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§0. introduction 

This paper concerns the theo_ry of recusion on initial segments of the 
ordinal numbers wlfich was originated by Kripke [4] and Platek [ 12]. 
For any admissible ordinal a,  let R a denote the lattice of a-r.e, sets and 
let A(R a) denote the Boolean algebra generated by Ra whose elements 
are finite unions of differences of a-r.e, sets. Denote the quotients of 
R a, A(R o) by the ideal of  finite sets by R* ,  A(R~) and by the ideal 
of bounded sets by R~, A(Ra ~) respectively. Also, let Qa denote the 
lattice of t~-r.e, subsets of co, and let A(Q~), Q~, A(Q*) denote, 
respectively, the Boolean algebra generated by Qt~, and the quotients 
of Qt~ and of A(Qa) by the ideal of  .mite sets. Note that Q,~ is the 
lattice of II~ sets. 

We shall consider the first order language with function symbols 
n,  o,  ' and with unary predicate symbols E, L, and in which quantifiers 
~ re restricted to ranging over the domain of the predicate L. The langu- 
age will always be interpreted in a Boolean algebra generated by a 
lattice; n ,  u ,  ' will be interpreted as meet, join, complementation, 
respectively, E(x) will be interpreted as "x is the zero element of the 
lattice", and L(x) will be interpreted as "x is an element of the lattice". 

1 ) This paper is based on a portion of the author's Ph.D, thesis (M.I,T, 1969) supervised by 
Gerald E. Sacks and supported by an N.S.F. Graduate Fellowship. 
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We are concerned with determining which sentences of  this language 
are true when interpreted in the Boolean algebras and lattices which 
were defined in the preceding paragraph. 

Lachlan [ 5 ] has given a decision procedure for the AE-sentences of 
this language when interpreted in A(R,o*). The principal goal of this 
paper is to show that the same decision procedure works for A(R*),  
A(Ra#), and A(Q~*) for all admissibles ~ which are projectible into co. 
As an immediate consequence we get that any two-quantifier sentence 
is true in A(R,o*) if and ox:ly if it is true in A(R~), A(R~), and A(Qa*) 
for any admissible a projectible into co. In other words, the lattices 
Ra*, R~ #, and Q~* are equivalent with respect to two-quantifier sen- 
tences. We shall also show, using results of Sacks and Owings, that this 
result is best possible. Note that this result gives a general criterion for 
taking theorems of ordinary recursion theory and "lifting" them to 
generalized recursion theory. 

This paper follows Lachlan [ 5] as closely as possible and leans 
heavily on that paper. This paper is self-contained to the extent that 
all the definitions and theorems of [ 5 ] are stated, but those proofs and 
sections of proofs which are identical to those in [ 5] have been omitted. 
For the sake of completeness, some sections of [ 5] have been copied 
exactly except for minor typographic variations. 

§ 1. Notation and definitions 

The reader is assumed to be familiar with the basics of recursion 
theory on the ordinals less than an admissible ordinal as o.,ginated by 
Kripke [4] and Platek [ 12]. Refs. [3, 7-11 ] are other excellent 
sources of material on the basics of  this subject. We now list some 
definitions taken principally from [ 3]. 

If E is a finite set of equations of Kripke's equation calculus, S ~  will 
denote the set of  equations resulting from ~many applications of  the 
deduction rules to E. An ordinal ~ is admissible it S ~  = St~÷l g for every 
finite set of  equations E. A p;~tial function f fro~a a to a is a partial 5- 
recursive function if for some finite set of equations E, f (7)  = 5 if and 
only if the equation g(3') = 5 is in Sa g. An a-recu~ "ire function is a 
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function which "~s partial a-recursive and total. A subset of  e is a-recur- 
siveO, enumerable (a-r.e.) if  it is the domain of a partial e-recursive 
function. A subset A of  a is a-recursive if  both A and A'  are a-r.e. A 
subset of ~ is a-finite if  it is e-recursive and if it is bounded below a. 
A subset A of  a is regular if  A n M is e-finite for every e-finite subset 
M of  a. The pro/eetum of an admissible a is the least ordinal/3 such 
that  some o n e - o n e  e-recursive function maps a into/3, a is pro/ectible 
into co if  the projectum of a is 6o. 

We shall always regard a Boolean algebra as a complemented distri- 
butive lattice with least and greatest elements; the least element will be 
denoted by ~b. 

The algebraic structures which are of  particular relevance are dolattices. 
A d-lattice is a pair (L, A) where A is a Boolean algebra, L i~ a sublattice 
of A containing file least and greatest elements, and where L generates 
A. Note that A is determined to within isomorphism by L. 

A d-lattice (L 1, A 1) is said to be a sub-d-lattice of a d-lattice (L, A) 
if A 1 is a subalgebra of A and L j = L n A 1- A d-lattice (L 1, A 1) is said 
to be isomorphic to a d-lattice (L, A) if  there is an isomorphism ofA 1 
onto A which maps L i onto L. An embedding Gf(L 1, A 1) in (L, A) is 
an isomorphism of (L 1, A 1 ) onto a sub-d-lattice of  (L, A). 

Let (L, A) be a d-latt 'ce and let b be in L and 4: 4, we denote by 
(L, A) I b the pair (L i, A l) where L 1, A 1 are L I b and A I b respectively, 
that is the restriction of L, A respectively to elements ~ b. It is easy 
to show that (L, A)I b is a d-lattice. A component of (L, A ) is a pair 
((L 1 , A 1 ), b) such that b is in L, b' is in L, b 4: 4, and such that  (L 1 , A 1) 
is (L, A) I b. We shall some ':,rues suppress b and speak of (L i, A 1) as a 
component.  

Let (L 1, A 1 ), (L2, A 2 ) be two d-lattices, their direct union (L 1, A 1) × 
(L 2, A 2 ) is defined to be (L 1 × L~, A 1 × A2) where L 1 × L 2 is the direct 
union o f L  1, L 2 andA 1 X A 2 is the direct union ofA~,  A 2. It is easy to 
show that the direct union is a d-lattice. A sequence (L 1, A 1), ..., 

(L k, A k) of d-lattices is a decomposition of(L,  A) if k > 1 and 

(1) (L,A)  = (L  x,A 1)x  ...× (L k Ak) .  

A d-lattice is called indecomposable if it has no decomposition. The 



382 M.Machtey, Admissible ordinals and lattices o f  ot-r.e, sets 

following is obtained easily by the same reasoning ([ I ], p. 68) which 

gives the corresponding result for partially ordered sets: 

Lemma 1.1. Every f inite decomposable d-lattice has a decomposition 

into a f inite number o f  indecomposable d-lattices; this decompositioJ~ 
is unique to within order and isomorphism o f  the components. 

A d-lattice is called f ini te if the order o f  its algebra is finite. 
Let (L, A) be any finite d-lattice. We define a partial ordering of  the 

atoms of  A as follows. If  b, c are atoms of  A we say b is within c 
written b < c if b =~: c and if for every d in L, c <__ d implies b < d. This 

is a partial ordering; for suppose b -< c in (L, A), then since A is gener- 
ated by the elements of  L, there exist c l, c 2 in L such that c I is the 
least member  of  L containing c, c 2 _< c 1 , and c = c I - c 2 . Now c 2 con- 
rains b but not  c, hence < is irreflexive. The transitivity of-< is imme- 
diate. We write b ~< c just if b = c or b -< c. The atom b is said to be 
just  within the atom c in (L, A) if  b -~( c and there is no atom d such 
that b -< d < c. An atom b is said to be outetmost,  innermost respec- 
tively, in (L, A) if there exists no atom c such that b < c, c -< b respec- 
tively. 

We now define the rank and characteristic of  a finite d-lattice. A 

path in a finite d-lattice (L, A) is a finite sequence of  atoms b I , b 2 , ..., b~. 

such that b 1 is outermost  and such that bi+ 1 is just within b i for 
1 < i < k. A path is said to end in a member b of A if the last member 
of  the path is <_ b. The rank of  a finite d-lattice is defined to be 

(n I , n 2 ..... n k) where n i is the number of  paths of  length i and where 
k is the greatest i such that n i ~ O. The possible ranks are well-ordered 

by the definition: (n 1 .. . . .  n k ) is less than, written <,  (m I ..... m h ) i f  
either k < h, or k = h and 

(Ex)(l  <_ x < h & (Ay)(x < y < h ~ ny =my) & n x <  m x ) .  

The characteristic sequence (or characteristic for short) of  a finite d- 

lattice (L, A) is now defined as follows. Let (1) be the decomposit ion 
of (L, A) into indecomposable components  arranged so that the com- 
ponents on the right have decreasing rank. Then the characteristic of  
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(L, A )  is the sequence r I , r 2 ... . .  r k where for 1 <_ i < k, r i is the rank of  
(Li,  A i ) .  T h e  possible characteristics are well-ordered by: (r 1 . . . . .  r k )  is 

less than,  written <,  (s I ..... s m) if either 

(Ex)( l  < x  <- k & 1 <_x < m &(Ay)(1 <__ y < x - 7  ry=Sy)  & r  x < S x ) ,  

or k <  m and r x = s  x for 1 < x_< k. 
The lattices Rc~, A(Ra),  etc. and our formal laa:guage for d-lattices 

were introduced on the first page of  this paper. 
For our formai language, a predicate P is called c o n s i s t e n t  if there is 

some d-lattice (1,, A) and some assignment of  values in L to the free 
variables of  P under which P is true. A sentence is valid if it is true in 
every d-lattice. 

Let P, Q be predicates all of  whose free variables are contained in 
(x  1 . . . . .  x m }. We say that P impl ies  Q written P I-- Q just if (Ax 1) ... 
( A x  m )(P -* Q) is valid. Let P be a consistent quantifierless (q-less) 
predicate containing just the variables x l . . . . .  x m . We say that  P is 
c o m p l e t e  if for every q-less predicate Q whose variables are contained 
in (x 1 .... .  x m } we have either P ~ Q o r P  t-- ~Q.  A complete q-less 
predicate is called a diagram. With any diagram D we associate a finite 
d-lattice (L, A) as follows. Consider the set T of  terms containing only 
variables from D. We define an equivalence relation ~ on T by: 

s ~ t ".ff D t-- E ( ( s  n t ' )  u (s' n t ) ) .  

The members of.4 are the equivalence classes into which ~ splits T; 
there can only be a finite number of  these. Meet, join, and complemen- 
tation in A are to be the operations induced by the respective formal 
symbols n ,  u ,  '. The members of  L are the equivalenve classes which 
have some representative t for which D t-- L ( t ) .  Thus every diagram 
gives rise to a unique finite d-lattice; and it is easy to see conversely 
that given any finite d-lattice (L. A) there is some diagram whose asso- 
ciated d-lattice is isomorphic to (L, A). The d-lattice of  D is uniquely 
determined by the property that  D is true when for 1 < i :5; m, x i is 
mapped into the equivalence class which it represents. In :referring to 
the d-lattice of  a diagram below we shall often not  distinguish between 
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terms and the co, responding equivalence classes. We can now define for 
diagrams the concepts defined for finite d-lattices. Two diagrams are 
i s o m o r p h i c  i f  their d-lattices are isomorphic. Let D, D 1 , D 2 be diagrams 
containing just the variables x I . . . . .  x m then we say that D is the direc t  

un ion  o f D  1 and D 2 provided there are terms t 1, t 2 containing just 
x 1 . . . . .  x m such. that  D F- E ( ( t  1 n t2) u (t 1 ' n t2')) , and such that  for 
i = 1 , 2  

D P ~ E ( t  i) & ~ E ( t / )  8= L ( t  i) & L ( t i ' ) ,  

and such that  for any term s containing only x 1 . . . . .  Xm, 

D i b  E(s )  i f fD  I- E(s n t i ) ; D  i [- L(s )  i f fD  I-- L(sn t i ) .  

A diagram is d e c o m p o s a b l e  if  it can be expressed as the direct union of 
two other diagrams, and i n d e c o m p o s a b l e  otherwise. Every diagram has 
a decomposition into indecomposable diagrams, and this decomposition 
corresponds precisely to the decomposition of  the d-lattice of  the d in  
gram. The r a n k  and character is t ic  of  a diagram are to be the rank and 
characteristic of  its d-lattice respectively. 

Two predicates P, Q are said to be e q u i v a l e n t  i f P  I- Q and Q ~- P. If 
P, Q are q-less predicates then we can tell effectively whether or not 
P J- Q, and thus whether or not  P, Q are equivalent. There are only a 
finite number of  equivalence classes of  q-less predicates containing only 
a fixed set o f  variables x 1 , ..., x m . We find it convenient on occasion to 
consider q-less predicates modulo equivalence. Thus we can say that, 
if  P is any q-less predicate, then P is equivalent to the disjunction of  all 

diagrams D whose variables are just those of P and which imply P 
(meaniqg that we select one diagram D for each equivalence class). 
Similarly, when we are considering terms constructed from some fixed 
finite set of  variables. 

§ 2. Separated d-I~ttices and existential statements 

In this section we shall show that a sentence 

( E x  1) ... ( E x  m) P ( x  1 , ..., X m ) ,  
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where P is a q-less predicate is true in the d-lattices (Ra, A(Ra)) ,  
(Ro~, A ( R ~ ) ) ,  (Ra#, A(Ra#  )) for any admissible a and in (Qa, A(Qa)),  
(Qo~, A(Q~*)) for ~ projectible into ¢o provided only that P is consis- 
tent. We shall rely heavily on the theorem that if  A, B are a-r.e, sets 

then there exist disjoint a-r.e, sets A l, B1 such that A 1 ~ A, B 1 c__ B, 
and A I u B 1 = A t.J B. This suggests the following. Call a d-lattice 
(L, A)  separated if  for any pair x, y of elements of L there exists a 

disjoint pair x I , Yl of  elements of  L such that x I < x, Yl <- Y, and 
x 1 u y I = x u y.  For a finite d-lattice the property of being separated 

can be expressed in another  way. 

Lemma 2.1. A finite &lattice (L, A)  is separated i f  and only i f  there 
exist elements b 1 . . . . .  b m o f  L such that 

(2) (Ax)l<~x<~mtAY)l<~y<~m(bxC~ b 7 = q~ or bx<<. by) 

and such that every element o f  L is the union o f  some subset o f  

b I . . . . .  b m . 

For a proof  of  Lemma 2.1 see I_achlan ([51, p. 127). We say that  an 
element of a lattice can be split non-trivially if  it can be expressed as t,he 
union (ioin) of  two non-zero disjoint elements of the lattice. For  any 
finite separated ,t-lattice the elem,'ats of  the lattice 4: 4~ which cannot  
be split non-trivially in the lattice are called canonical generators; it 
follows from Lachlan's proof  of  Lemma 2.1 that any element of  the 
lattice can be expressed as a union ot canovical generators. Let (L, A) 
be a finite separated d-lattice with canonical generators b I . . . .  , bm. Any 
atom of A is of the form 

UIbi: i E S }  - U{bi :  i 5  T} 

where & T are disjoint ~ets whose union is { 1, 2, ..., m }. From (2) we 
may also suppose fl~at S, T have tae respective forms { j }, { i" bi ~ bt }. 
Thus there is a o n e - o n e  correspondence between canonical generators 

and atoms. Let % c i be the atoms corresponding to b i , b~ respective!y; 

note that  c i ~ c i if and only if b i <_ bj. Thus c i is just within cj if  and 
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only if  bj is minimal with respect to properly containing b i. There ca,~ 
only be one such i for each i from (2). Hence for each atom there is 
exactly one path in (L, A) which ends in that atom. This gives a o n e -  
one correspondence between canonical generators and paths under 
which the ordering of  canonical generators in the lattice corresponds 
to the ordering of  paths by extension. Thus the rank and characteristic 
of  a finite separated d-lattice are determined by the partial ordering of  
its canonical generators. 

The next  two lemmas are proved in Lachlan ([51, p. 128). 

Lemma 2.2. Le t  (L, A )  be a f ini te  d-lattice, then b is #z A - L i f  and only  

i f  there exist  a toms  e I , c 2 such that  c I <_ b, c 2 5~ b, and  c 2 is just  within 

C 1 • 

Lemma 2.3. Every  f in i te  d-lattice (L, A )  can be e m b e d d e d  in a f in i te  

separated d-lattice which has the same characteristic. 

Before we can p~oceed with Lachlan's work, there are two results 
of  ordinary recursion theory which must be oroved in abstract recm- 
~ion theory. They are given in the next two lemmas. 

Lemma 2.4. Let  a be any  admissible ordinal  Le t  A,  B be a-r. e. sets 

such that  B c_C_ A and  A - B  is no t  a-r.e. Then there exists an a-re.  set  

C such that  C c__ B, lub(C) = lub(8) C u (A - B )  is not  a-re.  and B - C 

is not  a-r.e. I f  B is regular, then C can be taken to be regular. 

Proof. Let/3 be the least ordinal < a such that B n (a -/3) is a-finite. 
Find an a-recursive set D such that D ~ (B n ~) and lub(D) = lub(B n/3): 
f0r example let D be enumerated by enumerating B n t3 and placing in D 
all elements which are greater than all previously enumerated elements of  
B n/3. Now because of  the condit ion imposed on/3, there will be a o n e -  
one a-recursive function mapping a into D. Then, we can find a subset 
C 1 of D such that C 1 is a-r.e., (71 is not  a-recursive, and lub(C 1 ) = lub(D). 
If B is regular, hence unbounded in a, we call take C 1 to be regular. Now 
we let C = C 1 u (B o (a -~ ) ) .  Clearly lub(C) = lub(B) and CC__B. 

Let D 1 = D u (B n (a -/3)) and note that D i is a-recursive and C ~ D  l . 
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C u (A - B) cannot be c~-r.e., because if  so A - B = (C u (A - B)) n 

(a - D  t) is a-r.e, contradicting our hypothesis. B - C cannot be a-r.e., 
because if so D - C 1 = ( / / -  C) n D is a-r.e, contradicting our choice of  
C 1 . I f B  is regular then C = C 1 is regular. This completes the proof  of  
the lemma. 

Lemma 2.5. Let  a be any  admissible  ordinal. Le t  A be an a-re . .~e t  which  

is no t  a-recursiv Then there exis t  d is /oint  a-r.e, sets B, C such ~hat 

A = B u C and  s~,~ch that  f o r  any a-re .  set  R,  i f R  - A is no t  a-r e. then 

R - B  and  R - C a r e  bo th  no t  a-re.  Moreover,  i f A  is regulai, tnen B, C 

can be taken to 5e regular. 

Proof. (This, of  course, is really just Friedberg's splitting theorem [ 2] .) 
Let a* be the p~ojectum of  a and let (R~}o<a, be an enumeration of  
all the a-r.e, sets. We will enumerate A along with (Ra)o<a , .  Every 
time we enumerate a member of A we will put it into either B or C./3 is 

said to be sat is f ied whet_ R~ intersects both B and C. 
Let 3' be enu~nerated in A at stage o. If every/3 such that 3, has been 

enumerated in ;~a by stage o is satisfied, put  3' in B and go to stage o 4 1. 
Otherwise, a t tack  the first unsatisfied ~ such that 3" has been enumer- 
ated in . ~  by stage o. If that Ro intersects neither B nor C, put  3' in B. 
Other~dse, put 3" in B or C accordingly as Ra n B or R a n  C is empty. 
Go t~ stage o + 1. 

Now assume R - B is a-r.e, for some a-r.e, set R, and that  R - B = Re,. 
No ~ is attacked v.,~ore than twice; after two attacks a ~ is satisfied; and 
only an unsatisfied 13 is ever attacked. Moreover, no partial a-r.e, func- 
tion can map an unbounded a-r.e, set o n e - o n e  into a proper initial 
segwent of a* (any a-r.e, set boun,~ed below a* is a-finite). Therefore, 
there is a stage o' after which no/5 ~ ~3' is ever attacked. Thus, after 
stage o', no member of A is enumerated which has previously been 
enumerated in R o,. This allows us to enumerate R - A. Similarly, for 
C. It is clear from the construction that  if A is regular, then 3, C will 
both be regt~lar. This completes the proof  of the lemma. 

We now return to Lachlan's paper by introducing some special termi- 

nology. Let P be any relation of  order n >_ 1 defined on R a. For an 
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n-tuple A of  t~-r.e, subsets of B we say that P(A) holds in B just  if  ft~r 
some o n e - o n e  a-recursive function F mapping a onto B we have 
P(F -1 (A)). Thus in this paper "A is a-recursive in B "  with A a subset 
c,f B will not  have its usual meaning, but  will mean simply that  B - A 
is w~'.e. 

Theorem 2.6. Let a be any admissible ordinal. Every finite separated 

d-lattice is embeddable in (R a, A(Ra)) ,  ( R * ,  A ( R ~ ) ) ,  and ( R ~ , A ( R ~ ) ) .  

Proof. Let (L, A)  be a finite separated d-lattice. It is sufficient to show 
that  (L, A) can be embedded in (R a, A(Ra))  such that the images of  the 
atoms of  A are unbounded.  For we then take equivalence classes modulo 

finite sets and modulo bounded sets to get the result. 
We define a map of the canonical generators b l, ..., b m of (L, A) into 

Ro~ which preserves disjointness and inclusion. Moreover, the images of  
the canonical generators will be regular, unbounded sets. Let m I ..... mi 
be the maximal canonical generators ;and let N t . . . . .  Nj be regular, un- 
bounded, pairwise disjoint =-recursive sets whose union is a. Map m x to 
N x for 1 _< x _ j. The definition of  the map now proceeds by induction 
"downwards"  with respect to the order of  the lattice. Let b be a canon- 
ical generator not yet  mapped such that all of  those which properly con- 
tain it have already been mapped. Let c be the least canonic~ generator 
which properly contains b, and let n I ..... nk be the canonical generators 
which are maximal with respect to being properly contained in c among 
which must occur b. Assume for induction that none o f n  1 ..... n k has 
been mavped. Let C be the image of  c, choose an t~-r.e, set B as follows: 

Case 1. I r e  is a maximal canonical generator, let B be any subset of  C 

which is t~-r.e., not  a-recursive, and reg~dar (hence unbounded). 
Case 2. Otherwise, let d be the least canonical generator which prop- 

erly contains c and let D be the image of  d. Let B be any a-r.e, subset of 
C which is regular, unbounded,  not a-recursive in C, and such that  
B o (D - C) is not a-r.e. We assume as part of  the induction hypothesis 
that C is not a-recursive in D, therefore by Lemma 2.4, such a B exists. 

Having chosen B we decompose it into a-r.e., regular, unbounded,  
pairwise disjoint sets B l, ..., B k such that each like B is not c,-recursive 
in C. This is possible by Lemma 2.5. We now define file images of  
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n I ..... n k to be B 1 ..... B k respectively. This completes the definition of 
the mapping; the definition is a good one because the induction hypo- 
thesis can be discharged. 

By inspection of  the definition of the mapping, we have that  the 
mapping of  the canonical generators induces an isomorphism of A into 
A(R a) such that  the images of  atoms of  A are regular, unbounded sets. 
Let A * b2 the image of A ; then file lattice L is mapped onto the sub- 
lattice L* of R~ whose canonical generators are the images B 1 ..... B m 

of b 1 ..... b m respectively. Let d be any member o fA - L; then by 
Lemma 2.2 there exist atoms e, f such that e < d, f g d, and such that  
f i s  just  within e. Let b, c be the canonical generators corresponding to 
e, f respectively. Then c is maximal with respect to the property of 
being properly contained in b. Let B, C be the images of  b, c respectively; 
by the construction the image of e is B - G where G is an tx-r.e, sub- 

set of B not a-r~cursive in B. Suppose that  D, the image of d, is c~-r.e.; 
then D contains B - G and so intersects C, otherwise we should have 
B - C equal to the ~-r.e. set (B n D) u (G - C) contrary to the provi- 
sion in the construction which makes C not  a-recursive in B. If c were 
minimal, then c = f, and we have a contradiction. Otherwise, by the 
construction there is an tx-r.e, subset H of C such that H u (B - C) i,; 
not a-r.e, and such that f i s  mapped into C -  H. Since D cannot  inter- 
sect the image o f f  we have D n C c_ H, therefore H o (B - C) is a-r.e. 
which is a contradict ion.  Therefore the image of any member o fA - L 
is not a-r.e. Thus (L*, A *) is a sub-d-lattice of (R a, A(Ra))  with the 
required properties, and the theorem is proved. 

Corollary. 2.7. Let ~ be an admissible ordinal projectible into ¢o. Every 

finite, separated d-lattice is embeddable in (Qa, A(Q~)) and (Qo~,A(Q*));  

Proof. It is enough to show the result for (Qw A(Qa)) with the images 
of atoms being infinite. To do this simply replace "regular, unbounded"  
throughout the proof of  Theorem 2.6 by "contained in ¢o". Note the 
the corollary is false for tx not  projectible into to. 

We wish to show that all possible existential sentences are true in the 
d-lattices mentioned in the statement of  Theorem 2.6 and in the state- 
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ment of Corollary 2.7. Consider any sentence 

(3) (Ex 1) ... ( E x  m ) P ( X l  . . . . .  x m ) 

where P is a consistent q-less predicate containing just the variables 
x 1 , . . . ,  x m.  Since P can be expressed as the disjunction of  all the dia- 
grams containing just x 1, . . . .  x m wtdch imply P, to show that any such 
sentence (3) is true in some d-lattice it is sufficient to show that any 
sentence (3) holds when P is a diagram. Let (L, A) be the d-lattice 
associated with P; this can be embedded in a finite separated d-lattice, 
which ha turn can be embedded in "all the d-lattices under consideration. 
L e t  B 1 . . . . .  B m be the images in the lattice under consideration of  the 
elements in (L, A) represented by x 1 . . . . .  x m respectively; then 
P ( B 1 ,  .. . ,  B , i  ) holds in the lattice under consideration, and so (3) is 
true in that lattice. We have proved: 

Theorem 2.8. A n y  s e n t e n c e  (Ex 1) ... ( E x m ) P ( x  1 . . . .  . x m ) wl, 'ere P is a 

c o n s i s t e n t  q-less p r e d i c a t e  c o n t a i n i n g  ]us t  t h e  variab;es x 1 . . . . .  x m is 

t rue  in al l  t h e  d - la t t i ce s  m e n t i o n e d  in t h e  s t a t e m e n t s  of  Theorem 2.6 
a n d  Corollary 2.7. 

There is a sense in which Theorem 2.8 is the best possible l esult. If 
sentence complexity is measured in terms of the number of zJternations 
of quantifiers in the prefix when the sentence is in prenex ~ormal form, 
then the class of one-quantifie~" (no alternations) sentences is the largest 
class of sentences for which the lattices covered by Theorerr, 2.6 could 
be equivalent. This is because it has been shown by Sacks [ 91 that there 
are countable admissible ordinals a such that Ra* has no ma::.imal ele- 
ments, and elsewhere by Sacks [3 ], that if a is an admissible 0rojectible 
into w then Ra* does have maximal elements. The sentence e~:pressing 
the existence of a maximal element is a two-quantifier sentenc,~, and 
therefore it cannot be that exactly the same two-quantifier sentences 
are true in all the lattices covered by Theorem 2.6. As has already been 
mentioned, Corollary 2.7 is false if a is not projectible into ¢o (the 
sentence (Ex) ~ L ( x )  is false in (Qa,  A ( Q a ) )  for such a). Therefore the 
d-lattices covered by Theorem 2.8 is the largest class of  such d-lattices 
for which the theorem is true. 
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§3. A preliminary reduction 

In this se~'tion we begin to generalize Lachlan's decision procedure 
for AE-sentences to all admissible ordinals projectible into co. To that 
end, for the remainder of this paper a will always denote an admissible 
ordinal projectible into co unless it is specified to be otherwise. Also, 
for the remainder of this paper (R, A (R)) will stand for any one of 
(R* ,  A (R*) ) ,  ( R ~ ,  A(R~#)), or (Q~, A(Q*)) .  Thus any assertion 
about (R, A(R)) is an assertion about all three of the d-lattices. We 
first narrow down the class of  sentences we need consider to those in a 
special form. To obtain the special form we need the followhag: 

Theorem 3.1. Let (L, A) be any finite sub-d-lattice of (R ,  A(R)) with 
characteristic c; there exists a finite separated sub-d-lattice (L *. A *) o f  
(R, A(R)) which is an extension of(L,  A) and whose characteristic is 
<_ c. Also, given (L, A) we can effectively enumerate a finite number o f  
Isomorphism types, together with for each type an isomorphism of  
(L, A) into it, so that (L *, A*) can be found in one of  these types with 
the isomorphism picking out (L, A ). 

Proof. Note: Lachlan has proved this theorem for any separated d-lattice 
in the place of (R, A(R)); therefore, the proof below is presented solely 
for heuristic reasons. 

It is sufficient to ?rove the theorem for Rt~ instead of  R~* and Rt~#, 
and for Qt~ instead of Q~*. Lachlan proves this theorem in three steps, 
which we state as follows: 

Lemma 3.2. It is sufficient to suppose that (L, A )'is indecomposable. 

Lemma 3.3. Suppose that (L, A) is indecomposable. Then there is a map 
T o f  the paths of(L,  A) into Ra or Q~ (depending on whe:her we started 
with (L, A) in (R~, A(Rt~)) or in (Qa, A(Qa)) respectively) satisfying the 
following three conditions: 

(i) For B in L, B = 0 (T(p). p is a path in (L, A) ending in B }. 
(ii) I f  p is a path extending a path q, then T(p) c_ T(q). 

(iii) I f  neither p nor q extends the other, then T(p) n T(q) = ~. 
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Lemma 3.4. For (L, A)  indecomposable, the sets T(p) f rom Lemma 3.3 
generate the required sub-d-lattice (L *, A *). 

The only non-algebraic fact which Lachlan uses in the proof of  Lemma 

3.2 is that if B is an infinite recursive set then (Ro~, A (R~) )  is isomorphi~ 

to (Ro~, A(R~o))I B. Lachlan uses this fact to establish that, assuming the 
theoiem holds in (R~,  A(R~) )  for (L, A) indecomposable, then it holds 

in (R~ ,  A(Rto))IB for (L, A) indecomposable. For the case where we 

start originally with a sub-d-lattice of  (Ra#, A(Ra#)) or (Q~*, A(Qa*)) and 
B is an unbounded t~-recursive set or an infinite a-recursive subset of  co 
respectively, it is certainly the case that (R a, A (R~)) is isomorphic to 
(R a, A (Ra ) ) I B or (Qa, A (Qa ) ) is isomorphic to (Qa, A (Q~ ) ) I B respec- 

tively. For the case where we start originally with a sub-d-lattice of  
(Ra*, A(Ra*)) and B is an infinite a-recursive set, we have that (R a, 
A(Ra))  I B is isomorphic to either 0xe, A(Ra) )  or (Qt~, A(Qt~)) depending 
on whether B is unbounded or not. In any case, since we are assuming 

the theorem for both Ra and Qc, in the case when (L, A) is indecompo- 

sable, Lachlan's proof of  Lemm~ 3.2 now applies. 

Lachlan's proof  of  Lemma 3.4 is purely algebraic; therefore, we now 

need only prove Lemma 3.3 to lzirove the theorem. 

Proof of  Lemma 3.3. Suppose that (L, A) is indecomposable and that 

al ,  a 2 . . . . .  a m are the atoms of(L,  A). For 1 _< i < m le tBi  be the least 
member of  L containing a i. We ca r~  out a construction as follows. 

Suppose we are given "boxes"  S l , S 2 . . . . .  S m corresponding to a 1 , a 2 ..... 
a m respectively. In the course of  the construction we shall place ordi- 
nals < t~ or natural numbers (depending on whether we are in Ra or in 

Qt~) in these boxes; henceforth we shall refer to the contents of  these 
boxes as elements. We shall also move elements from one box to 

another. A particular element can be in at most one box at a time. At 

each step we enumerate one element in one o fB  l, B 2 , ..., B m in such 
a way that ill the course of  the construction each B i has each o f  its 
members enumerated an unbounded set of  times. At the beginning of  

the construction, no element is in any box. 

Step o: Suppose n is enumerated in B i at this step. Case 1. a i is 

outermost and r~ is not  in any box, then put n in S i. Case 2. If n is cur- 
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rently in S~ and a i is j,~st within aj, then move n from Sj into S i. Other- 
wise, do nothing° 

Consider ar. element n of  a k . At some stage n will be placed in one of  
the boxes. For there exists i such that a k ~ a i and a i is outermost,  hence 
n will eventually be enumerated in B i and placed in S i if  not  in any box 
earlier. Alsc,, if  n is in S i at some stage, then a k ~< aj since B k ~ B/. If n is 
moved fron~ Sp into Sq then aq is just within %. Thus, if n ever reaches 
S k , it w'~; remain there. However, if  n never reaches S k , then n remains 
in S~ at all sufficiently large steps. In this case there exists ap such that 
ap is just within aj and such that  a k ~ %.  Since n is in ak,  it is in Bp and 
so n cannot  remain in S! forever. Thus if  n is in ak, it eventually reaches 

S k and stays there. 
Let al l ,  ai~, ..., ai. be any path in (L, A). We say that n follows this 

path if in the  above ~onstruction n is placed first in Si~ , next in Si2, ..., 
and next in Siq ; n need not  remain in Siq.  For any path p in (L, A) we 
let T(p) be the set of elements which follow p. It is easy to see that 
T(p)  is ~-r.e. for every p. Moreover, the mapping: p goes to T(p)  clearly 
satisfies the three conditions stated in Lemma 3.3. This completes the 
proof of  the lemma and of  the theorem. 

Consider now any sentence (Ax)(Ey)P(x,  y) where x is x 1 . . . . .  x m 
and y is Y l  . . . . .  Yn and where P is a q-less predicate. In any d-lattice this 
is equivalent to the conjunction of the sentences 

(4) (Ax)(Ey)(D(x) -> P(x, y ) ) ,  

where D runs through the finite number of  isomorphism types of  dia- 
grams containing just the variables x. A sentence of th ~ form (4) is 
called p r i m i t i v e ; i t s  characteris t ic  is defined to be the characteristic of 
D. By fl~e last theorem, given D we can enumerate a fiaite sequeace of 

pairs ((L 1, A1), F1), ..., ( (L  k, A k ) ,  F k )  satisfying the f¢ llowing condi- 
tions: 

(i) (L i, A i )  is a finite separated d-lattice with characteristic < that 
of D. 

(ii) F i is an isomorphism of  the d-lattice D into (L i, A i ) .  
(iii) If  G is an isomorphism of  the d-lattice o l d  in ta  (R, A(R)), then 
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for some ], 1 < ] < k, there is an isomorphism H of(L/ ,  A i) into (R,A(R))  
such that  G = HF/. We can find a natural number p and diagrams 
D 1 ... . .  D k containing just the variables z 1 . . . . .  zp such that for 1 < i <_ k 

the d-lattice o f D  i is isomorphic to (L i, Ai)  under a map K i say, of  the 
former irtto the latter. Further,  for each i, 1 < i < k, we can find terms 
X1 i, ..., Xmi containing just  z 1 .. . . .  zp such that  mapping x / i n t o  X] i for 
1 < ] <- m induces the isomorphism K i" 1Fi of  D into D i. Now we see 

that  (4) is equivalent in (R, A(R)) to the conjunction of  the sentences 

(Az) (Ey) (Di(z) ~ P(X1 i, ..., X m  i, y ) ) ,  

where z is z I . . . . .  zp, and where i runs from 1 to k. 
Call a primitive AE-sentence separated if it has the form (4) with D a 

separated diagram. We conclude that to obtain a decision procedure for 
AE-sentences in (R, A(R)) it is sufficient to reduce the decision problem 
for a separated AE-sentence to the decision problem .for primitive AE- 
sentences o.f lower characteristic. This is the program to be carried out 

below. 

§4. A necessary condition 

In this section we establish a certain condition as being necessary for 
a separated AE-sentence to be true in (R,A(R)) .  We need five facts 
about a-r.e, sets which can be expressed as follows: 

(i) The lattice of  a-r.e, subsets of  an a-r.e, set which is not  a-finite is 

isomorphic to the lattice of  a-r.e, sets. 
(ii) There exists B in R, B ¢ ¢, such that B' is in R and B' ¢ ~. 

(iii) R has maximal elements. 
(iv) For any a-r.e, set B ~ hich is not a-recursive there exist disjoint 

~-r.e. sets C, D such that  B = C u  D and such that tot  any a-r.e, set R, 
i f R  - B is not  a-r.e, then R - C and R - D  are both not  a-r.e. Moreover, 
if  B is regular then C and D can be taken to be regular. 

(v) For any regular a-r.e, set B which is not a-recursive or for any a-r.e. 
subset of  6o which is not  a-recursive there exists an a-r.e, subset C of  B 
which is regular or not respectively, and which has the following proper- 

ties: 
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(a) lub(B) = l u b ( B ,  C); 
(b) for every a-r.e, set R such that B u R ~ lub(B), lub(B) - ( C u  R)  

is finite; 
(c) for any a-r.e, sets R, S such that S ~_ R n (B - C), S u ,R  - B)  is 

a-r.e. 
Note that  ~.ny a-r.e, set C satisfying (a) and (b) is called a rn;~/or subset 
of B. 

The fizst two lacts are too elementary to require any comment.  The 
third fact was proved by Sacks [3].  The fourth fact was proved in 
Lemma 2.5. We now prove the fifth fact. 

Theorem 4.1. Fac t  (v) above  is true. 

Proof. Let B be epumerated one element at a time without  repetitions 
and call B~ = (b~)~< o the set co,staining the first a elements enumer- 
ated in B, We shall a-effectively enumerate the required set C in steps 
O, 1, ..., o, ... letting C O be the set of elements which have been placed 
in C before step o. For i < to, let X i run through all a-r.e, sets; enumer- 
ate the sets X i simultaneously letting Xi, o be the set of  elements enu- 
merated in X i by step o in this enumeration. Similarly, for i < co, let 
(R i, Si) run through all pairs of a-r.e, sets; enumerate the sets R i, S i 

simultaneously letting Ri, o, Si, a be the set of  elements enumerated in 
R i or S i respectively, by step o in this enumeration. 

To the end of satisfying condition (b) we define two helpful auxiliary 
functions: 

F(i, o) = min(min(Ba+ 1 ' n Xi, a'), lub(B)) ,  

and for × in B we define W(X, i) b j letting 

W(bo, i) = ~ ( 2i-J: j < i & Oo ~ XLo  & bo < F(L o)}. 

Note that  ,7(i, o)  is increasing in o for fixed i and that  !'_moF(i, o) = 

lub(B) if a,ld only if B u X i 3_ lub(B). 
To satisfy condition (c) we shall enumerate simultaneously with C 

e-r.e, sets T 0, T 1 ..... T i, ... for i <  co letting Ti, o denote the set of ele- 
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ments which have been placed in T i before step o. It is our in tent ion 

th,~t, i f  S i ~ g i n  ( B -  C), then T i u S  i shall b e S i u  ( R i - B ) .  Because 
of conflict with the need to satisfy condition (b), this intent ion will 
not be fulfilled, but we shall succeed sufficiently to make S t o (R i -  B) 
~-r.e. whenever S t ~ R i N (B - C). We say that X is protected by i at step 
o i f x  is in (B o t3 Ti, o )  - (C  o u Si, o) .  

The requirements which we want C to meet are 

and 
P2i: B u X i ~  lub(B)-~ lub(P) - ( C u  X i) finite, i <  co; 

P2i+l" Si ~ RiN (B - C ) - ~  S i o  ( R i - B )  ~-r.e., i <  co. 

In the construction we give these requirements priority according to 
the sequence Po, P1, -.- In step o we define a o n e - o n e  finite function 
D O . Let f be an a-recursive function mapping a o n e - o n e  into co. 

Step O. Define D0(0) = b 0 and Do(x) to be undefined otherwise. 
Step o (o > 0). Case 1. There exist z, x, y such that z < x < y < f(o);  

such that l i m  <o Dr(x) and limr< o Dr(v) are both defined; such that  

W(lim<oDr(x), z) < W(limr< ° Dr(Y), z) ; 

and such that  limr<oDr(x) is not protected by any i < z. Choose the 
least possible x, and the least possible y for that  x, enumerate 

l i m < o D ( x )  in C and let 

{ lim~<oDr(w) 
~o(w) = limr<oDr(Y) 

bo* 

if defined, w < f (o) ,  and w :/: x, y, 
i f w = x ,  
i f w = y ,  

and let Da(w) be undefined otherwise, where bo* is the least member of  

Bo+ 1 - C  such that b* 4: l imr<oD(w)  for any w < J'(o). 
Case 2. Otherwise. Let x be the least number such that  l imr<oD(X) 

is undefined, if  any. Let y = min(x, f(o)): let Do(w) = limr<oD~(w) for 
w < y ;  let Do(Y) = b ~ i f y  = x;  and let Dafy)  = limr<oDr (y) otherwise. 

O 

For each i < co let M(i) be the greatest number m < y such that  

Si. ° ~ Ri, ° n {Do(O),Do(i), . . . , D ; ( m ) } ,  
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and enumera te  in T i all members  0 ofRi,  o -Bd+ 1 such that  f ( 0 )  < M(i). 
This comple tes  the construct ion.  Let D = l imo~aD ~. 

Proposi t ion 4.2. Limr< o D~. is well-defined (i.e. either limr< o Dr(x) is de- 
fined or Dr(x)  is undefined for all sufficienHy large r < o, for all x < ~ )  
for all o <_ ~, and dora(D) = w. 

Proof. By induct ion  on o and x. Assume the proposi t ion false and let a 

be least and x least for that  o such that  limr<oDr(x) is no t  well-defined. 
It cannot  be that  Dr (x )  is undef ined  for all sufficiently large r < o. 
From our assumption on a and the fact that  there  are only finitely many 

/a < a such that  f(~t) <_ x it follows that  Dr(x) is def ined for all sufficient- 
ly large r < o. F rom the def ini t ion o f  W we have for any p, 7/in B that  

[z <_ x & W(p, z) < W(n, z)] -~ [W(p,x)  < W(n, x)] . 

Therefore,  by examining  Case 1 o f  the  const ruct ion we see that  in order  

for l imr<oDr(x)  not  to  exist, W(Dr(x), x) must  take on arbitrarily large 
integer values as r approaches o. But this contradicts  IV(Dr(x), x) < 2 x+l 
which fel lows immedia te ly  from the def ini t ion of W. Therefore  l imr<aD r 
is well-defined for all o < a. 

F rom the fact that  there are only finitely many  ~ < a such that  
f ( # )  <- x for any x < t~ and f rom the result o f  tl,.e preceding paragraph 

it follows by induct ion  on x that  for all x < 60, D(x) is defined.  Thus 

dom(D)  = 60. Also, observe that  since D o is o n e - o n e  for all o < a, D too  
i~ o n e - o n e .  

Proposi t ion 4.3. C = B - rng(D) and B - C has order type w. 

Proof. First we show that  for any t3 in B there is a o such that  for all 

T > O  

(5) t3 n (Br+ 1 - (rng(DT) u Cr+ 1 )) = ~b. 

Assume that  this is false and let t3* be the least/3 for which it fails; let ~ 

be the least t3 in B such that  13 ~~ < 13" and such that  for all o there  is a 
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r > o such that  

/3# ~ (t3" N (Br+ 1 - (rng(Dr) t.J C + I  ))) .  

Let o' be such that  for all r > o', b, is greater than ~*. That  o' exists 
follows from the assumptions on B in the statement of the theorem. 
N~ ¢¢ for any r '  > o' such that  

/3# ~ (fl* o ( B r , + I -  (rng(Dr,) t2 C ,+1))), 

there is a o"  > r '  such that/3# is ba* for all r '  < a < a"  and/3# is 
Do,,(x) for some x < ~ .  Thus, for all r > o' there is a/z > r such that  
Du(x) =/3 # for some x < co. From our minimality assumption on t3 # it 
follows that ifta' > la > tr' such that Du(x) =/3# and Du,(y) =/3a then 
y < x, and i~ there is a r,/~ < r < #' ,  such that D , (w)  ~/3 # for any 
w < co then y = x. Therefore, we have deduced that for some x < w, 

~# = D..(x) f,:)r all sufficiently large/a. But this contradicts our assump- 
tions about )#" therefore, for any/3 in B there is a o such that for all 
r > a (5) holds. 

It follows directly from the result of  the preceding paragraph that 
rng(D) has order type co. It also follows directly that C c__ (B - rng(D)). 
Let b a be a member o f B  - C, and let o' be such that  for all r > a', 

b r > bo and (5) holds with 13 = bo,. Thus there exist x(a') ,  x(tr' + 1 ), ... 
such that for all/a > tr', Du(x (/a)) = bo. By inspection of Step o of  the 
construction we have that x~,o, >_ x(o '  + 1) > Hence b o is in n~g(D). 
This completes the proof  of the proposition. 

Consider a fixed natural number e. Let 

G = { i: i < e & X i u B ~ lub(B) }. 

Let w = ~ ( 2 e - i :  i E G}.  Then for each i in G we have lim F(i, o) = lub(B), 
and for each i <_ e in G' we have limaF(i, o) < lub(B). Let H be the a-r.e. 

set 

(/a: (Ea)(/a ~ B a & (Ai) (i ~ G -,. (ia~ Xi. a & ~ < F(i, o))))}. 

Clearly lub(B) - B is contained in H, aad since B is not  a-recursive, 
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lub(B) = lub(B n H). Thus the  set 

B n H n (/a: (Ai) ( i~  G & i <_ e ~ / a  >_ limoF(i, o)) ) 

also has lub = lub(B). We conclude that  for each tr there is a 7" >_. o, 

such that  W ( b  r, e)  = w. We also observe that  for an a-f ini te  set o f  o~ 

W(b o, e) > w. 

Proposi t ion 4.4. For #Lt~t;itely many x < to, lV(D(x), e) = w. 

Proof. Fron~ our last ren,ark it is ~ufficient to show that  W(D(x), e) >_ w 

for infinitely many x. Suppose to  the contrary that  W(D(x)~ c) < w for 

all x >_ y ,  where y is fLxed ~ e. Then tiaere exists o such that  Du(x)  = 

D(x)  for a',l x < y and ta ">- o. Hence we can choose o and z such that  

W(b o. e) = w, Do(z) = bo, and z >_ y. It is easily shown by induc t ion  
that  for all/a >_ o 

(Eo) (v ~ o < z & W(Du(o), e) >_ w) . 

Thus W(D(o), e) > w for some o, v < v _< z. This is a cont rad ic t ion  and 
the proposi t ion  is proved. 

Propc';i t ion 4.5. For each i < w there exists v(i) such ;hat for  each 

v > v(i) and all suff icie~tly large o, v is no t  pro tec ted  by i at step o. 

Proof. We may suppose S i ~ R i t% (B - C) for otherwise  there  exists x 
such that  Do(x) is in Ri, a - S i ,  o, for all sufficiently large o, whence  
only a finite number  o f  e lements  are ever enumera ted  in Ti. Supposing 

that  S i ~_ R i n ( B - C ) ,  only a v in B n R i can ever be p ro tec t ed  by i, 

thus eventual ly any such v will e i ther  be in Si, o or C o , anti thereaf ter  
it can never be p ro tec ted  by i. 

Proposi t ion 4.6. W[D(x), e) = w for  all suf f icient ly  large x. 

Proof. If  not ,  choose x > e such that  

W(D(x),  e) < w, D(x )  > lub(v( i ) :  i < e } ,  
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and choose y > x such that W(D(y), e) = w. From Case 1, at all suffi- 

ciently large steps o we have D o ( z )  q~ l i m r < o D r ( z )  for some z <- x, which 
is a contradiction. 

Proposition 4.7. I f  S e ~ R e N ( B  - C) ,  t h e n  S c t9 ( R  e - B )  is a-r .e .  

Proof. By the separation property there exist disjoint a-recursive sets 

B*, H* included in B, H respectively such that B* u H* = lub(B) and 

such that B* and H* are regular i fB  is regular. It is clearly sufficient to 
show that, if we assume the hypothesis of  .the proposition, then 

( S  e u ( R  e - B ) )  N i--t* = ( S  e u T * )  n H *  

for a set T* which differs only a-finitely from T e.  The set of  steps at 
which case 2 occurs must be unbounded,  otherwise the domain of D 

would be finite. Hence T e certainly includes R e -- B .  Consider a step o 

at which a member # = l i m r < o D r ( X )  of  H* is enumerated in C, then 
W(/3, e) > w. Thus either z in Case 1 is > e, in which case we say 13 enters 
C in the f i r s t  w a y ,  or z < e and W(/3, e) > w in which case we say/3 
enters C in the s e c o n d  way .  

Let T* = T e - (/3:t3 enters C in the second way}. Then T *  ~ R e - B 

and R e c__ T * .  If v is in T *  - ( R  e - B )  then u is in B and either v is not  
in C or u enters C in the first way; if v is not  in C then u is in R e N (B  - C) ,  

~,ence u is in S e ; if ~, enters C in the first way then v was not protected 
by e when it entered C, and since v cannot be enumerated in T e after 

it enters C, v must be in S e. Therefore, 

( S  e t3 T * )  n H *  = ( S  e td ( R  e - B ) )  n H * .  

T e - T*  is certai , ly an a-recursive set. There is only an a-finite set 
of  members fl of  B satisfying W(fl, e) > w; therefore, this set has an 

upper bound ~ < lub(B). Since rng(D) has order type co, there are only 

finitely many x such that D ( x )  < ~. Therefore, there is a step o in the 

construction after which no member  of  B can enter C in the second way. 
We conclude that the set of  members of  B which enter C in the second 

way is a-finite. Thus T e - T* is a-finite, and the proposition is proved. 
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From the preceding proposition, P2e+t is certainly met. From pro- 
position 4.6, |¢(D(x), e) = w for all stffficientiy large x wher~ce D(x) is 
in X e if B t_J X e 3_ lab(B). From Proposition 4.3 it follows that 
lub (B) -  (Cu  X e) is finite ifB u X e 3_ lub(B), which proves that r~2e is 
alSO met. FinMly, tkat lub(B) = lub(B - C) follows from Propositions 
4.2 and 4.3, and that C is regular i fB is follows from Proposition 4.3. 
This completes the proof of the theorem. 

The necessary condition mentioned at the beginning of this section 
will be deduced from the following: 

Theorem 4.8. Let  (L, A) be a finite separated d-lattice. There exists a 

sub-d-lattice (L *, A*)  o f  (Ra, A(Ra))  in which all the atoms are un- 

bounded and regular, and there exists a sub-d-lattice (L*, A *) o f  

(Qa, A(Qa)) in which all the atoms are infinite, such that each (L *, A *) 
is isomorphic to ( L, A)  and satisfies the following .four conditions: 

(A1) Let A be an outermost atom in (L*, A*) which is not innermost, 
then A' is maximal. 

(A2) Let A 1, A 2 be atoms in (L *, A *) such that A 1 is just within A 2 
and such that A l is not innermost, then for  any a-r. e. set R such that 

R D_A 2, A] - R  is finite. 
(A3) Let A 1 , A 2 be atoms in (L*, A*) such that A ] is just within A 2, 

then ]'or any a-r.e, set R, lub(R n A2) = lub(A2) implies lub(R n A t) = 
lub(A 2)" 

(A4) Let A be an atom o f (L* ,  A*) and let B be the least canonical 

generator containing A; i f  R, S are a-r.e, sets such that S ~ R n A, then 
S u (r: _ B) is o~-r. e. 

Proof. To prove this theorem we use a refinement of the construction 
used in the proof of Theorem 2.6. Let m I ..... m/be  the maximal 
canonical generators of (L, A), and let N1, ..., N~ be paFwise disjoint 
a-recursive sets whose union is a or co respectively, and which are reg- 
tflar and unbounded when the union is a. We map m x to N x for 
1 <-_ x < ]. The definition of the map of the canonical generators of 
(L, A) now proceeds downwards with respect to the inclusion of tile 
lattice. Let b be a canonical generator not yet mapped such that all 
those which properly contain it have already been mapped. Let c be 
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the least canonical generator which properly contains b, and let n 1 ..... n t 
be the canonical generators which are maximal with respect to the 
property of being properly contained in c; among them must occur b. 
Assume for induction that  none of  n 1 . . . . .  n k has already been mapped. 
Let C be the image of c, and choose an element L" of R as follows: 

Case I.  If c is a maximal canonical generat~r, let B be any a-r.e, sub- 
set of C which is maximal in C and which is regular and unbounded if 

Cis.  
Case 2. Otherwise, let d be the least canonical generator which prop- 

erly contains ,: and let D be the image of  d. Let B be an ~-r.e. subset of 
C which has the following properties: 

(i) lub(C) = l u b ( C -  B); 
(ii) for every a-r.e, subset ,? of  D such that C t_J R = D, D - (B t.J R)  

is finite; 
(iii) for any t~-r.e, subsets R, S of  D such that S _~ R n (C - B), 

S u ( R  - C) is ~-r.e.; 
and such that B is regular and unbounded if C is, Such a B can be found 
by facts (i) and (v) above provided C is not  ~-recursive in D, which we 
assume as part of  the induction hypothesis. 

Having chosen B we decompose it into pairwise disjoint u-r.e, sets 
B 1 . . . . .  B k such that each B i is regular and unbounded i fB  is and such 
that for any t~-r.e, subset R of  C, R - B not  ,-r.e. implies R - B i not 
a-r.e, for each i. We let the images of.,gl, ..., n k be B 1 . . . . .  B k respec- 
tively. It is clear from the proof  of Theorem 2.6 that this gives a well- 
defined mapping which is an isomorphism of  (L, A) onto a sub-d-lattice 
(L*, A*) of (R, A(R))  because this construction is a refinement of that  
given in the proof  of Theorem 2.6. Also, (AI)  is clearly satisfied 

through Case 1. To prove (A2) consider atoms A 1, A 2 of (L*, A *) 
such that  A 1 is just  within A z and such that A 1 is not innermost. By 
the correspondence between atoms and canonical generators there are 
canonical generators B 1 , B 2 in L* and members C 1, C 2 of L* such that  
C1 c_ B1 c_ Cz C__B2,A 1 =B1 - C ~ ,  A z = B  2 -  C 2 , a n d s u c h  t h a t C 2 - B  ~ 
is a-r.e, and regular if  C 2 is regular. Let R be a~ny ~-r.e. set ~_ A 2 then 
R t.J (C 2 - B 1 )  is an a-r.e, set which is complementary to B 1 in B 2 . By 
Case 2 we have C 1 a major subset o f B  1 in B 2 whence (B 1 - C 1 ) - 
(R u (C 2 - B  1)) is finite, whence A 1 - R  is finite. Thus (A2) is satisfied. 
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With the same notat ion let R now be an a-r.e, set such that lub(R o A 2) = 

lub(A 1)" Then (R n B2) - C  2 = R n A 2 is not  a-r.e, since A 2 is dear ly  
immune, and the construction o f B  1 makes (RN B 2) - 3 1  not a-r.e, also. 
I fA 1 is innermost, i.e. if  A a =  B 1 , it follows that lub(R "~/?.~) = lub(A2), 
since we can replace R by the portion of R above a leve! arbitrarily high 
below lub(A 2) and still have the preceding sentence hold. Olherwise, 
then C 1 is constructed by facts (i) and (v). Note that f iom the construc- 
tion it follows that  any atom which is not  innermost ha~: order type o~. 
If lub(R N A 1 ) ~  lub(A2) then R n A 1 is finite, hence a.r.e., whence 
(R n A i )  u ((R n B2) - B1) is a-r.e. (from peroperty (el in fact (v)), 
which is impossible. Thus in any case lub(R n A1) = lublA2) , and (A3) 
is proved. 

Let A be an atom of (L*, A*) and let B be the least canonical gener- 
ator containing A. Let C be the union of  the canonical generators 
properly contained in B; then A = B - C. Let R, S be a-r.e, sets such 
that S ~ R n A. We wish to prove that S u (R - B) is a-r.e. This is 
trivia; if A is either innermost or outermost, fl~us suppose A is neither 
innermost nor outermost,  and without loss of  generality, suppose S c__ B. 
Let B = B 1 ... . .  Bp be a maximal increasing sequence of canonical gener- 
ators. Then Bp is a-recursive. Since C is constructed by (i) and (v) in 
Case 2 we have that 

S u ( ( R  3 i ) n B  2) 

is a-r.e. Now 

S u ((R - B 1 ) n ;~'2) ~ R o (B 2 -- C2) 

where C 2 is the union of  the canonical generators properly included i r  
B 2. Thus we may repeat the argument i f p  > 2 to see that  

( S u ( ( R - B  1)NB2)  ) U ( ( R - B  2) o B 3 ) = S U ( ( R -  B I ) o B 3 )  

is a-r.e., and so on. Thus S u ((R - B 1 ) o Bp) is ~-r.e., whence S w (R - B )  
is c~-r.e. This completes the proof of (A4) and of  the theorem. 
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Consider now the separated AE-sentence 

(Ax)(Ey)(D(x) ~ P(x, y ) ) .  

Let  (L, A )  be the d-lattice of  the separated diagram D. From Theorem 

4.8 we can find a sub-d-lattice (L*, A *) of  (R  a, A ( R ~ ) )  or (Qa, A ( Q e ) )  

in which all the atoms are unbounded and regular or infinite, respec- 
tively, and which is isomorphic to (L, A) and satisfies (A I ) - (A4) .  Now 

x is x 1 , ..., x m , and we let B 1 , ..., B m be the images in L* of the ele- 
ments represented by x 1 . . . . .  x m respgctively in L. Clearly, D({ B 1 }, .... 
(Bm ))  holds in (R, A (R)). Suppose that the separated AE-sentence we 

are considering holds in (R, A (R)), then there exist a-r.e, sets C l ..... C n 

such that P({B1 }, ..., ( B m  }, (CI} , .... {Cn) )  holds in (R, A(R)). Let Q 
be the unique diagram containing just the variables x, y such that 

Q((B 1 }, ..., {Bm ),  {C 1 ), ..., (Cn} )  holds in (R, A(R)). Then certainly 
Q implies P. Let (L 1, A1) be the d-lattice of  Q, then (L, A) is a sub-d- 
lattice of  (L 1 , A 1 ). From (A1) - (A4)  we can deduce the following: 

(B1) An outermost  atom of (L, A) which is not innermost is an atom 

of (L  1 , A1). 
(B2) If al is an atom of (L 1~ A t) contained in an atom a of (L, A) 

such that a is just within b and not innermost, then there is an atom b t 
of (L 1 . A 1 ) contained in b such that a l ~  b 1 . 

(B3) If b 1 is an atom of (L l, A l ) contained in an atom b of (L. A ) 

and i ra  is just within b, then there exists an atom a I of  (L I , A l ) con- 
tained in a such that al < bl .  

(B4) If a 1 , b 1 are atoms of  (L 1, A l ) contained in the respective atoms 
a, b of  (L, A), and if al is just within b l ,  then a = b or a is just within b. 

We have (B 1) directly from (A1). Suppose the hypothesis of  (B2). 

For each b I contained in b let t 1 be the least member o fL  1 containing 

b 1 . From (A2) the union of  all the t t covers a since it covers b, whence 
for some b I we have a 1 < b 1 . This proves (B2). Suppose the hypothesis 
of (B3), and let t 1 be the least element o f L  1 containing b I . From (A3), 
t 1 n a 4= 0, and so a 1 ~ b i for some a 1 contained in a~ This proves (B3). 
Finally, suppose the hypothesis of  (B4) and that a ~ b. Since L is a sub- 
lattice of  L 1, a ~ b. Let c be the atom of (L, A) such that a is just within 
c, and let t I be the least element o f L  1 containing b 1 . For each atom c 1 
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of (L I , A 1 )  contained in t I n c  let s 1 be the least element o f L  1 

containing c I . Then the union Sl* c? all the s 1 is >_ t 1 n c. From (A4), 
Sl*U (t I - u )  is in L 1 where u is the least element of L containing c. 
Hence t I <_ s~* u (t  I - u), whence t I n u < sl*. Thus a~ is contained 
in some s I , and s~ there exists c 1 contained in c such ttaat a I :~.;, c 1 ~ b 1 . 

This completes the proof of (B4). 

Thus for (Ax)(Ey)(D(x) -* P(x, y)) to be true in (R, A(R)) where D 
is a separated diagram it is" necessary that there exists a dial.ram Q con- 
taining just the variables x, y such that Q(x, y) implies D(x~ and P(r., y) 
and such that (B 1 ) - (B4)  hold. 

§ 5. The Decision Procedure for AE-sentences 

Let x. y stand for x 1 ... . .  x m and Yl ..... Yn respectively. Call the 
separated sentence (Ax)(Ey)(D(x) ~ g(x, y)) potentially true in 
(R, A(R)) if it satisfies the condition shown to be necessary in the last 
section. In the statement of  the following theorem "holds"  means 
"holds in (R, A(R))" ,  and (B}, {C} abbreviate {B1}, ..., {Bm } and 
{C 1 }, ..., { C, } respectively. 

Theorem 5.1. Let (Ax)(Ey)(D(x) ~ P(x, y)) be a separated sentence 
which is potentially tp~e in (R, A(R)). Let  Q(x, y) be a diagram which 

implies D(x) and P(x, y) and such that (B 1)-(B4)  are true when (L, A ), 

(L 1 , A 1) are the d-lattices o lD .  Q respectivei.v. For any m-tuple B such 
that D((B}) holds either there exi~,ts an n-tuple C such that Q((B) ,  {C]) 
holds or there exists an a-recursire set C and a diagram D*(x,  y)  o f  

characten\~'tic less titan that o l D  such that D*( (B}, {C})holds. 

Proof. Suppose tile hypothesis of the theorem holds. We at tempt  to 
construct an a-tuple C such that Q((B}, (C}) holds. We may suppose 
without loss o ~ generality that the m-tuple B generates a sulyd-lattice 
(L *, A *) of  (t~ a . ,  '(Rt~)) or (Qa, A(Qa))  which is isomorphic to (L, A ) 
and which has only infinite atoms or unbom,ded atoms whichever is 
appropriate. For C to make Q((B}, {C }) hold in (R,A(R))  the follow- 
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ing conditions are sufficient by Lemma 2.2: 
(C1) For each atom a 1 in (L 1, A 1 ), al(B, C) is infinite or unboundea,  

whichever is appropriate; where for any term t containing only the 
variables x, y we let t(B, C) denote the interpretaticn of ; when x, y are 
interpreted as B, C respectively. 

(C2) For each pair of  atoms a 1, b 1 of  (L 1, A 1 ) such that a I i: just 
within b 1 and for each a-r.e, set R, i fR  ~ b I (B, C) .:.hen R n a,(B, C) ~ $. 

(C3) For each term t 1 which is equal to ~ in (L l, A 1), tl (B, C) = ~. 
(C4) For each term t I in L 1 , t 1 (B, C) is e-r.e. 
Our construction of  the e-r.e, sets C attempts to meet (CI) - (C4) .  

Before we state the corstruct ion we need the following: 

Lemma 5.2. There is a f unc t ion  C, de f ined  on each pair (a 1 , a) such that  

a is an a tom o f ( L ,  A )  and  a 1 is an a tom o f ( L  1 , A 1 ) not  contained in an 

innermost  a tom  o f  (L, A), for  which the fo l lowing  hold. 

(D1) Ira,  b are a toms  o f ( L ,  A )  such that a ~ b, then C(a 1, a), 
C(a 1 , b) are a toms  o f  (L 1 , A ! ) such that C(a 1 , a) < C(a 1 , b). 

(D2) I ra*  is an a tom o f ( L ,  A ) containing a 1 , then C(a 1 , a*) = a 1 . 

(D3) C(a 1 , c )  <- a. 

Proof. This is a purely algebraic lemma, therefore we omit its proof  and 
refer the reader to Lachlan ([ 5 ], p 141). 

Before continuing with the proof  of  the theorem, we separate the 
cases for R equal to Re*, R # ,  and Q * .  We shall deal first with the 
cases R = Re* and R = Qa*- The construction we give will have the 
property that  if  all the sets B are subsets of  co then s, rill be C and C. 
The case of  R = R ~  will be dealt with later. 

Before ~ving the construction we can dispose of  some of the sub- 
conditions which go to make up (CI), (C2). For eacl innerrr, ost atom 
a of  (L, A) we choose an inEnite a-recursive subset 14I c f e(L). Then 
(Re,  A ( R a ) ) I W  will be isomorphic to (R e, A ( R e ) )  or (Qe,  A ( Q a ) )  de- 

pending on whether W is unbounded or bounded. P3 Theorem 2.6 and 
Corollary 2.7 we can choose the intersections of  the sets C with W so 
that  the sub-d-lattice of  (R e, A (R e) )  I W generated by them has no finite 
atoms and is isomorphic to (L I, A 1 ) under the map which takes B, C, W 
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in to  x, y, a respectively. This is enough to satisfy (CI)  when a 1 is cor~- 

tained in an innern~ost a tom ,af (L, A) and (C2) when both  a l and b 1 

are conta ined  in an innermost  a tom of  (L, A).  At the sa~ne t ime (C3) 
and (C4) are satisfied as regards the intersect ions of  the s'As C with W. 

The rest o f ( C 1 )  can be split in to  condi t ions  (a I ; i )  where a I runs 
through all the a toms o f  A 1 not  conta ined  in innermost  a toms o f  (L, A) 

and i runs through all natural numbers.  This condi t ion  requires that  
the cardinali ty o f a  1 (B, C) be at least i. The rest of  (C2) can be split 

in to  condi t ions  (a 1 , b 1 ; i) where ~'a 1 , b I ) run~ through all pairs o f  a toms 
o f A  1 such that  a 1 is just  within b 1 and such that  b 1 is r~ot con ta ined  
in an innermost  a tom o f  (L, A), and where i runs through all natural  
numbers.  T'lis condi t ion  requires that  if  X i is the i-th a-r.e, set then 
v -~i - bl  (B, C) implies X i n a 1 (B, C) 4: ~b. We ~rrange all the condi t ions  
(a 1 ; i),  (a I , b 1 ; i) in an effective o n e - o n e  cor respondence  with the 
natural numbers .  When we speak o f  t he  k - th  c o n d i t i o n  we mean  the  
one corresponding to the natural number  k. 

Let T be the union  o f  all the a-recursive sets W as a runs through the 

innermos',  a toms o f  (L, A). Just  as in the  p roof  o f  Lemma 3.3 let 
A l ,  A 2 . . . . .  AP  be all the a toms o f ( L * ,  A*)  and l e t a  1 , a 2 .. . . .  aP be the 
a toms  o f (L .  A) so that  A i = ai(B), and let S 1 . S 2 , ..., SP be respective 

corresponding boxes. At each step a of  the cons t ruc t ion  we may place 

one m e m b e r  of  T' in an ou te rmos t  box, or  we may move an e l emen t  
from one box to ano ther  just  within it. (We can',_,, over the partial 

ordering ~ from a toms to boxes via the correspondence . )  From the 

p roof  of  Lemma 3.3 this can be done  s,~ that  for 1 < i < p any m e m b e r  
o f  T'  ¢3 A i eventually reaches S i and remains there. Our procedure  for 

this will be that  o f  Lemma 3.3 except  that  we may temporar i ly  restrain 
some e lements  f rom leaving ou te rmos t  boxes. These restraints will be 
made explicit  below. 

We let $1 l, $12 . . . .  , S lq  be boxes c~rresponding respectively to the  
1 a toms  a I , a l" ,  .... alq of  (L 1 , A1). At each step, if an e lement  is placed 

in an S-box or moved  f rom one S-box to ano the r  it will also be placed 
in an Sl-bOx or moved  from one  S 1-box to  a~.other respectively. This 
will be done  so that  at any stage, i f  ~ ~s in a box S cor responding  to an 

a tom a o f  A, then  at the same stage ~ is in just  one S l -box  and that  S 1- 
box corresponds to an a tom a I o f A  1 which is < a. Simul taneously  wi th  the 
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rest of  the construction we shall be enumerating all the a-r.e, sets Xi; we 
let Xi, o denote the set of  elements which have already been enumerated 
in X i at the beginning of  step tr. If  Y denotes a box, then Y(tr) denotes 
the set of elements which are in Y at the beginning of  step o. 

The auxiliary functions f, G are def'med as follows. If the k-th condi- 
tion is (a 1 ; i) where a I corresponds to the box S 1 , then for all elements 
X let f(k, X) be the least tr such that X ~ $1(o) if  one exists and unde- 
fined otherwise: let G(k, r)  be the i-th member of  {f (k ,x) :  X ~ Sl(r)} 
in order of magnitude if one exists and let it be ~" otherwise. If the k-th 
condition is (a 1 , b I ; i) where a I , b I correspond to boxes R 1 , S 1 respec- 
tively, then for all elements × let f (k ,  X) be the least o such that  

x ~ (RI ~o) n X~,o) u (S 1 (o) n xi, o') 

if  one exists and undefined otherwise; let G(k, r) be the least member of 

{ f (k ,  X): X G (R l(r) n Xi,,) u (S 1 (r) n Xc ')} 

if one exists and let it be r otherwise. Since G is not quite convenicnt 
for the construction, we define F trom it by double induction; but  first 
let g be any ~-recursive function such that  g(k, o) is increasing in o for 
k fixed, strictly increasing in k for o fixed, limog(k, o) = g(k) exists for 
all natural numbers k, and such that lim e g(k) = a: 

F(q, 0) = C(O, 0 ) ,  

F(k+ 1,0) = max t F(k, 0) + 1, G(k+ 1,0) )" 

F(0, o) = max{lub((F(0 , r )}r<o)  , G(0,o)},  o > 0 ; 

F ( k + l , o )  - max{F(k, o )+  1, G(k+ 1 ,o ) ,g (k+l ,o ) ,  

lub( ( F(k+ l, r)}r<o) ), o > O . 

It is also useful to make the convention that F ( -  l ,  u) = - 1. Now F(k, o) 
is increasing in o for k fixed, strictly increasing in k for (r fixed, and 

>_ G(k, o). Further, lub( { F(k, o)}o< ~) < ~ if and only if lub({G0,, o))o< ~) < 
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for all y <_ k, and for all r there exist k, o such that  F(k, o) > r. Finally, 

let t t(~, a) equal the least number  k such that  ~ <_ F(k, a) if  such a num- 

ber exists and let  it equal - 1  otherwise.  
For  any e l emen t / j  let h(~) be the first step u such that  ~ is enuraera ted  

in some set o f  L* corresponding to  an a tom o f A  * (see p roof  o f  Lemma 
3.3). If  at step a the procedure  in the p roof  of  Lemma 3.3 w,~uld move 
the e l ement  ~ from S i to S~ where S i is ou te rmos t  and H(h(~), o) = - l 
then in our present procedure  we do no th ing  and go to step a + 1. ] 'his 
is the restraint m e n t i o n e d  above, and is the only change in the proce- 
dure o f  Lemma 3.3. If  at step o an e lement  ~ is moved  from S i to S~ 
where S i is outermost ,  then  at that  step we assign ~ to the H(h(~),  o)-th 

condi t ion  and ~ remains assigned to the H(h(~). o)-th cond i t ion  for the  

rest o f  the vonstructior,.  
A condi t ion  (a I ; i) is said to be o f  the f irs t  kind; a condi t ion  

(a I , b I ; i) is said to be o f  the second k ind  i f a  1 , b 1 are conta ined  in the 
same a tom of  A, and to be o f  the third k ind  otherwise.  

If at step a o f  the const ruct ion an e l emen t  is put  in so l re  S-box or  is 
moved  from one S-box to another ,  the remainder  of  the o-th step o f  

the const ruct ion consists o f  the fol lowing two parts" 

Part 1. Let k be tJ'~ ~. least number ,  if any, such that  the k-th condi t ion  

is of  the second kind, (a 1 , b 1 ; t) say, and such that  there exists ~, in Xi. o 
where v has been assigned to the k-th condi t ion  and where ~, is current ly 

in the box o f  b 1 . If the k exists, move the least such v from the bo× of  

b 1 in to  the box o f a  I . 
Part 2. Case 1. At step a suppose that  ~ is placed in the ou te rmos t  

box S corresponding to the  a tom a o f A .  Place ~ in the ou te rmos t  box 

S 1 corresponding to the a tom a I o f A  1 which is equal to a in A 1. If 
Case 1 does not  hold,  then at step o some ~ is moved  from box SP to 
Sq and ~j is now or already has been assigned to some condi t ion .  

Case 2. ~ is or has been assigned to a condi t ion  (a 1 ; i) o f  the first 

kind. If  ~ is in the  box o f  C(a 1 , aP), we move it f rom that  one to the 
box o f  C(a 1, aq ). Otherwise,  ~ is in a box SI k say, then we move ~ from 
Slk in to  the box o f  C(al k, a q ). 

Case 3. ~ is or has been assigned to a condi t ion  (a I , b 1 ; i) o f  the 
second kind. If/~ is in the box of  C(b 1 , a p ), we move it f rom that  one 

to  the box o f  C(b 1 . a q ). Otherwise,/~ is in a box Sl  k say, then we move 

f rom S1 ~" in to  the box o f  C(al k, aq) .  
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Case 4. ~ is or  has been assigned to  a condi t ion  (a 1, b l ;  i) o f  the  third 

kind. If ~ is in the box o f  C(b I , a p ) and C(b 1 , a p ) ~ b I , then  we move 

f rom that  box in to  the  box o f  C(i~ l, a q ). If  ~ is in the  box o f  b I and 

a q contains  a 1, we move ~ f rom the  box o f b  I into the box o f a  I . Other-  
wise, proceed  as in Case 3. 

This comple tes  the construct ion.  For  1 < i _<_ n def ine  C i n T'  to 
consist o f  all e lements  ~ such that  there exists a box S 1 , corresponding 

to an a tom a I o f A  1 which is < Yi, and a o such that  ~ is in S l (o ) .  This 
defines the  sets C comple te ly ,  because their  intersect ions with T have 
already been chosen.  It  is clear that  all the  sets C are t~-r.e. As stated 
above, i f  at any stage g is in box S corresponding to  the  a tom a o f  A, 
then at the same stage ~ is in a box S 1 corresponding to  an a tom a 1 o f  
A 1 such that  a I is inc luded in a. This follows f rom (D3). From (D1) 
we see that  if  ~ is in s~i(o)  and ~ is in S1/(r) and o < r, then a; j ~ al z- 

It follows that  for each a tom a 1 o f A  1, a 1 (B, C)c) T'  consists o f  just  
those e lements  which eventual ly come  in to  S 1 , the box corresponding 

to a I , and remain there for the rest o f  the construct ion.  From this we 
see that  (C3) is satisfied, because every e l emen t  in T'  is in a l (B,  C) for 
some term a 1 which is 4: q~ in A 1 . It also follows that  i f  t I is any term in 

L 1 , then  t 1 (B, C) is a-r.e. For  i f a  l,  b I are any a toms o f A  1 such that  

a 1 ~ b 1 then b 1 < t I implies a I ~ t 1 , whence  

t 1 (B, C) n T' = (X: (Ea l ) (Es l ) (Eo)  (box S 1 corresponds 

to a t o m a  1 o f A  1 & x i s i n S l ( o ) & a  1 <_ t l ) } .  

The set on the right is clearly a-r.e, and so (C4) is satisfied. 

There aze two  possibilities to be considered.  First, suppose that  

!ub((  F(k, o)}o< a) < a for  every k. If  the k-th cond i t ion  is (a 1 ; i )  
then  from the fact that  lub({F(k ,  o)}o<t~)< a it follows that  
lub( (G(k, o ) )o <a )  < a and thus that  at least i e lements  eventual ly 

reach S 1 , the box corresponding  to a 1 , and remain there. Thus 
a 1 (B, C) c'~ T' has cardinali ty >__ i. If  the k-th condi t ion  is (a 1, b 1 ; i), 

then  we see that  

l U b o ( m i n { / t k ,  x): X~ ( R I ( e )  n Xi, o ) u  ( S l ( a ) n  Xi, j ) ] ) <  a 
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where R 1. S1 are the boxes corresponding to a I , b 1 respectively. There- 
fore 

(a I (B, C) n X,) u (b 1 (B, C) n Xi' ) 4: (p. 

L,a either event, the k-th condition is satisfied, and therefore ( C I ) - ( C 4 )  
are satisfied. 

The other possibility is that lub(( F(k, o)}~<e) = a for some k. Choose 
the least such k and choose o 0 such that 

(Ao) (At ) ( (o  < o o & t < k) ~ F,t,  o) = F(t, Oo)) . 

Now the k-th condition is concerned with a particular indecomposable 
compc~r~ent of (L, A) in the. sense that there is a unique term t k contain- 
ing just the variables x such that t~., t k' are both in L, t k 4: 4~ in A, such 
that no t which is < t k in L also has these properties, and such that in 
A 1 the atom(s) of  the k-th condition is (are) contained in tko We define 
C to be the union of tk'(B) and (X: X :s assigned to some condition 
other than the k-th), then C is clearly u-r.e. Mso at step o > o 0 if 

F ( k -  1, o o ) < h(~) <_ F(k, o) 

then we know that subsequently/j  cannot be assigned to any co~dition 
but the k-th. As × increases F(k,  ×) increases without  bound (below a). 
Thus we can a-effectively enumerate C' as well as C. Therefore C is a- 
recursive. 

Suppose that the k-th condition is (a I ; i). Let a* be the atom of A 
which contains a 1 . Consider ~ in C ' n  a*(B); we suppose for the sake of  
argument that such/j exists. Then in the construction ~j follows a path 
a il, .... a ip= a* in (L, A). From Cas,~s 1, 2 of step o we see that in the 
Sl-system/~ occupies in turn the boxes corresponding to the respective 
atoms C(a l, a il ), ..., C(a  1, alp ) = a 1 and that ~ remains in the last of  
these boxes indefinitely. This is because i f p  > 1, then ~ is assigned to 
the k-th condi'~on when it is moved from S i~ to S i2 . It follows at once 
that C' n a*(B" is finite; otherwise we should have a I (B, C) infinite 
whence G(k, u) would be bounded as a increases, whence 

lub( (F(k ,  a)}o< ~) < ~. 
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S u p p o s e t h e  k-th cond i t ion  is o f  the  second kind, (a I , b I ; i) ~ y ,  
where  a 1, b 1 are conta ined  in the same a tom a* o f A .  Consider the 
least ~ in C' n a*(B) as before;  then again ~ follows a path a q . . . . .  aip = a* 

in (L, A). F rom Cases 1 and 3 in step o we see that  in this case ~ occu- 

pies in turn the  boxes  o f  C(b t, d~ ), ..., C(b 1 , aip) = b 1 . But ~ does not  
necessarily remain indef ini te ly  in the box o f  b 1 . F rom Part 1 o f  step o 
we see that  in fact ~ remains in the  box o f  b~ just  if ~ is in X '" if ~ is in 

i ~ 

X i then  ~ eventually gets moved  f rom the boy o f  b 1 into the box o f  al  
where it remains indefini tely.  Thus if  any such ~ exists G(k, o) is 
bounded  as o increases, whence  lub( { F(k, a )}  ~<~) < a. Thus from our 
hypothesis  that  k is the least n u m b e r  such that  lub({ F(/~, o))o<~) = 
we again deduce  that  C' n a*(B)  is finite. 

Suppose finally that  the  k-th condi t ion  is (a 1, b 1 ; i) and o f  the third 
kind. Let a 1, b 1 be con ta ined  in the  respective a toms  a*, b* o f A .  Con- 
sider ~ in C' n b*(B). From Cases 1 and 4 of  step o we see that  while 
follows a path a 6 . . . . .  alp = b* in (L, A) ,  in the S 1 -system ~ occupies in 

turn the boxes of  C(b 1, aft) = aft, ..., C(b 1 , a/P) = b 1 and ~ remains indefi- 

nitely in the last o f  these. Hence C' n b*(B) is the same as C' n b 1 (B, C). 
l f~  is in T ' n C ' n a * ( B ) ,  then ~ follows the path a 6, ...,aip = b*, a* in 

(L, A), and in the  S l - sys tem ~ occupies  in tuna the boxes o f  C(b~, a fi), 
..., C(b I , aip) = b l, a I and remains indef ini te ly  in the last of  these. Thus 
T' c~ C' n a*(B) is the  same as T' n C' n a I (B, C) ~!so, since 

lub((F(k ,  cr))o<t~) = a,  we cannot  b.ave lub((  G(k, o))o< ~) < 0~ whence  

X i n b I (B, C) and X~ n T '  n a I (B, C) = 4). It follows that  X i ~ b*(B) n C' 
and that  X / n  T' n a*(B)  = 4). Let u. o, w be terms in L such that  u <__ o 
< w, b* = w - u, and a* = o - u. Then  C' ca (b*(B)  u u(B)) is a-r.e, since 

it can be e~pressed ~n the form 

C ' n  ( (X  i n T ' n  w(B)) U u(B) ) .  

At this point  we need  the fol lowing lemma: 

I .emma 5.3. Let  (K, B), (K 1 , B l ) be f ini te  d-lattices. Let  F be a one--one 

map o f  the a toms o r B  into the atoms o r B  1 such that i ra  ~ b in (K, B), 

then F(a) ~ F( b ) in ( I( i , ?-' l ). Then the characteristic" o f ( K ,  B) is less 

than or equal to the characteristic o f  (K l, B 1) and the characteristics are 

equal only i f  F is on to  and induces an isomorphism o f ( K ,  B ) o n t o  (K 1, B1). 
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Proof. Since this is a purely algebraic proposition, we omit the proof 
and refer the reader to L "hlan ([5],  p. 145). 

Now suppose that C has been adjusted so that the sub-algebra of 
(R a, A(Ra)) generated by B~ C has no finite atoms; this adjustment 
consists of adding one fini te set to C and subtracting another from it. 
This saves taking equivalence classes modulo finite sets, because after 
the adjustment the sub-d-lattice of (R, A(R)) generated by {B), (C} 
is isomorphic to tJ,~ sub-d-lattice of (R a, A(R~)) generated by B, C. 
We now compare the sub-d-lattice D = (L*, A*) of (Ra, A(Ra)) gener- 
ated by B with D(C) generated by B, C. Outside the indecomposable 
component C k (B) of D which is obtained by restricting to subsets of 
t k (B) file indecomposable components e fD  and D(C) are exactly the 
same, because C 3_ tk'(B) by the definition of C. Thus D(C) differs 
from D in that the component C k (B) of D is replaced by the two com- 
ponents of D(C) obtained by restricting to subsets of C n t k (B), 
C' n tk(B ) respectively. Denote these components by C(C), C(C') 
respectively; they may or may not be indecomposable. 

Define a map ef  the atoms of C(C) into the atoms of Ck(B) by 
mapping each atom of C(C) to the unique atom of Ck(B) which con- 
tains it. This map clearly wzserves the relation ~ ,  and so Lemma 5.3 
may be applied. An outermost atom of Ck(B) is an outermost atom of 
D and any element of an outermost atom of D does not get assigned 
to any condition; therefore, any element of an outermost atom of  
C k (B) is in C'. Thus an outermost atom of Ck(B) is not the image of 
~my atom of C(C), whence the charactedst.ic of C(C) is less than that of 

Define a nlap F of the atoms of C(C') inzo the atoms of C k (B) by 
mapping each atom of C(C) to the unique atom of Ck(B) which con- 
tains it. We may apply Lemma 5.3. If the k-tb condition is of the first 
or second kinds we know that C' n a*(B) is finite for some atom a* 
of A, whence F is not onto in this case. If the k-th condition is of the 
third kind (a 1, b: : i) say, where a s, b I are contained in the respective 
atoms a*, b* of A, then we know that C' n (b*(B) u u(B)) is ~-r.e. 
Because this set c(,ntains C' n b*(B) while excluding a*(B), we cannot 
have C' n a*(B) ~ C' n b*(B) in C(C'). Thus although F can be one-one  
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onto in this case, it cannot  induce an isomorphism of  C(C') onto  C~(B). 
In any event, C(C') has characteristic less than that of  C k (B). 

Let r be the rank of  C k (B); then the characteristic of  C k (B) is ( r ) .  
Let {r 1 .... .  r/} be the characteristic of  C(C) X C(C'). It follows that  
r i < r for 1 < i < / ,  and from that it follows that  the characteristic of  
D(C) is less than that o fD.  Letting D*(x, y) be the diagram such that 
D*(B, C) is true in (Ra, A(Ra)), the proof  of  the theorem is complete 
for the cases where R is R,?~ r,r Qa*" 

We now show how to modify the preceding proof  to handle the case 
of  R = Ra #. We begin by having the a-recursive subset ofa(B)  for each 
innermost atom a of  (L, A) be unbounded instead of  merely infinite. 
Then (Rt~, A(Ra)) I W will be isomorphic to (Ra, A(Ra)) and we may 
proceed as before. The next change has the condition (a I ; i) require 
that there be an element in a 1 (B, C) which is greater than g(i) = 
limo g(L o). Then if  the k-th condit ion is (a 1 ; i) we define f(k,  o) as 
before but we a r e :  the definition of  G(k, o) as follows: let G(k, r) be 
the least membcl  of  (f(k,  X): X ~ Sl (r) & X > g(k, r) } if one exists 
and let it be r otherwise. The rest of  that paragraph remains unchanged. 

The statement of  the construction and the definition of  the sets C 
remain unchanged. Likewise, tl~e proofs that (C3) and (C4) are satisfied 
need no change. The proof  that, assuming lub( (F(k, or)}o<a) < c~ for 
all k, (C1) and (C2) are satisfied needs to be chan.~eu only for the case 
of conditions of  the first kind; in that case it follows from 
lub({ G(k, a)} , ,<a)<  ~ that a I ~.B, C ) n  T' has an element greater than 
g(i) where the k-th condit ion is (a 1 ; i). 

We now give the changes in the proof  following the assumption that 
lub(.~F(k, o)}o<a) = a for some k. The first change is that if the k-th 
condition is (a I ; i) then it follows that  C' t3 a*(B) is bounded, instead 
of being f~nite. The next change is that we cannot  conveniently avoid 
taking equivalence classes modulo bounded sets, so we do not, we com- 
pare the sub-d-lattice D of  (R. A(R)) generated by {B) with D(C) gener- 
ated by {B), {C], The only remaining change is to note that if the k-th 
condition is of  the first or secoJLd kinds we know that C' n a*(B) is 
bounded for some atom a* of  A, whence our map of  atoms F is not  onto 
in this case. We have then made all the changes needed to show that if 
D*(x, y) is the diagram such that D*((B}, {C]) is true in (R, A(R)), the 
proof of the theorem is complete ;,,r the case R = Ra ~. 
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We are now ready to give the long-awaited decision procedure, By the 
conclusion of Section 3 it is sufficient to reduce the decision problem 
for a separated AE-sentence to the decision problem for primitive AE- 
sentences of lesser characteristic. Now, the separated AE-sentence 

(Ax)(Ey)(D(x) ~ P(x, y)) 

is false in (R, A(R)) unless it is potentially true; and if it is potentially 
true then from Theorem 5.1 it is true in (R, A(R))just  if each sentence 

(Ax)(Ay)(Ey)(D*(x, y) ~ P(x, y)) 

is true in (R, A(R)) where D* runs through all diagrams containing just 
the variables x, y which are consistent with D and which have character- 
istic less than that of D. This constitutes an effective decision procedure, 
proving the following: 

Theorem 5.4. There is an effective decision procedure which for any AE- 
sentence tells whether that ser, tence is true in the lattices ( R * ,  A(R j~)), 
( R ~ ,  A (Ra #)), ( Q * ,  A (Q~*)).for a any admissible ordinal pro/ectible 
into w, or whether the sentence is false in all o f  these lattices. 

§6. Conclusions 

As an immediate corollary to Theorem 5.4 we have the following" 

Corollary 6.1. Let a be any admissible ordinal projectible into ~ and let 
(R, A(R)) be any o f  the three lattices ( R * , A ( R * ) ) ,  (Ra#, A ( R ~ ) ) ,  
(Q~,  A(Q~)) .  Then exactly the same two-quantifier sentences are true 
in all the lattices (R,A(R)).  

Using a result of Owings [8] we can show that Corollary 6.1 is the 
best possible result in that there is no larger class of sentences for 
which all the lattices (R,A(R)) are equivalent, where sentence com- 
plexity is measured in terms of the number of  alternations of quanti- 
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tiers. LetA be a maximal element in R; following Owings [8] we say 
that  A is of type I if whenever B is maximal in A there is a maximal 
element C such that  B = A o, C; otherwise, we say A is of type 2. It is 
a result of  Lachlan [6] that  every maximal element in Rto* is of  type 1. 
()wings has shown that if  a > co and ~ is projectible into 60 then Ra* 
has maximal elements of  both types and Qa* has maximal elements of 
type 2 only. The existence of maximal elements of type 1 can be 
asserted by a four-quantifier sentence, and the existence of  maximal 
elements of  type 2 can be asserted by a three-quantifier sentence. 
Therefore, there is a three-quantifier sentence true in some (R, A(RD 
and false in some (R, A(R)). 

It is not  known at present of  what types are ',he maximal elements 
of  Ra# for a > 60 and projectible into 60. It seems likely that they are 
all of  type 1. Obviously, knowledge of  their types would provide val- 
uable information about the lattices Ra#. Ideally, one would like to 
have three-quantifier sentences which distinguished between all pairs of  
lattices among R * ,  R ~ ,  Q~* for a fixed t~ > 60. At present we have no 
st~ch sentences. 

As was mentioned at the beginning of  this paper, Corollary 6.1 is 
actually a metatheorem which gives a criterion for "l if t ing" a fairly 
large class of  theorems of  ordinary recurs;on theory to generalized re- 
cursion theory. Needless to say, any other such criteria would be a 
welcome addition to the subject of  generalized recursion theory. 
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