

We considerkoandKO localised atp= 2. (Forp odd, these spectra split as(p− 1)/2 copies ofg and
G, respectively.) Proofs are omitted since the arguments are just the same as those in[8] and in earlier
sections of this paper.

Just as in Section 8, the variableq used implicitly in the polynomials�n(X) and�n(X) is set equal
to 9.

Definition 9.1. Let x = w2 = u−2v2 ∈ KO0(ko); see[3]. Let

hn(x)= �n(x)

�n(9n)
.

Proposition 9.2.

(1) {hn(x) : n�0} is a Z(2)-basis for KO0(ko)(2).
(2) {x−�n/2�hn(x) : n�0} is a Z(2)-basis for KO0(KO)(2).

Theorem 9.3.

(1) The elements ofko0(ko)(2) can be expressed uniquely as infinite sums∑
n�0

an�n(�
3),

wherean ∈ Z(2).
(2) The elements of KO0(KO)(2) can be expressed uniquely as infinite sums∑

n�0

an�n(�
3),

wherean ∈ Z(2).
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Corollary 9.4. There is an isomorphism of bialgebras

k0(k)(2)/〈�−1 − 1〉 ∼= ko0(ko)(2).

Proof. We have seen that the idealI generated by�1 = �−1 − 1 is a coideal. Note that�2n ≡ �n(�3)

modulo I. By Theorem 9.3, the�n(�3) form a topological basis ofko0(ko)(2), and the product and
coproduct are respected.�

The methods of Section 5 may be adapted to show that the 2-adic completionko0(ko)2 is the power
series ring overZ2 generated by�3 − 1.
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Appendix A. Polynomial identities

Given two sequencesa= (ai)i�1 andb= (bi)i�1 of elements of a commutative ringR, let

�n(X;a)=
n∏
i=1

(X − ai) and �n(X;b)=
n∏
i=1

(X − bi).

These polynomials provide two bases forR[X] as anR-module and can therefore be written in terms of
each other.

Definition A.1. DefineAn,r(a,b) ∈ R by

�n(X;a)=
n∑

r=0

An,r(a,b)�r (X;b).

Together with the identitiesA0,0(a,b) = 1, A0,r (a,b) = 0 for r >0, andAn,−1(a,b) = 0 for n�0, the
coefficientsAn,r(a,b) are determined by the following recurrence, which is used repeatedly in this paper.

Proposition A.2. For n, r�0,

An+1,r (a,b)= (br+1 − an+1)An,r (a,b)+ An,r−1(a,b).

Proof. Since�n+1(X;a)= (X − an+1)�n(X;a),

�n+1(X;a)=
n∑

r=0

An,r(a,b)(X − an+1)�r (X;b)

=
n∑

r=0

An,r(a,b) (�r+1(X;b)+ (br+1 − an+1)�r (X;b)) ,

and the result follows usingAn,−1(a,b)= An,n+1(a,b)= 0. �
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In most cases which we have considered, direct substitution in the recurrence allows considerable
simplification. However, it is possible to give an explicit formula for the coefficientsAn,r(a,b) as
polynomials in theai andbj .

Proposition A.3. For n, r�0,

An,r(a,b)=
∑

J⊂{1,...,n}
|J |=r

∏
1� i�n
i /∈J

(b�(i,J ) − ai),

where�(i, J )= 1+ |{j ∈ J : j < i}|.
Proof. Let

Ãn,r =
∑

J⊂{1,...,n}
|J |=r

∏
1� i�n
i /∈J

(b�(i,J ) − ai).

We haveÃ0,0=1, Ã0,r =0 for r >0, andÃn,−1=0 forn�0. It is therefore only necessary to verify that
Ãn,r satisfies the recurrencẽAn+1,r = (br+1 − an+1)Ãn,r + Ãn,r−1 of Proposition A.2.

Break the sum defining̃An+1,r into two parts by dividing the subsetsJ ⊂ {1, ..., n + 1} such that
|J | = r according to whethern+ 1 ∈ J or not. If n+ 1 /∈ J , thenJ ⊂ {1, ..., n} and the corresponding
summand iñAn,r occurs inÃn+1,r multiplied by the factor(br+1 − an+1) since�(n+ 1, J )= r + 1.

If n+ 1 ∈ J , let I = J\{n+ 1} ⊂ {1, ..., n}, then�(i, J )= �(i, I ) for all i /∈ J , and∏
1� i�n+1

i /∈J

(b�(i,J ) − ai)=
∏

1� i�n
i /∈I

(b�(i,I ) − ai)

is a summand in both̃An+1,r andÃn,r−1.
It is clear that in both cases the process is reversible.�
We show finally how essentially the same coefficients arise in formulas for products of the�n(X,a).

Given a sequencec= (ci)i�1, we writec[m] for the shifted sequence(cm+i)i�1.

Proposition A.4. If r�m�0 ands�0, then

�r (X; c)�s(X; c)= �m(X; c)
r+s−m∑
j=s

Ar−m,j−s(c[m], c[s])�j (X; c).

Proof. Settinga= c[m] andb= c[s] in Definition A.1, we have

�r−m(X; c[m])=
r+s−m∑
j=s

Ar−m,j−s(c[m], c[s])�j−s(X; c[s]).
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Multiplying by �m(X; c)�s(X; c), and using the identities

�r (X; c)= �m(X; c)�r−m(X; c[m]) and �j (X; c)= �s(X; c)�j−s(X; c[s]),
now gives the result. �

Writing A
m,j
r,s =Ar−m,j−s(c[m], c[s]) for the coefficient in the above expansion for�r (X; c)�s(X; c),

the recurrence of Proposition A.2 takes the form

A
m,j
r+1,s = (cj+1 − cr+1)A

m,j
r,s + A

m,j−1
r,s . (A.5)
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