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SUMMARY

Heat-shock protein 70 (HSP70) isoforms contribute to tumorigenesis through their well-documented anti-
apoptotic activity and via their role as cochaperones for the HSP90 molecular chaperone. HSP70 expression
is induced following treatment with HSP90 inhibitors, which may attenuate the cell death effects of this class
of inhibitor. Here we show that silencing either heat-shock cognate 70 (HSC70) or HSP72 expression in
human cancer cell lines has no effect on HSP90 activity or cell proliferation. However, simultaneously reduc-
ing the expression of both of these isoforms induces proteasome-dependent degradation of HSP90 client
proteins, G1 cell-cycle arrest, and extensive tumor-specific apoptosis. Importantly, simultaneous silencing
of HSP70 isoforms in nontumorigenic cell lines does not result in comparable growth arrest or induction of
apoptosis, indicating a potential therapeutic window.
INTRODUCTION

The molecular chaperone heat-shock protein 90 (HSP90) is an ex-

citing cancer drug target because it plays a key role in ensuring

the correct conformation, stability, and activity of many well-de-

fined oncogenic client proteins. These include kinases such as

CRAF, CDK4, AKT, and ERBB2; sex hormone receptors; and

other transcription factors (Whitesell and Lindquist, 2005; Work-

man, 2004). Natural product HSP90 inhibitors, e.g., the benzoqui-

none ansamycin antibiotic geldanamycin and its analog 17-allyl-

amino-17-demethoxygeldanamycin (17-AAG, or tanespimycin),

inhibit HSP90 ATPase activity, inducing degradation of clients

by the ubiquitin-proteasome pathway (Mimnaugh et al., 1996).

This causes simultaneous and combinatorial blockade of multiple

oncogenic pathways regulating cell growth, differentiation, motil-

ity, and death (Workman, 2004; Whitesell and Lindquist, 2005).

Alongside client protein depletion, we have previously demon-

strated increased expression of both the major constitutive

(heat-shock cognate 70 [HSC70]) and inducible (HSP72) iso-
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forms of the HSP70 multigene family by 17-AAG in vitro (Hostein

et al., 2001; Maloney et al., 2007; Banerji et al., 2005a). 17-AAG

also induces HSP70 isoforms and depletes HSP90 clients in pe-

ripheral blood mononuclear cells and tumors of treated patients

(Banerji et al., 2005b; Goetz et al., 2005).

The HSP70 family includes at least eight members with diverse

biochemical functions, including nascent protein folding,

preventing denatured protein aggregation, and modulating as-

sembly/disassembly of protein complexes (Young et al., 2004;

Daugaard et al., 2007). Importantly, the HSP70 proteins also

act as cochaperones for HSP90 (Dittmar and Pratt, 1997; Mor-

ishima et al., 2000). The two major cytoplasmic isoforms are

HSC70 and HSP72. Generally, HSC70 is abundantly and ubiqui-

tously expressed in nontumor tissues, whereas HSP72 is present

at relatively low levels in the absence of stress (Daugaard et al.,

2007). However, under stress, the expression of inducible

HSP72 increases considerably via heat-shock factor 1 (HSF1)

transcription factor activation. This differential expression

pattern is commonly lost in cancer, with increased, constitutive
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HSP90 inhibitors are of interest because they simultaneously inhibit multiple oncogenic pathways. However, their capacity
to induce cell death is reduced by induction of antiapoptotic HSP70 isoforms. We demonstrate that simultaneously targeting
HSC70 and HSP72 phenocopies HSP90 inhibition by inducing the combinatorial degradation of several client oncoproteins.
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Figure 1. HSP72 or HSC70 Silencing Specifically Alters Expression of HSP70 Isoforms and Their Association with HSP90 but Does Not Affect

HCT116 Cancer Cell Proliferation

(A and B) Immunoblots showing HSP70 isoform expression in HCT116 human colon cancer cells following transfection with active siRNAs targeting HSP72 (72A

or 72B) (A) or HSC70 (70A or 70B) (B) or inverted control siRNAs (72IC or 70IC). Cells treated with siRNA buffer + transfection lipid (mock control [MC]) were

included as an additional control. GAPDH was included as a loading control.

(C) HCT116 cell proliferation following silencing of HSP72 or HSC70. Transfection controls and siRNAs were used as described in (A). n = 3; error bars represent

±SEM. p > 0.05.

(D) Immunoprecipitation of HSP90 from HCT116 cells 48 or 72 hr after HSC70 silencing. The proteins shown were detected by immunoblotting. siRNAs were used

as described in (A).
expression of HSP72 having been observed in several tumors

(reviewed in Garrido et al., 2006).

The exact role of the HSP70 family in cancer remains to be elu-

cidated. However, these proteins can contribute to tumor cell

survival via multiple antiapoptotic functions (Mosser and Mori-

moto, 2004; Garrido et al., 2006). Increased expression of

HSP70 family members, particularly HSP72, is also implicated

in resistance to current cytotoxics (e.g., Sliutz et al., 1996).

Based on the increased expression of HSP70 isoforms in can-

cer, their essential role in the substrate-loading phase of the

HSP90 molecular chaperone cycle, and their antiapoptotic prop-

erties, we hypothesized that their expression may be required to

maintain HSP90 activity and support cancer cell survival. Also,

through their antiapoptotic roles, we considered that increased

HSC70 and HSP72 expression may reduce sensitivity to HSP90

inhibitors. Combinatorial modulation of these two HSP70 isoforms

could thereforebedoublyadvantageous.Hereweuse a siRNA ap-

proach to evaluate the effect of silencing HSP72 and HSC70 in

cancer and nontumorigenic cells, individually and simultaneously.

RESULTS

Silencing HSP72 or HSC70 Alters HSP70 Isoform
Expression but Does Not Affect Cell Proliferation
Induction of HSP72 attenuates the sensitivity of human leukemic

and prostate cancer cell lines to HSP90 inhibition (Guo et al.,
Ca
2005; Gabai et al., 2005). We have confirmed HSP72 induction

and have also identified increased expression of HSC70 follow-

ing HSP90 inhibition (Maloney et al., 2007). This is of interest, as

HSC70, like HSP72, is antiapoptotic (Mosser and Morimoto,

2004; Garrido et al., 2006).

To investigate how induction of HSC70 affects cellular sensi-

tivity to 17-AAG, siRNA oligonucleotides were designed to selec-

tively silence HSC70. In addition, to confirm whether increased

sensitivity to HSP90 inhibition following restraint of HSP72 in-

duction could be extended to the cell lines used here, we also

designed siRNA oligonucleotides to specifically silence HSP72

expression. HSP72 or HSC70 was selectively silenced for up

to 96 hr after transfection in HCT116 human colon carcinoma

cells (Figures 1A and 1B). Specificity was shown by the lack of

effect of control oligonucleotides that were identical to the active

siRNAs apart from inversion of the two central base pairs, which

are critical for silencing (Figures 1A and 1B).

Supporting their specificity, HSP72 siRNAs had no effect on

HSC70 expression in HCT116 colon (Figure 1A) or A2780 human

ovarian cancer cells (see Figure S1A available online). However,

silencing HSC70, using two different siRNA oligonucleotides,

caused concurrent HSP72 induction in HCT116 (Figure 1B),

A2780 (Figure S1B), and U87MG human glioblastoma cells

(data not shown). The control siRNA did not silence HSC70 or

increase HSP72 expression (Figure 1B), demonstrating that in-

duction of HSP72 was specific to silencing HSC70. Furthermore,
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expression of the mitochondrial isoform of HSP70, mortalin, was

unaffected following silencing of either HSP72 (Figure 1A) or

HSC70 (Figure 1B).

Previous studies have produced conflicting data on the effects

of silencing HSP70 isoforms on the growth and survival of tumor-

igenic cell lines (e.g., Nylandsted et al., 2000, 2002; Gabai et al.,

2005). Interestingly, we found that individual silencing of either

HSP72 or HSC70 had no significant effect on HCT116 (p >

0.05; Figure 1C) or A2780 cell proliferation (data not shown).

Control siRNAs also had no effect (p > 0.05; Figure 1C).

Thus, we have identified a cellular response that induces

HSP72 expression, potentially compensating for the reduced ex-

pression of HSC70. However, individual silencing of HSC70 or

HSP72 had no effect on cell proliferation.

HSP72 Replaces HSC70 in the HSP90 Chaperone
Complex following Silencing of HSC70 Expression
HSP70 isoforms are required for loading client proteins onto

HSP90 (Dittmar and Pratt, 1997; Morishima et al., 2000). We

therefore determined the effect of silencing HSC70 or HSP72

on HSP90 function, as determined by expression of the clients

CRAF and CDK4. Interestingly, we found no effect on the expres-

sion of these clients up to 96 hr after individual silencing of

HSP72 or HSC70 (Figures 1A and 1B).

To understand the lack of effect of individual HSP70 isoform

silencing on HSP90 function, we analyzed HSP72 and HSC70

in the immunoprecipitated HSP90 cochaperone complex.

HSC70, but not HSP72, was associated with HSP90 under

control conditions (Figure 1D). Importantly, when HSC70 was

silenced, not only was HSP72 induced, but this cochaperone re-

placed HSC70 in the HSP90 complex (Figure 1D).

Based on the lack of effect on HSP90 client protein expression

(Figures 1A and 1B) together with the immunoprecipitation data

(Figure 1D), we hypothesize that replacement of HSC70 by

HSP72 in the HSP90 complex can prevent inhibition of HSP90

chaperone activity when HSC70 is silenced. Overall, these results

demonstrate the ability ofHSP90 toutilize separatelyeitherHSC70

or HSP72 as a likely mechanism to conserve chaperone activity.

Sensitivity to HSP90 Inhibitors Is Dependent on Specific
HSP70 Isoforms in Cancer and Nontumorigenic Cells
The role of HSP72 in the sensitivity of human colon and ovarian

cell lines to HSP90 inhibition is unknown, as are the effects of

HSC70 on 17-AAG sensitivity. We investigated the effects of

HSP72 or HSC70 silencing on the proliferation of HCT116 and

A2780 cancer cell lines in response to 17-AAG. Consistent with

our previous observations (Hostein et al., 2001; Maloney et al.,

2007), 24 hr exposure of HCT116 and A2780 cells to 17-AAG de-

creased cell proliferation (Figures 2A and 2B). As seen in human

leukemia and prostate cancer cell lines (Guo et al., 2005; Gabai

et al., 2005), silencing of HSP72 expression before treatment sig-

nificantly increased the effects of 17-AAG in HCT116 (p < 0.05;

Figure 2A) and A2780 cells (p < 0.05; Figure 2B).

Restraining induction of HSP72 in response to 17-AAG may

represent an interesting approach to enhancing tumor cell sensi-

tivity to 17-AAG. However, it is necessary to determine the po-

tential for selectivity between tumor and nontumorigenic cells.

Therefore, we determined the effect of reducing HSP72 expres-

sion prior to 17-AAG in the nontumorigenic prostate epithelial
252 Cancer Cell 14, 250–262, September 9, 2008 ª2008 Elsevier Inc
cell line PNT2. Consistent with the results for the other cell lines

studied here, exposure to 5 3 IC50 17-AAG reduced proliferation

of PNT2 cells at 24 hr (Figure 2C). Importantly, while PNT2 cell

proliferation was inhibited by 17-AAG treatment, the IC50 for

this cell line was 4- to 7-fold higher than in HCT116 or A2780

cells, consistent with previous observations that nontumorigenic

cell lines are generally less sensitive to HSP90 inhibition than

tumorigenic cell lines (Kamal et al., 2003). Furthermore, no signif-

icant difference in the antiproliferative effect of 17-AAG was ob-

served when HSP72 expression was reduced prior to treatment

in the nontumorigenic PNT2 cell line (Figure 2C). These observa-

tions support the potential for a therapeutic differential when

combining silencing of HSP72 with 17-AAG.

In contrast to HSP72, when HSC70 expression was silenced

prior to 17-AAG treatment, there was no significant difference

in the response of HCT116 colon cancer, A2780 ovarian cancer,

Figure 2. Silencing HSP72 Sensitizes HCT116 and A2780 Cancer

Cells, but Not Nontumorigenic PNT2 Cells, to 17-AAG

HCT116 human colon cancer (A), A2780 human ovarian cancer (B), and PNT2

nontumorigenic human prostate epithelial cells (C) were transfected with

siRNA against the individual isoforms of HSP70. Twenty-four hours after trans-

fection, cells were exposed to 5 3 IC50 17-AAG (HCT116 117 nM, A2780 68

nM, PNT2 490 nM) or the equivalent volume of DMSO drug vehicle (veh) for

24 hr, after which adherent trypan blue-excluding viable cells were counted.

Cells were transfected with scrambled control siRNA ([A] only), inverted control

siRNA (72IC or 70IC), or active siRNA against HSP72 (72A or 72B, blue bars) or

HSC70 (70A or 70B, red bars). Also included were transfection controls, which

comprised cells treated with siRNA buffer only and a mock control. n = 3; error

bars represent ±SEM. *p < 0.05, **p > 0.05 versus control siRNA-transfected

cells.
.
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Figure 3. HSC70 or HSP72 Silencing Individually Does Not Affect 17-AAG-Induced Client Depletion in HCT116 and A2780 Cancer or Nontu-

morigenic PNT2 Cells

Immunoblots are shown. GAPDH was included as a loading control.

(A) HCT116 human colon cancer cells were treated with siRNA buffer + transfection lipid (MC) or siRNA buffer only (BO) or were transfected with control siRNA

(72IC or 70IC) or siRNA targeting HSC70 (70A or 70B) or HSP72 (72A or 72B) for 4 hr prior to 24 hr exposure to 5 3 IC50 17-AAG (117 nM).

(B) A2780 human ovarian cancer cells following transfection with control or active siRNA as described in (A). Twenty-four hours after transfection, cells were

exposed to 5 3 IC50 17-AAG (68 nM).

(C) PNT2 nontumorigenic human prostate epithelial cells following transfection with control or active siRNA as described in (A). Twenty-four hours after trans-

fection, cells were exposed to 5 3 IC50 17-AAG (490 nM).
or nontumorigenic PNT2 cells to 17-AAG (p > 0.05; Figures 2A–

2C). These results indicate that although both HSP72 and

HSC70 are induced by 17-AAG and both can bind to HSP90,

only depletion of HSP72 is able to enhance the sensitivity of tu-

mor cells to this HSP90 inhibitor.

When HSP72 was silenced before 17-AAG treatment, induc-

tion of this isoform in HCT116 colon cancer cells was restrained

following HSP90 inhibition to levels observed in vehicle-treated

control populations (Figure 3A). In A2780 ovarian cancer

(Figure 3B) and PNT2 nontumorigenic cells (Figure 3C), HSP72

induction by 17-AAG was undetectable by immunoblotting fol-

lowing HSP72 siRNA.

In all cell lines studied, silencing of HSC70 increased HSP72

expression prior to 17-AAG treatment. The extent of HSP72 in-

duction after HSC70 silencing alone was similar to that observed

in the corresponding siRNA controls treated with 17-AAG (Fig-

ures 3A–3C). Therefore, before treatment with 17-AAG, cells

with reduced HSC70 expression had increased levels of antia-

poptotic HSP72, which reduces the sensitivity of various tumor

cell types to HSP90 inhibition (Figures 2A and 2B; Gabai et al.,

2005; Guo et al., 2005). This observation explains the lack of in-

creased cellular sensitivity to 17-AAG following HSC70 silencing

in all cell lines studied (Figures 2A–2C).

In addition to client protein depletion and HSP70 induction, the

molecular signature of HSP90 inhibition in A2780 ovarian cancer

cells includes the induction of HSP90a, the inducible isoform
Ca
(Maloney et al., 2007). The expected molecular changes, i.e., in-

duction of HSP72 and HSP90a and depletion of the CRAF client,

were seen following 17-AAG treatment in HCT116 and A2780

cancer cells (Figures 3A and 3B). The extent of client depletion

and HSP90a induction by 17-AAG in A2780 and HCT116 cells

following HSP72 silencing was similar to that in the correspond-

ing controls treated with 17-AAG (Figures 3A and 3B), irrespec-

tive of an increase in antiproliferative effects being observed in

these cells following HSP72 silencing and 17-AAG treatment

(Figures 2A and 2B). We also found no difference in the level of

client depletion by 17-AAG between HCT116 cells that had un-

dergone the different transfections up to 72 hr after the initial

treatment with 17-AAG (Figure S2). As there was no change in

extent of HSP90 inhibition, we conclude that the increase in anti-

proliferative effects observed following HSP72 silencing and

17-AAG treatment was due to decreased HSP72 induction.

Importantly, an overall molecular profile similar to that ob-

served in HCT116 and A2780 cancer cells in response to

HSP72 silencing and 17-AAG treatment was also observed in

PNT2 cells (Figure 3C), despite the lack of increased sensitivity

to 17-AAG in response to HSP72 silencing in this nontumorigenic

cell line (Figure 2C).

In all cell lines studied, we also found that silencing HSC70

prior to 17-AAG treatment had no effect on the molecular marker

changes commonly associated with pharmacologic HSP90 inhi-

bition (Figures 3A–3C).
ncer Cell 14, 250–262, September 9, 2008 ª2008 Elsevier Inc. 253
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Overall, the data in this section support the hypothesis that re-

ducing HSP72 but not HSC70 expression can sensitize tumor

cells, but not nontumorigenic cells, to 17-AAG by a mechanism

that does not involve direct alteration of HSP90 chaperone func-

tion as measured by client protein expression.

Extent of Apoptosis Induced in Response to 17-AAG
Is Dependent on Specific HSP70 Isoforms
We have previously demonstrated that detached HCT116 and

A2780 cancer cells are apoptotic according to morphology,

sub-G1 DNA content, and PARP cleavage (Hostein et al., 2001;

Maloney et al., 2007). Little increase in apoptotic detached cells

was observed in siRNA-transfected HCT116 and A2780 controls

following 24 hr exposure to 17-AAG (Figures 4A and 4B). In addi-

Figure 4. Silencing of HSP72 Increases Apoptosis in Response to

17-AAG in Tumor but Not Nontumorigenic Cells

HCT116 human colon cancer (A), A2780 human ovarian cancer (B), and non-

tumorigenic human PNT2 prostate epithelial cells (C) were transfected with

siRNA against the individual isoforms of HSP70 for 4 hr. Twenty-four hours af-

ter transfection, cells were exposed to 5 3 IC50 17-AAG (HCT116 117 nM,

A2780 68 nM, PNT2 490 nM) or the equivalent volume of DMSO drug vehicle

(veh) for 24 hr, after which cell death was quantified. Transfection controls in-

cluded cells treated with siRNA buffer only or with siRNA buffer + transfection

lipid (mock control) or cells transfected with scrambled control siRNA ([A] only).

Cells were transfected with inverted control siRNA (72IC or 70IC) or active

siRNA against HSP72 (72A or 72B, blue bars) or HSC70 (70A or 70B, red

bars). n = 3; error bars represent ±SEM. *p < 0.05, **p > 0.05 versus control

siRNA-transfected cells.
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tion, we saw no significant increase in apoptosis when HSC70 ex-

pression was silenced prior to 17-AAG treatment in any of the cell

lines studied (p > 0.05; Figures 4A–4C). However, when HSP72

was silenced in HCT116 or A2780 cancer cells prior to 17-AAG

treatment, a respective 5-fold (±1.1 SEM) and 6-fold (±0.3 SEM)

increase in apoptosis was observed (p < 0.05; Figures 4A and

4B), supporting results in human leukemia and prostate cancer

cell lines (Guo et al., 2005; Gabai et al., 2005). In contrast, we ob-

served no significant increase in apoptosis in the nontumorigenic

PNT2 epithelial cell line when HSP72 expression was silenced

prior to 17-AAG treatment (p > 0.05; Figure 4C), reinforcing

greater chaperone dependence in cancer cells.

Silencing of HSP72 prior to 17-AAG prevented the induction of

HSP72 in response to 17-AAG in detached HCT116 and A2780

cells (Figures 5A and 5B). Consistent with earlier observations

(Figure 1; Figure 3), increased HSP72 expression following

HSC70 silencing was also apparent prior to 17-AAG exposure in

detached HCT116 and A2780 cells (Figure 5), supporting the hy-

pothesis that the induction of this antiapoptotic protein attenuates

apoptosis due to 17-AAG when HSC70 expression is silenced.

Detection of cleaved PARP, an apoptotic marker, further con-

firmed that detached HCT116 and A2780 cancer cells were

apoptotic (Figures 5A and 5B). This qualitative method was com-

plimentary to the quantitative assay, which demonstrated a

significant increase in HCT116 and A2780 cancer cell death fol-

lowing silencing of HSP72 expression prior to 17-AAG treatment

(Figures 4A and 4B). Cleaved PARP was also detectable in con-

trols when equal amounts of protein from the detached popula-

tion were analyzed (Figure 5). This is representative of the low

background level of cell death for these cell lines, which was

Figure 5. siRNA Completely Restrains HSP72 Induction in Response

to 17-AAG Treatment in Detached, Apoptotic Cancer Cells

Immunoblots of HCT116 human colon cancer (A) and A2780 human ovarian

cancer cells (B) following treatment with siRNA buffer + transfection lipid

(MC) or siRNA buffer only (BO) or transfection with control siRNA (72IC or

70IC) or siRNA targeting HSC70 (70A or 70B) or HSP72 (72A or 72B) for 4 hr

prior to 24 hr exposure to 5 3 IC50 17-AAG (HCT116 117 nM, A2780 68 nM).

GAPDH was included as a loading control.
c.
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considerably less than that seen in the relevant treated groups

(Figures 4A and 4B).

Collectively, these data extend previous observations indicat-

ing increased apoptosis following combinatorial HSP72 silenc-

ing and HSP90 inhibition and in particular demonstrate a re-

sponse that is related to the tumorigenic status of the cell.

Simultaneous Silencing of HSC70 and HSP72 Reduces
Cell Proliferation, Depletes HSP90 Clients, and
Enhances 17-AAG-Induced Apoptosis
To prevent induction of HSP72 following HSC70 siRNA, a simul-

taneous transfection targeting both HSC70 and HSP72 was per-

formed in HCT116 cancer cells. In addition to the combination of

two active siRNAs and the specific transfection controls de-

scribed earlier, several combinations of one functional and one

control siRNA were included to ensure that the use of two inde-

pendent siRNA sequences was not inducing a nonspecific re-

sponse. The molecular changes associated with the single

siRNA transfections (Figure 3; Figure 5) were conserved when in-

corporated within the combinatorial transfection with a control

siRNA (Figure 6A). These included siRNA-mediated restraint of

HSP72 induction following treatment with 17-AAG (Figure 6A).

This is important because it was necessary to decrease the con-

centration of each siRNA used in the dual transfection to keep

the total siRNA concentration constant in both single and combi-

natorial transfections.

Combined silencing of HSP72 and HSC70 in HCT116 cells

was effective in reducing HSC70 expression with no concomi-

tant HSP72 induction (Figure 6A). Exposure to 17-AAG following

the dual transfection caused a moderate induction of HSP72 and

HSC70, but to levels much lower than observed in correspond-

ing siRNA controls (Figure 6A).

When HSC70 and HSP72 expression were simultaneously si-

lenced in HCT116 colon cancer cells in the absence of 17-AAG

treatment, the HSP90 client proteins CRAF and CDK4 were de-

pleted to an extent similar to that observed in siRNA controls

treated with 17-AAG (Figure 6A). Moreover, CRAF and CDK4

were further reduced following the dual HSC70 and HSP72

siRNA transfection by cotreatment with 17-AAG, resulting in cli-

ent levels below those observed in any other condition

(Figure 6A). Expression of HSP90a was unaffected by the simul-

taneous reduction of HSC70 and HSP72.

Dual HSC70 and HSP72 silencing significantly decreased the

number of attached, viable HCT116 cells (p < 0.05; Figure 6B).

The antiproliferative effect of HSC70 and HSP72 silencing was

equivalent to that observed in transfection controls treated

with 17-AAG (Figure 6B). Furthermore, the inhibition of HCT116

cell proliferation following combined depletion of HSC70 and

HSP72 was dramatically increased by 24 hr exposure to 5 3

IC50 17-AAG. Under these conditions, the number of attached,

viable cells was significantly decreased (p < 0.05) to levels below

those initially seeded (Figure 6B). This response was far greater

than when HSC70 and HSP72 were silenced without 17-AAG

treatment (Figure 6B).

The increased antiproliferative effect was not a consequence

of the simultaneous transfection procedure, as a similar re-

sponse was not observed in any of the relevant transfection con-

trols (Figure 6B). In addition, the extent to which proliferation was

inhibited following the simultaneous silencing of HSC70 and
Ca
HSP72 and subsequent treatment with 17-AAG was far greater

than when the expression of either of these isoforms was

reduced alone (Figure 2A; Figure 6B), confirming our earlier

hypothesis that the concurrent induction of HSP72 in response

to HSC70 siRNA was indeed reducing the sensitizing effect of

silencing HSC70 prior to 17-AAG.

Consistent with the observations described above for HCT116

cancer cells, simultaneous HSP72 and HSC70 silencing in non-

tumorigenic PNT2 cells also resulted in the degradation of the

HSP90 clients CRAF and CDK4 (Figure 6C) and also enhanced

their depletion in response to 17-AAG (Figure 6C). However, in

contrast to HCT116 cancer cells, client protein depletion caused

by dual HSC70 and HSP72 silencing was not accompanied by

a significant reduction in proliferation of nontumorigenic PNT2

cells (p > 0.05; Figure 6D), nor did it significantly affect the

response of this cell line to 24 hr exposure to 5 3 IC50 17-AAG

(p > 0.05; Figure 6D).

In HCT116 cells, decreased proliferation following the simulta-

neous silencing of HSC70 and HSP72 was accompanied by

a significant increase in cell death in the absence of 17-AAG

treatment (Figure 6E). The mode of cell death was confirmed

as apoptotic by detection of cleaved PARP (Figure 6F). The num-

ber of apoptotic HCT116 cells was increased 10-fold (±2.9 SEM)

from 1.4% (±0.3% SEM) in corresponding siRNA controls to

13.1% (±2.2% SEM; p < 0.02) in cells that had undergone dual

HSC70 and HSP72 silencing. In addition, simultaneous silencing

of the two HSP70 isoforms increased HCT116 cell apoptosis in

response to 17-AAG by 20-fold (±6.9 SEM) to 40.3% (±13.8%

SEM) compared to only 2.4% (±0.7% SEM) in siRNA controls

treated with 17-AAG (p < 0.04). In contrast, the same dual silenc-

ing of HSC70 and HSP72 in nontumorigenic PNT2 cells did not

induce significant apoptosis in either the presence or absence

of 17-AAG (p > 0.05; Figure 6E). This demonstrates that a nontu-

morigenic epithelial cell line can tolerate reduced expression of

the two major HSP70 isoforms (Figure 6E) and is also able to

withstand additional pharmacologic inhibition of HSP90 function

as shown by client protein degradation (Figure 6C).

Our data reveal that by simultaneously silencing HSC70 and

HSP72, it is possible to inhibit HSP90, as demonstrated by the

depletion of HSP90 clients, and also to block proliferation of can-

cer cells to an extent similar to that seen with pharmacologic

HSP90 inhibition. Moreover, apoptosis is much greater when

HSP90 clients are depleted by HSC70 and HSP72 silencing com-

pared to pharmacologic HSP90 inhibition. Also, we show that

dual HSC70 and HSP72 silencing sensitizes cells to the apoptotic

effects of 17-AAG to an extent far greater than when HSP72 is si-

lenced alone. Importantly, we also reveal a differential tumor cell

versus nontumorigenic cell response after silencing of HSP70

isoforms, which supports targeting this family for cancer therapy.

Kinetics of HSP90 Client Protein Depletion,
Antiproliferative Effects, and Apoptosis upon
Simultaneous HSP72 and HSC70 Depletion
Next, we investigated the detailed effects of dual HSC70 and

HSP72 silencing, in the absence of cotreatment with 17-AAG,

over a more prolonged time course. Dual silencing in HCT116

cancer cells caused maximum reduction of HSP70 isoform ex-

pression at 72 hr, with a slight recovery at 96 hr (Figure 7A).

This was accompanied by a time-dependent decrease in
ncer Cell 14, 250–262, September 9, 2008 ª2008 Elsevier Inc. 255
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Figure 6. Dual Depletion of HSP72 and HSC70 Increases Tumor but Not Nontumorigenic Cell Apoptosis in Response to Pharmacologic

HSP90 Inhibition

(A) HCT116 human colon cancer cells were transfected with a series of siRNA combinations involving control siRNAs (72IC and 70IC) and/or active siRNAs

against HSC70 (70A) or HSP72 (72A). Twenty-four hours later, cells were exposed to 5 3 IC50 17-AAG (117 nM) for a further 24 hr. The efficacy of gene silencing

was determined by immunoblotting. GAPDH was included as a loading control.

(B) Number of attached HCT116 cancer cells following simultaneous reduction of HSC70 and HSP72 followed by 24 hr treatment with 5 3 IC50 17-AAG (green

bars). Cells remaining attached were assessed by trypan blue exclusion and compared to the number initially seeded (dotted line). Transfections were as

described in (A). n = 3; error bars represent ±SEM. *p < 0.05 versus control siRNA-transfected cells.

(C) Immunoblot of nontumorigenic PNT2 human prostate epithelial cells transfected and treated for 24 hr with 5 3 IC50 17-AAG (490 nM). Transfections were as

described in (A). GAPDH was included as a loading control.

(D) Number of attached nontumorigenic PNT2 cells after dual silencing of HSC70 and HSP72 followed by 24 hr treatment with 5 3 IC50 17-AAG (green bars). Cells

remaining attached were quantified as described in (B). n = 3; error bars represent ±SEM. **p > 0.05 versus control siRNA-transfected cells.

(E) Percent detached HCT116 cancer and PNT2 nontumorigenic cells after simultaneous HSC70 and HSP72 silencing followed by 24 hr treatment with 5 3 IC50

17-AAG. Transfections were as described in (A). n = 3; error bars represent ±SEM. *p < 0.05, **p > 0.05 versus control siRNA-transfected cells.

(F) Immunoblot of detached HCT116 cells after simultaneous HSC70 and HSP72 silencing followed by 24 hr exposure to 5 3 IC50 17-AAG. Transfections were as

described in (A). GAPDH was included as a loading control.
expression of the HSP90 clients CRAF, CDK4, and ERBB2

(Figure 7A). The kinetics of client depletion correlated with the

pattern of reduction and recovery of HSP72 and HSC70

(Figure 7A).

The depletion of HSP90 client proteins observed after simulta-

neous silencing of HSC70 and HSP72 was accompanied by
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a significant, time-dependent inhibition of proliferation in the first

72 hr (p < 0.05; Figure 7B). Cell-cycle analysis of HCT116 cells

that had remained adherent following the transfections demon-

strated that the antiproliferative effects observed in Figure 7B

following simultaneous HSC70 and HSP72 silencing were a con-

sequence of a G1 arrest (Figure 7C).
.
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Figure 7. Dual HSC70 and HSP72 Silencing

Induces Proteasome-Dependent Client

Protein Depletion, Cell-Cycle Arrest, and

Considerable Apoptosis

(A) HCT116 human colon cancer cells were treated

with siRNA buffer + transfection lipid (MC) or trans-

fected with a combination of HSP72 and HSC70

control siRNAs (72IC and 70IC) or the two active

siRNAs against HSP72 and HSC70 (72A and

70A). Immunoblotting was used to determine ex-

pression of the proteins shown. GAPDH was in-

cluded as a loading control.

(B) HCT116 cancer cells remaining attached after

dual silencing were assessed by trypan blue

exclusion. Transfections were as detailed in (A).

n = 3; error bars represent ±SEM. *p < 0.05,

**p > 0.05 versus control siRNA-transfected cells

96 hr after transfection.

(C) Cell-cycle analysis using propidium iodide

staining of HCT116 cells 48 hr after dual HSP72

and HSC70 silencing. Transfections were as de-

scribed in (A).

(D) Percentage apoptosis in HCT116 cancer cells

following dual HSC70 and HSP72 silencing. Trans-

fections were as described in (A). n = 3; error bars

represent ±SEM. *p < 0.05, **p > 0.05 versus con-

trol siRNA-transfected cells 96 hr after transfection.

(E) Morphology of attached and detached

HCT116 cancer cells using toluidine blue staining

72 hr after simultaneous HSP72 and HSC70 si-

lencing. Transfections were as described in (A).

Scale bars = 10 mm.

(F) Twenty-four hours after transfection, HCT116

colon cancer cells were exposed to increasing

concentrations of the proteasome inhibitor borte-

zomib (IC50 = 13 nM ± 1.2 SEM) or DMSO vehicle

(V) for 24 hr. Levels of the proteins shown were an-

alyzed in the soluble and insoluble protein frac-

tions by immunoblotting. GAPDH was included

as a loading control. Transfections were as de-

tailed in (A).

(G) HCT116 cancer cells were treated with borte-

zomib or DMSO vehicle at multiples of the IC50 for

1 hr prior to treatment with 5 3 IC50 17-AAG (117

nM) for a further 24 hr. Levels of the proteins

shown were analyzed in the soluble and insoluble

protein fractions by immunoblotting. GAPDH was

included as a loading control.
Importantly, we conclude that combinatorial HSC70 and

HSP72 silencing induced a significant, time-dependent increase

in apoptosis in the absence of 17-AAG (p < 0.05; Figure 7D). Max-

imum apoptosis accounting for 38% (±4.5% SEM) of the total

HCT116 cell population was observed 72 hr after the dual trans-

fection, representing a 20-fold (±4.9 SEM) increase over siRNA

controls. This correlates with the time at which maximum effects

on HSC70 and HSP72 expression, HSP90 client protein deple-

tion, and cell proliferation were observed (Figures 7A and 7B).

Following simultaneous HSP72 and HSC70 silencing, apopto-

tic morphology was seen in the detached HCT116 cell popula-

tion, which exhibited reduced expression of both HSP70 iso-

forms (Figure 7E). This was in contrast to adherent cells, which

displayed a nonapoptotic but slightly enlarged morphology as

compared to the normal cell appearance in transfection controls

(Figure 7E).
Ca
As with transfections using a single targeted siRNA (Figure 1C),

we were careful to include relevant controls to ensure the spec-

ificity of the dual siRNA transfection. No significant difference

was seen in HCT116 cell proliferation (p > 0.05; Figure 7B) over

96 hr, nor was any difference in cell-cycle distribution or apopto-

sis observed between any of the transfection controls (Figures

7C and 7D). In addition, all of the effects seen in HCT116 cells

following the simultaneous silencing of HSC70 and HSP72 were

reproduced following transfection with two different targeted

siRNA oligonucleotides (data not shown).

Client Protein Depletion and Antiproliferative and
Apoptotic Effects Correlate with Extent of Dual HSP72
and HSC70 Silencing in Cancer Cells
The results shown here so far demonstrate that the simultaneous

and robust silencing of both HSP72 and HSC70, but not either
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isoform alone, results in depletion of HSP90 clients, reduction of

proliferation, and apoptosis in HCT116 colon cancer cells in the

absence of 17-AAG. The more general applicability of these find-

ings was examined in parallel experiments with A2780 ovarian

and U87MG glioblastoma cell lines. Following the simultaneous

silencing of both HSC70 and HSP72, proliferation of A2780 cells

was significantly reduced (p < 0.05; Figure S3A) and apoptosis

significantly increased at all time points up to 96 hr after the

transfection (p < 0.05; Figure S3B), though not quite to the same

extent seen in HCT116 cells (Figures 7B and 7D). In A2780 cells,

HSC70 was silenced to levels below those in corresponding con-

trols (Figure S3C). However, it was only possible to restrain the

induction of HSP72 (in response to HSC70 siRNA) to the basal

levels observed in corresponding controls (Figure S3C). Consis-

tent with this, although reproducible depletion of the HSP90

clients CRAF and ERBB2 was observed in A2780 ovarian cancer

cells (Figure S3C), the extent of depletion was less than in

HCT116 cells (Figure 7A).

The necessity of the simultaneous silencing of HSC70 and

HSP72 expression was further exemplified using U87MG glio-

blastoma cells. In this cell line, it was not possible to restrain in-

duction of HSP72 by HSC70 silencing, probably because of the

very high level of induction of HSP72 in response to HSC70

siRNA (Figure S3D). Consistent with the lack of restraint of

HSP72 induction, no change in expression levels of CRAF or

CDK4 were observed in U87MG cells (Figure S3D).

Taking the results obtained in the three cancer cell lines to-

gether, it is clear that the effect of reducing the expression of

HSC70 and HSP72 by siRNA on HSP90 client protein depletion

directly correlated with the degree of HSC70 and HSP72 silenc-

ing achieved. We hypothesize that our earlier observation dem-

onstrating that HSP72 can replace HSC70 in the HSP90 complex

(Figure 1D) provides an explanation for why robust, simultaneous

silencing of both HSP70 isoforms is necessary to observe an ef-

fect on HSP90 function.

HSP90 Client Proteins Are Degraded via the Ubiquitin-
Proteasome Pathway following Combinatorial Silencing
of HSP72 and HSC70
As with pharmacologic HSP90 inhibition, we hypothesized that

the ubiquitin-proteasome pathway was involved in the depletion

of HSP90 client proteins observed following the combined si-

lencing of HSC70 and HSP72. To investigate this, HCT116 cells

that had undergone siRNA-reduced expression of these iso-

forms were exposed for 24 hr to increasing concentrations of

the proteasome inhibitors bortezomib (Figure 7F) or MG-132

(Figure S4).

Highly ubiquitinated proteins can aggregate and hence be-

come insoluble in mild detergent (Mimnaugh and Neckers,

2005). Therefore, both detergent-soluble and -insoluble fractions

of the cell extracts were analyzed. Loss of CRAF and CDK4 in the

soluble fraction was accompanied by their accumulation in the

insoluble fraction following combined depletion of HSC70 and

HSP72 and exposure to bortezomib (Figure 7F) or MG-132

(Figure S4). The extent of accumulation was proportional to the

concentration of bortezomib or MG-132 used, reflecting the de-

gree of proteasome inhibition. Although a small amount of CRAF

and CDK4 was visible in the insoluble fraction following transfec-

tion with the two control siRNAs, this was representative of the
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basal, proteasome-dependent turnover of these proteins, as

no change in their levels was seen in the soluble fraction com-

pared to the various controls (Figure 7F). These data confirm

that reducing the expression of HSC70 and HSP72 simulta-

neously leads to the proteasome-dependent degradation of

HSP90 client proteins, similar to that observed with direct inhibi-

tion of HSP90 by 17-AAG (Figure 7G).

Response to the Dual Silencing of HSC70 and HSP72
Exhibits Selectivity for Cancer versus Nontumorigenic
Cells
To support the dual silencing of HSC70 and HSP72 as a thera-

peutic approach, its effects were investigated in nontumorigenic

PNT2 prostate cells over 96 hr. Figure 8A demonstrates that 72

hr after the initial transfection, a robust reduction in HSC70 ex-

pression was achieved while the concomitant induction of

HSP72 was completely prevented. This was accompanied by

a time-dependent decrease in expression of the HSP90 clients

CRAF, CDK4, and ERBB2 (Figure 8A). The magnitude of these

effects was similar to that observed in HCT116 colon cancer

cells (Figure 7A).

Although no significant antiproliferative effect was seen in

PNT2 cells 48 hr after dual HSC70 and HSP72 silencing (Fig-

ure 6D), when the effects of the dual transfection were analyzed

over a longer period, a significant inhibition of cell proliferation

was observed 96 hr after the transfection (p < 0.05; Figure 8B).

Importantly, despite achieving a similar level of silencing against

the two HSP70 isoforms and client protein degradation compa-

rable to that achieved in HCT116 cells (Figure 7A), the effect on

PNT2 cell proliferation was considerably less than that observed

in HCT116 cells (Figure 7B). At 96 hr after the combinatorial

transfection, HCT116 cell proliferation was reduced by 91%

(±2.0% SEM). In contrast, at the same time point, nontumori-

genic PNT2 cell proliferation was inhibited by only 43% (±4.5%

SEM; p < 0.05). Most importantly, PNT2 cells did not undergo

significant apoptosis following simultaneous HSC70 and HSP72

silencing at any time point (p > 0.05; Figure 8C). This is in contrast

to HCT116 cancer cells, which underwent extensive apoptosis

accounting for 38% (±4.5% SEM) of the total cell population

72 hr after dual silencing (p < 0.05; Figure 7D). Finally, the popu-

lation of adherent nontumorigenic PNT2 cells quantified in Fig-

ure 8C was confirmed as viable by the lack of PARP cleavage

(Figure 8A).

To further explore the potential for therapeutic selectivity, the

effects of dual HSC70 and HSP72 silencing were compared

directly in HCT116 human colon cancer cells and in nontumori-

genic CCD-18Co cells derived from normal human colon.

Growth arrest was observed in CCD-18Co cells following the

combinatorial silencing of HSC70 and HSP72, but to a much

lesser extent than in HCT116 colon cancer cells (Figure S5). In

addition, consistent with results for PNT2 cells, minimal cell

death was observed in CCD-18Co cells compared to the exten-

sive apoptosis seen in HCT116 colon cancer cells following

the simultaneous silencing of HSP70 isoforms as determined

by analysis of cleaved PARP (Figure S6A) and caspase-3

(Figure S6B).

Taken together, these results support the potential for combi-

natorial knockdown of HSP72 and HSC70 to exert greater
c.
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Figure 8. Dual HSC70 and HSP72 Silencing Leads to Client Protein Degradation and Modest Cell Proliferation Arrest, but Not Apoptosis, in a

Nontumorigenic Cell Line

(A) PNT2 nontumorigenic human prostate epithelial cells were treated with siRNA buffer + transfection lipid (MC) or transfected with a combination of HSP72 and

HSC70 control siRNAs (72IC and 70IC) or the two active siRNAs against HSP72 and HSC70 (72A and 70A). Immunoblotting was used to determine the levels of

the proteins shown. GAPDH was included as a loading control.

(B) Quantification of nontumorigenic PNT2 cells remaining attached following dual HSC70 and HSP72 silencing. Transfections were as described in (A). n = 3;

error bars represent ±SEM. *p < 0.05 versus control siRNA-transfected cells 96 hr after transfection.

(C) Percentage apoptosis in nontumorigenic PNT2 cells following simultaneous silencing of HSC70 and HSP72. Transfections were as described in (A). n = 3; error

bars represent ±SEM. **p > 0.05 versus control siRNA-transfected cells up to 96 hr after transfection.
antiproliferative and apoptotic effects against cancer versus

nontumorigenic cells.

DISCUSSION

HSP90 is an exciting therapeutic target in cancer because inhibi-

tion of this single protein causes the simultaneous degradation of

multiple oncoproteins and combinatorial blockade of numerous

oncogenic pathways (Workman, 2004; Whitesell and Lindquist,

2005). HSP70 molecular chaperones are of interest when con-

sidering modulation of HSP90 for several reasons. First, they

function as cochaperones for HSP90 that are involved in the ini-

tial binding and transfer of client proteins onto HSP90 (Dittmar

and Pratt, 1997; Morishima et al., 2000). Second, it is well estab-

lished that expression of the major inducible isoform, HSP72, is

increased following treatment with HSP90 inhibitors. In addition,

HSP70 chaperones have a well-documented antiapoptotic func-

tion that is independent of their interaction with HSP90 (Mosser

and Morimoto, 2004; Garrido et al., 2006). As a consequence,

induction of HSP72 reduces the apoptotic effects of HSP90 in-

hibitors in human prostate and leukemia cell lines (Gabai et al.,

2005; Guo et al., 2005). We have demonstrated that not only is

HSP72 expression induced in response to HSP90 inhibition,
Ca
but expression of the constitutive isoform of HSP70, HSC70, is

also increased (Maloney et al., 2007). Here, we have used a

siRNA approach to investigate the effects of specifically silenc-

ing the expression of HSC70 and/or HSP72 in three human can-

cer cell lines and two nontumorigenic human cell lines.

Results presented here demonstrate that silencing HSC70 or

HSP72 individually has no effect on proliferation of HCT116 co-

lon cancer or A2780 ovarian cancer cells. The lack of effect on

proliferation following specific silencing of these isoforms indi-

vidually contrasts with reports that continued expression of

HSP72 and/or HSC70 is necessary for the viability of tumor cells

(Nylandsted et al., 2000, 2002). However, the degree of depen-

dence on HSP70 isoform expression was previously shown to

vary between cell lines, and the previous studies did not include

the cell lines used here. In agreement with our findings, Gabai

et al. (2005) also found that human prostate cancer cell lines re-

tain viability when only HSP72 expression is reduced.

Confirming previous observations in other cancer cell types,

we showed that silencing HSP72 prior to treatment with 17-

AAG increases the apoptotic effects of this HSP90 inhibitor in

both HCT116 colon and A2780 ovarian carcinoma cells (Figures

4A and 4B). These studies and previously published observa-

tions support the modulation of HSP72 expression and/or
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function as a strategy to enhance the efficacy of HSP90 inhibi-

tors (Gabai et al., 2005; Guo et al., 2005). Here we have also

shown that preventing HSP72 induction in response to 17-AAG

did not increase apoptosis in the nontumorigenic PNT2 prostate

epithelial cell line (Figure 4C). This further supports the targeting

of HSP72 as a mechanism to increase the response to HSP90

inhibitors and potentially to enhance the therapeutic index.

In contrast to HSP72, we have shown that restraining the

17-AAG-mediated induction of HSC70 has no effect on apopto-

sis induced by HSP90 inhibition (Figures 4A–4C). This was

explained by the concurrent induction of HSP72 expression fol-

lowing silencing of HSC70 (Figure 1B). The degree to which

HSP72 expression was increased was comparable to that fol-

lowing 24 hr exposure to pharmacologically relevant concentra-

tions of 17-AAG. Therefore, even prior to treatment with 17-AAG,

cells which had reduced expression of HSC70 were already ex-

posed to increased expression of antiapoptotic HSP72. To

counteract this, we simultaneously reduced the expression of

both HSC70 and HSP72 by combinatorial siRNA. Using this ap-

proach, we revealed that dual silencing of HSC70 and HSP72

considerably increased the apoptotic response to 17-AAG

(Figure 6E). Considering the findings made by ourselves and

others on the effects of HSP72 induction on the cell death

response to 17-AAG (see above), we hypothesize that the in-

creased sensitization observed after the combinatorial silencing

of HSP70 isoforms is at least in part due to restraining the induc-

tion of antiapoptotic HSP72.

With respect to the functional role of HSP70 isoforms in the

HSP90 chaperone, we found that silencing of individual HSP70

isoforms had no effect on the cellular chaperone activity of

HSP90, as determined by the unaltered expression of the com-

monly studied HSP90 client proteins CRAF and CDK4 (Figures

1A and 1B). Importantly, our coimmunoprecipitation experi-

ments demonstrated that HSP72 replaces HSC70 in the

HSP90 complex (Figure 1D). This suggests that reduced expres-

sion of HSC70 and its subsequent loss from the HSP90 complex

may not affect the activity of HSP90 because of a functional re-

placement of HSC70 by HSP72. This hypothesis was reinforced

by our discovery that simultaneous combinatorial silencing of

HSC70 and HSP72 expression was able to phenocopy the ef-

fects of pharmacologic HSP90 inhibition by inducing ubiquitin-

proteasome-dependent degradation of the HSP90 clients

CRAF, CDK4, and ERBB2 without affecting the expression of

HSP90 itself (Figure 6A; Figures 7A and 7F). Client protein deple-

tion occurred to a different extent in HCT116 colon cancer,

A2780 ovarian cancer, U87MG glioblastoma, and nontumori-

genic PNT2 prostate cell lines. The magnitude of HSP90 client

depletion was greater in HCT116 and PNT2 cells compared to

A2780 cells, with no effect seen in U87MG cells. The extent to

which client proteins were depleted was related to the extent

to which HSC70 and HSP72 expression could be silenced by

the dual siRNA. Consistent with this, another recent study was

unable to simultaneously reduce the expression of HSC70 and

HSP72 below basal protein levels in SKBr3 breast cancer cells,

and, as our results would predict, no effect on ERBB2 was

seen (Havik and Bramham, 2007).

Decreased expression of HSP90 clients following the silencing

of HSC70 and HSP72 was accompanied by an increase in apo-

ptosis in HCT116 cancer cells, to a much greater extent than
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seen with 17-AAG concentrations that achieved a similar deple-

tion of clients (Figure 6E). The kinetics of client protein depletion

and recovery, and also of induction of apoptosis, exactly fol-

lowed those of HSC70 and HSP72 reduction and recovery after

siRNA silencing (Figures 7A and 7D). The specificity of the com-

binatorial HSP72 and HSC70 dual siRNA silencing effect was

demonstrated by the use of various controls, including se-

quence-specific control siRNAs, which collectively support the

view that the observed changes were a direct and specific con-

sequence of reducing the expression of HSC70 and HSP72.

The degree of proliferative arrest and apoptosis induced in the

nontumorigenic human prostate epithelial cell line PNT2 follow-

ing the simultaneous combinatorial silencing of HSC70 and

HSP72 was far less than that observed in HCT116 colon carci-

noma cells. This difference was observed despite achieving

a similar level of silencing of the two HSP70 isoforms and a com-

parable level of HSP90 client depletion in the cancer and nontu-

morigenic cells. This differential effect of combinatorial HSP72

and HSC70 silencing on cancer cell proliferation and apoptosis

was also reproduced when the effects were compared in

HCT116 colon cancer cells and the nontumorigenic cell line

CCD-18Co derived from normal human colon. Kamal et al.

(2003) proposed a model to explain the differential responses

to pharmacologic HSP90 inhibitors observed in tumor versus

normal cells. In this model, HSP90 from tumor cells exists in

a superchaperone complex that is highly sensitive to pharmaco-

logic inhibition. Conversely, HSP90 from normal cells is present

predominantly in an uncomplexed state that is relatively insensi-

tive to HSP90 inhibitors. It was speculated that this differential

might indicate the complete usage of HSP90 by cancer cells to

ensure the correct folding, localization, and function of large

quantities of mutated or overexpressed oncoproteins (Kamal

et al., 2003). This is of importance because malignant cells are

hypothesized to be ‘‘addicted’’ to the expression of certain on-

coproteins to ensure their continued growth and survival (Wein-

stein, 2002; Workman et al., 2007). When considering the re-

sponse of both tumor and nontumorigenic cells to the effects

of the combinatorial reduction of HSP70 isoforms, it is important

to consider that the effects could be attributed to exploitation of

oncogene addiction by inhibition of HSP90 function (exemplified

by degradation of client proteins) together with a decrease in the

antiapoptotic effects of the silenced HSP70 isoforms. Tumor

cells may be more reliant on the antiapoptotic effects of

HSP70 isoforms due to the deregulated malignant phenotype,

a suggestion reinforced by the overexpression of both HSP72

and HSC70 in several tumor types (reviewed in Garrido et al.,

2006). This is also consistent with the superchaperone usage

model described above (Kamal et al., 2003).

An exciting implication of our observations is the attractive-

ness of combinatorial targeting of HSC70 and HSP72 as an

alternative means to achieve HSP90 inhibition, with the added

advantage of avoiding the antiapoptotic effects of HSP70 iso-

form induction that limit the use of current pharmacologic inhib-

itors. The siRNA approach was used here as a tool to silence the

expression of HSC70 and HSP72. It is possible that RNA interfer-

ence may be developed as a potential therapeutic approach

(Kim and Rossi, 2007). An alternative is the development of

small-molecule drugs that inhibit the activity of HSC70 and

HSP72. 15-deoxyspergualin and its analogs modulate the
c.
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activity of HSC70 (Brodsky, 1999; Fewell et al., 2001). Also, the

benzylidene lactam KNK437 and the diterpene triepoxide tripto-

lide block the induction of heat-shock proteins such as HSP70 in

response to stress (Yokota et al., 2000; Westerheide et al., 2006).

However, both of these compounds inhibit heat-shock protein

expression by targeting HSF1 transcription factor activity (Yo-

kota et al., 2000; Westerheide et al., 2006). Therefore, they not

only inhibit the expression of HSC70 and HSP72 but also block

expression of numerous genes regulated by HSF1. Further

work is required to identify compounds that could specifically in-

hibit both HSC70 and HSP72 chaperones simultaneously to pro-

duce the promising molecular and cellular phenotype expected

from the results presented here.

In conclusion, we have shown that HSP72 can functionally

substitute for HSC70 in the HSP90 complex to maintain the ac-

tivity of this chaperone protein. We have also demonstrated that

dual silencing of both HSC70 and HSP72 produces a molecular

signature of ubiquitin-proteasome-dependent depletion of cli-

ents that is identical to that seen with pharmacologic HSP90 in-

hibitors. In addition, extensive apoptosis was observed in cancer

cells following dual silencing that could be attributed to the abro-

gation of the antiapoptotic properties of HSC70 and HSP72

alongside client protein depletion. The extent of apoptosis ob-

served after combined HSP72 and HSC70 silencing was far

greater than is commonly seen with pharmacologic HSP90 in-

hibitors, encouraging the therapeutic targeting of HSP70 iso-

forms in their own right. Importantly, the simultaneous silencing

of HSP72 and HSC70 in nontumorigenic cell lines did not result in

comparable growth arrest or significant apoptosis, indicating the

potential for a therapeutic window. We propose that combinato-

rial targeting of HSP72 and HSC70 may provide an attractive

approach to exploit both oncogene addiction and chaperone de-

pendence in cancer cells.

EXPERIMENTAL PROCEDURES

Tissue Culture and Cell Growth Inhibition

HCT116 human colon adenocarcinoma, A2780 human ovarian carcinoma,

U87MG glioblastoma, CCD-18Co nontumorigenic colon cell, and PNT2 hu-

man prostate epithelial cell lines were cultured as described in Supplemental

Experimental Procedures. Viability of cells was assessed by trypan blue stain-

ing and counting on a hemocytometer. Cell growth inhibition was measured

using the sulforhodamine B (Sigma) assay (Sharp et al., 2007).

Transfection with siRNA Oligonucleotides

siRNAs (Dharmacon RNA Technologies) were designed against the open read-

ing frame of HSP72 (HSPA1A; accession number NM_005345) or HSC70

(HSPA8; accession number NM_006597). Two active sequences were used

for studies against HSP72 (designated HSP72A or HSP72B) or HSC70 (desig-

nated HSC70A or HSC70B). Transfection controls were the relevant popula-

tion of cells treated with siRNA universal buffer alone (buffer-only control;

Dharmacon RNA Technologies), cells treated with siRNA buffer with Oligofect-

amine (mock control), or cells transfected with a scrambled control siRNA

sequence (Dharmacon RNA Technologies). We also used inactive control

siRNAs that were identical in sequence to the HSP72A and HSC70A siRNAs

apart from inversion of the two central bases. Sequences for control and active

siRNAs as well as transfection details are described in Supplemental Experi-

mental Procedures.

Immunoblotting and Immunoprecipitation

Protein extraction, immunoblotting, immunoprecipitation, and antibodies used

are described in Supplemental Experimental Procedures.
Ca
Electrochemiluminescence Immunoassay

A Mesoscale Discovery system was used to measure levels of caspase-3 ac-

tivation and PARP cleavage (Raynaud et al., 2007).

Proteasome Inhibition and Preparation of Detergent-Insoluble

Fractions

Concentrations of proteasome inhibitors used and preparation of detergent-

soluble and -insoluble fractions are described in Supplemental Experimental

Procedures.

Morphological Analysis

Cells were harvested 72 hr after transfection, washed once in PBS (BDH),

fixed, and embedded (Ronen et al., 1999). For light microscopy, 1.0 mm sec-

tions were cut, dried onto microscope slides, stained with toluidine blue

(TAAB Laboratories), and viewed under a Leitz Diaplan microscope. Images

were recorded using a Leica DFC320 digital camera.

Flow Cytometry

Cell-cycle distribution was analyzed by flow cytometry using propidium iodide

(Hostein et al., 2001).

SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Experimental Procedures, Sup-

plemental References, and six figures and can be found with this article online

at http://www.cancercell.org/cgi/content/full/14/3/250/DC1/.
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