Mode of action of bottromycin A\textsubscript{2}: Effect of bottromycin A\textsubscript{2} on polysomes

Tadahiko Otaka and Akira Kaji

Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

Received 30 December 1982

When bottromycin A\textsubscript{2} was added to an in vitro protein synthesis system carried out by naturally occurring polysomes, it inhibited protein synthesis effectively. Examination of the 3 steps of peptide chain elongation revealed that the binding of aminoacyl-tRNA to the polyribosomes was inhibited by bottromycin A\textsubscript{2}. In contrast, we concluded that the peptide bond formation and the translocation steps in this system were not inhibited by bottromycin A\textsubscript{2} on the basis of the following observations: (1) The break-down of polysomes, which is dependent on EFG, puromycin and RR (ribosome releasing) factor, was insensitive to bottromycin A\textsubscript{2}; (2) The puromycin dependent release of polypeptide from polysomes, with or without EFG, was not inhibited by bottromycin A\textsubscript{2}. Thus bottromycin specifically interferes with proper functioning of the A sites of polysomes. This is consistent with the results obtained using the model system with synthetic polynucleotides.

1. INTRODUCTION

Bottromycin A\textsubscript{2} is produced by Streptomyces and is a specific inhibitor of bacterial protein synthesis \[1,2\]. It has been suggested that it is an inhibitor of translocation \[3\] and of peptide bond formation \[4\]. In \[5,6\] we reported that bottromycin A\textsubscript{2} interferes with the ribosomal A site (acceptor site) in the model system. This conclusion was derived from observations that bottromycin A\textsubscript{2} releases oligopeptidyl-tRNAs and aminoacyl-tRNAs from the A site. Because of this releasing reaction, bottromycin A\textsubscript{2} inhibited the binding of aminoacyl-tRNA to the A site \[5\]. It has also been reported that bottromycin A\textsubscript{2} inhibits the puromycin reaction with ribosome-bound polylysyl- or \textit{N}-acetyl-phenylalanyl-puromycin formation in a polyuridylic acid (poly U)-dependent system \[4,6\]. To elucidate this puzzle and to extend our hypothesis that bottromycin A\textsubscript{2} acts on the acceptor site of ribosomes, we examined the effect of bottromycin A\textsubscript{2} on polyribosomes. The drug failed to inhibit translocation or peptide bond formation in this system but lessened the binding of aminoacyl-tRNA to the polysomes. Our unified hypothesis that bottromycin A\textsubscript{2} interferes with the A site of ribosomes appears to apply also to naturally occurring polysomes.

2. MATERIALS AND METHODS

The *Escherichia coli* extract, ribosomes and polyribosomes were prepared as in \[5,6,8,9\]. The source of antibiotics was as in \[5,10\]. Bottromycin A\textsubscript{2} was kindly provided by Dr N. Tanaka of Tokyo University.

Abbreviations: EFG, elongation factor G; DTT, dithiothreitol; Tris, Tris-(hydroxymethyl) aminomethane; EFTu, elongation factor Tu

Published by Elsevier Biomedical Press

0014-5793/83/0000-0000/$3.00 © Federation of European Biochemical Societies

53
2.1. Amino acid incorporation system with polysomes

The reaction mixture (0.25 ml) for the assay of protein synthesis using intact polysomes contained 20 mM Tris–HCl (pH 7.8), 1 mM DTT, 50 mM NH₄Cl, 8 mM magnesium acetate, 0.2 mM GTP, 7 mM phosphoenolpyruvate, 8.9 μg of pyruvate kinase, 98.7 μg of S-150 [lo], 340 μg of a tRNA mixture (containing 1.6 x 10⁵ cpm of [1⁴C]valyl-., [1⁴C]glycyl-, [1⁴C]seryl-, [1⁴C]alanyl tRNA), (other aminoacyl-tRNAs were prepared with 12C-amino acids), and 2.2 A₂₆₀ nunits of polysomes. Where indicated, 10⁻⁴ M bottromycin A₂ was added. The mixture was incubated at 22°C, and the hot trichloroacetic acid-insoluble radioactivity was measured by the filter disc method [11].

The mixture (0.35 ml) for protein synthesis using puromycin-pretreated polysomes was essentially the same as above except that it contained 6 mM magnesium acetate, 480 μg of soluble enzymes free of RR factor [14,15] in place of S-150, 1.37 A₂₆₀ nunit of puromycin-pretreated polysomes [lo] and 230 μg of a tRNA mixture containing 1.7 x 10⁵ cpm of [1⁴C]valyl-, [1⁴C]alanyl-, [1⁴C]seryl- and [1⁴C]glycyl-tRNA (other aminoacyl-tRNAs were prepared with 12C-amino acids). Where indicated, 10⁻⁴ M bottromycin A₂ was added and the reaction mixture was incubated for 10 min at 30°C.

2.2. Binding of aminoacyl-tRNA to polysomes

The formation of the EFTu aminoacyl-tRNA-GTP ternary complex was carried out as in [12]. The reaction mixture (0.35 ml) for the binding of 15 [1⁴C]aminoacyl-tRNAs (made with uniformly 1⁴C-labeled amino acid mixture from New England Nuclear) contained 200 μl of puromycin-treated polysomes (11.5 A₂₆₀ nunits/ml) and 4.6 x 10⁴ cpm of 15 [1⁴C]aminoacyl-tRNA-EFTu-GTP ternary complexes. Where indicated, 10⁻⁴ M bottromycin A₂ was added. After preincubation of polysomes with bottromycin A₂ for 3 min at 37°C, the binding reaction was carried out for 5 min and 15 min at 37°C. The reaction mixture (300 μl) was then placed on 4.8 ml of a sucrose gradient (15–30% in 10 mM Tris–HCl (pH 7.4), 10 mM magnesium acetate, 50 mM NH₄Cl and 6 mM β-mercaptoethanol). The tubes were centrifuged for 55 min at 38000 rev./min with an SW 50.1 rotor. Fractions (4 drops each) were collected from the bottom of the tube and the ribosome-bound cold (4°C) and hot (95°C) trichloroacetic acid-insoluble radioactivities were measured by the filter disc method [11]. The values of hot trichloroacetic acid-soluble radioactivities (cold trichloroacetic acid-insoluble radioactivities minus hot trichloroacetic acid-insoluble radioactivities) were regarded as bound [1⁴C]aminoacyl-tRNA. This value is sensitive to RNase.

2.3. The assay of EFG-dependent puromycin reaction using polysomes with bound nascent polypeptides

Polyriboosomes containing nascent peptides labeled with 1⁴C amino acids were prepared as follows: The reaction mixture (2 ml) contained 1.7 ml polysomes (11.5 A₂₆₀ nunits/ml) and 2.6 x 10⁶ cpm of 15 [1⁴C]aminoacyl-tRNA-EFTu–GTP ternary complexes. The incubation was carried out for 15 min at 37°C, and labeled polysomes were isolated by sucrose density gradient centrifugation. The reaction mixture (0.35 ml) for the puromycin reaction with polysomes contained 310 μl polysomes carrying the [1⁴C]peptidyl-tRNA obtained above and 0.1 mM puromycin. Where indicated, 10⁻⁴ M bottromycin A₂, 4.7 μg EFG and 0.1 mM GTP were added. The incubation was carried out for 3 min at 37°C. The mixture (300 μl) was analyzed by sucrose gradient centrifugation as in section 2.2. Hot (95°C) trichloroacetic acid-insoluble radioactivity bound to the ribosomes was measured by the disc filter method [11].

3. RESULTS

3.1. Effect of bottromycin A₂ on protein synthesis by naturally-occurring polysomes

In fig.1, naturally-occurring polysomes with nascent peptide chains were isolated and their protein synthetic activity was measured. It is clear from fig.1 that bottromycin A₂ has an inhibitory effect on protein synthesis by polyribosomes. However, it was noted that the inhibition was less at the beginning of the reaction.

In [5] we reported that oligopeptidyl-tRNA was released by bottromycin A₂ in the poly(U)-dependent polyphenylalanine synthesis system. In the polysomal system shown in fig.1, however, no appreciable release of peptidyl-tRNA took place.
tor which releases ribosomes from mRNA [10,14,15] from the crude soluble extract [10]. Taking advantage of such an RR-factor-free extract, the effect of bottromycin A2 was studied on puromycin-treated polysomes. Over 99% inhibition (from 7000 cpm to 42 cpm) was observed under conditions otherwise similar to those in fig.1. The inhibition by bottromycin A2 was much stronger than in the case using untreated polysomes with bound nascent polypeptides (fig.1).

3.3. Lack of inhibitory effect of bottromycin A2 on translocation or the peptidyl transferase reaction

In table 1, polysomes isolated from growing E. coli were first incubated with a mixture of [14C]aminoacyl-tRNA–EFTu and GTP complexes so that the binding of aminoacyl-tRNA could take place at the A sites of polysomes. The peptidyl transferase present in the polysomes would then catalyze the peptide bond formation between the nascent polypeptide chain and the newly bound [14C]aminoacyl-tRNA. The radioactive polypeptide chains thus made will react with puromycin if they are located at the D (donor) or P (peptidyl) site. On the other hand, the peptidyl-tRNA which was bound at the A (acceptor) site does not react with puromycin in the absence of EFG and GTP. The results in table 2 show that the puromycin

<table>
<thead>
<tr>
<th>Bottromycin A2 (10⁻⁴ M)</th>
<th>EFG, GTP</th>
<th>Puromycin derivative formed (cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>–</td>
<td>–1412</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>–1486</td>
</tr>
<tr>
<td>+</td>
<td>–</td>
<td>+2059</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+2093</td>
</tr>
</tbody>
</table>

The experimental conditions are described in the text. The values represent the puromycin-dependent decrease of radioactive peptide bound to the polysomes. The radioactive peptide bound to polysomes was made in vitro as described in the text. The ribosome-bound radioactivity in the absence of puromycin was 2698 cpm.
reaction, thus measured, was significantly stimulated by EFG, indicating that some of the peptidyl-tRNAs were located at the A site while the other peptidyl tRNAs were already translocated to the D site. It is clear from this table that the EFG-dependent puromycin reaction which is an indication of the combined reaction of peptide bond formation and translocation was not influenced by bottromycin A2.

The fact that the puromycin reaction with polysomes was insensitive to bottromycin A2 was further supported by the experiment in fig.2. As reported earlier, the breakdown of polysomes takes place due to the release of ribosomes from mRNA in the presence of puromycin, EFG, GTP and ribosome-releasing (RR) factor [10,14-16]. This reaction was dependent on peptide bond formation between the nascent polypeptide and puromycin. It is clear from fig.2 that bottromycin A2 did not prevent the loss of polysomes in this system. One can conclude from this experiment that bottromycin A2 inhibits neither EFG action nor peptidyltransferase activity. A control experiment showed that bottromycin A2 alone did not break down polysomes into monosomes in the absence of puromycin. As an additional control, a peptide synthetase inhibitor, sparsomycin, effectively inhibited breakdown of the polysomes.

3.4. Inhibitory effect of bottromycin on the binding of aminoacyl-tRNA to polyribosomes

The data in section 3.3 eliminate the possibility of all but one step in the peptide elongation reaction being the target of bottromycin A2; i.e., the binding of aminoacyl-tRNA to polysomes. This possibility was directly supported by the experiment indicated in table 2. In this experiment, puromycin-treated polysomes were mixed with [14C]aminoacyl-tRNA in the presence of EFTu but in the absence of EFG. This table shows that bottromycin A2 inhibits binding of [14C]aminoacyl-tRNA to the polysomes. It should be noted from this table that a significant effect of bottromycin A2 could be observed after 15 min incubation but not after 5 min incubation. A similar effect of bottromycin was observed with binding of phenylalanyl-tRNA to the complex of poly(U) and ribosomes [5]. This is consistent with our original proposal that bottromycin A2 releases aminoacyl-tRNA rather than inhibits the binding itself.

<table>
<thead>
<tr>
<th>Bottromycin A2 (10^-4 M)</th>
<th>[14C]Aminoacyl-tRNA bound (cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 min</td>
</tr>
<tr>
<td>-</td>
<td>974</td>
</tr>
<tr>
<td>+</td>
<td>837</td>
</tr>
<tr>
<td></td>
<td>15 min</td>
</tr>
<tr>
<td>-</td>
<td>1337</td>
</tr>
<tr>
<td>+</td>
<td>524</td>
</tr>
</tbody>
</table>

The experimental conditions are described in the text.
3.5. Effect of bottromycin A$_2$ on the run-off of ribosomes from polysomes

In the experiment shown in fig.3 polysomes were isolated from growing E. coli, and protein synthetic activity as well as sedimentation behavior of the polysomes were followed in the presence and absence of bottromycin A$_2$. It is clear from this figure that in the absence of antibiotics, protein synthesis takes place, accompanied by the disappearance of the polysomes as a result of run-off of ribosomes. When bottromycin A$_2$, tetracycline, or sparsomycin was added, protein synthesis was inhibited. In addition, as a result of inhibition of protein synthesis by the antibiotics, more polysomes remained intact because fewer ribosomes ran off from the polysomes.

4. DISCUSSION

From the preceding work on the effect of bottromycin A$_2$ on in vitro polypeptide synthesis using synthetic polynucleotides, it was postulated that bottromycin A$_2$ interferes with the interaction of oligo-peptidyl- or aminoacyl-tRNA with the A site (acceptor site) of ribosomes [5,6]. This causes either release of oligo-peptidyl- and aminoacyl-tRNA or inhibition of aa-tRNA binding. We extended our study to polysomes and examined whether or not the above hypothesis could also be applied to the action of bottromycin A$_2$ on naturally-occurring polysomes. As in the system with synthetic-polynucleotides, bottromycin A$_2$ exerted a strong inhibitory effect on protein synthesis by isolated polysomes. However, polysomes with nascent peptides were less sensitive than those without. Thus, nascent peptidyl groups attached to polysomes appear to retard bottromycin A$_2$'s action. It should be pointed out that polysomes without nascent peptides would ordinarily be very unstable in cell extracts because of the presence of ribosome-releasing factor [10,14–16]. However, we have developed a method which eliminates RR factor from the extract leaving all other factors for protein synthesis [15]. In this RR factor-free extract, polysomes without nascent chains are stable. We therefore tested the effect of bottromycin A$_2$ on such polysomes and found that the inhibition of protein synthesis was almost complete.

We examined the effect of bottromycin A$_2$ on all three steps involved in chain elongation; i.e., binding of aminoacyl-tRNA, peptide bond formation, and translocation. It was found that, in accordance with our previous results with systems involving synthetic polynucleotides, bottromycin A$_2$ did not inhibit translocation or peptide bond formation by polyribosomes. On the other hand, the aminoacyl-tRNA binding to the polyribosomes was inhibited. It should be noted that, in contrast to the system using synthetic polynucleotides, bottromycin A$_2$ did not release bound peptidyl-tRNA from polysomes. This is understandable in view of the fact that oligopeptidyl- and aminoacyl-tRNA, but not polypeptidyl-tRNA, were released from complexes of ribosomes and synthetic polynucleotides [5]. Bottromycin A$_2$ may not release peptidyl-tRNA from polysomes because most of the nascent peptides attached to them are
relatively large. In fact, large nascent peptidyl-tRNA binds tightly to the 50 S ribosomal subunit and is not released even at $10^{-3} \text{ M Mg}^{2+}$ [17].

From the results of our preceding communications and these data we conclude that a similar mode of action of bottromycin A2 applies to both the polysome system and the synthetic polynucleotide system. This antibiotic inhibits protein synthesis by interfering with the correct positioning of aminoacyl-tRNA in the A-site. This would explain the release of aminoacyl-tRNA reported here and in [5] since the distorted binding of this ligand would probably make it less strongly held in the A-site. Since erythromycin releases oligopeptidyl-tRNA from ribosomes [8] and polysomes [18], the antibiotics are analogous in this respect. However, one striking difference is that bottromycin A2 releases aminoacyl-tRNA from the A site of ribosomes while erythromycin releases oligopeptidyl-tRNA from a site near the D (donor) (peptidyl) site [19]. In this respect, bottromycin A2 is similar to tetracycline [20–22] because both antibiotics act at the A (acceptor) site. On the other hand, bottromycin A2 is different from tetracycline in that it releases bound aminoacyl-tRNA, while tetracycline does not [20].

Yet another antibiotic, micrococcin, a translocation inhibitor [4], is similar to bottromycin A2 in that it acts at the A site of ribosomes. However, bottromycin A2 differs from micrococcin because micrococcin inhibits, like tetracycline, binding of aminoacyl-tRNA [9] and does not release aminoacyl-tRNA [5] once bound. In addition, bottromycin A2 does not inhibit translocation while micrococcin does [4,9]. These considerations suggest that an antibiotic which appears to have multiple effects on various steps of protein synthesis, such as bottromycin A2, erythromycin [8,18,23,24], fusidic acid [25–30] or micrococcin [9], may actually exert its effects through a single action: binding to a particular site of ribosomes. Determination of the exact site of the binding of these antibiotics by extending already available information [31,32] would therefore shed light on the mode of ribosome function.

ACKNOWLEDGEMENT

This work was supported by US PHS grant GM 12053.

REFERENCES