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§0. introduction

This paper concerns the theory of recusion on initial segments of the
ordinal numbers which was originated by Kripke [4] and Platek [12].
For any admissible ordinal «, let R, denote the lattice of a-r.e. sets and
let A(R,) denote the Boolean algebra generated by R, whose elements
are finite unions of differences of a-r.e. sets. Denote the cuotients of
Ry, A(R,) by the ideal of finite sets by Ry*, A(R*) and by the ideal
of bounded sets by R,¥, A(R ) respectively. Also, let Q,, denote the
lattice of a-r.e. subsets of w, and let 4(Q,), Qy*, 4(Q,*) denote,
respectively, the Boolean algebra generated by Q,,, and the quotients
of Qo and of A(Q,) by the ideal of .inite sets. Note that Q, is the
lattice of ITj sets.

We shall consider the first order language with function symbols
N, U, " and with unary predicate symbols E, L, and in which quantifiers
. re restricted to ranging over the domain of the predicate L. The langu-
age will always be interpreted in a Boolean algebra generated by a
lattice; N, U, ' will be interpreted as meet, join, complementation,
respectively, E(x) will be interpreted as “x is the zero element of the
lattice”, and L(x) will be interpreted as “x is an element of the lattice”.

l)’I‘his paper is based on a portion of the author’s Ph.D. thesis (M.LT. 1969) supervised by
Gerald E. Sacks and supported by an N.8.F. Graduate Fellowship.
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We are concerned with determining which sentences of this language
are true when interpreted in the Boolean algebras and lattices which
were defined in the preceding paragraph.

Lachlan [S] has given a decision procedure for the AE-sentences of
this language when interpreted in A(R ,*). The principal goal of this
paper is to show that the same decision procedure works for A(Ry*),
A(Ry*), and A(Q,*) for all admissibles a which are projectible into w.
As an immediate consequence we get that any two-quantifier sentence
is true in A(R ,*) if and only if it is true in A(Ry¥), A(R,"), and A(Q,*)
for any admissible a projectible into w. In other words, the lattices
Ry* R, and Q,* are equivalent with respect to two-quantifier sen-
tences. We shall also show, using results of Sacks and Owings, that this
result is best possible. Note that this result gives a general criterion for
taking theorems of ordinary recursion theory and “lifting” them to
generalized recursion theory.

This paper follows Lachlan [5] as closely as possible and leans
heavily on that paper. This paper is self-contained to the extent that
all the definitions and theorems of [5] are stated, but those proofs and
sections of proofs which are identical to those in [5] have been omitted.
For the sake of completeness, some sections of [5] have been copied
exactly except for minor typographic variations.

§ 1. Notation and definitions

The reader is assumed te be familiar with the basics of recursion
theory on the ordinals less than an admissible ordinal as v..ginated by
Kripke [4] and Platek [12]. Refs. [3, 7—11] are other excellent
sources of material on the basics of this subject. We now list some
definitions taken principally from [3]. ’

If E is a finite set of equations of Kripke’s equation calculus, SgE will
denote the set of equations resulting from -many applications of the
deduction rules to E. An ordinal « is admissible it S, = Sy, for every
finite set of equations E. A partial function f fro:n « to a is a partial a-
recursive function if for some finite set of equations E, f(y) = 8 if and
only if the equation g(y) =8 is in SaE . An a-recur "ive function is a
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function which is partial a-recursive and total. A subset of o is a-recur-
sively enumerable (a-r.e.) if it is the domain of a partial a-recursive
function. A subset A of « is a-recursive if both 4 and A’ are a-r.e. A
subset of x is a-finite if it is a-recursive and if it is bounded below «.

A subset 4 of a is regular if A 0 M is a-finite for every a-finite subset
M of a. The projectum of an admissible « is the least ordinal § such
that some one—one a-recursive function maps « into 8. « is projectible
into w if the projectum of a is w.

We shall always regard a Boolean algebra as a complemented distri-
butive lattice with least and greatest elements; the least element will be
denoted by ¢.

The algebraic structures which are of particuiar relevance are d-lattices.
A d-lattice is a pair (L, A) where A is a Boolean algebra, L is a sublattice
of A containing the least and greatest elements, and where L generates
A. Note that A is determined to within isomorphism by L.

A d-lattice (L, Ay) is said to be a sub-d-lattice of a d-lattice (L, A)
if A, is a subalgebraof A and L, = L N 4,. A d-lattice (L, 4,) is said
to be isomorphic to a d-lattice (L, A) if there is an isomorphism of 4,
onto A which maps L onto L. An embedding cf (L1, Ay)in (L, A) is
an isomorphism of (L;, 4,) onto a sub-d-lattice of (L, A).

Let (L, 4) be a d-lattice and let & be in L and # ¢, we denote by
(L, A)|b the pair (Ly, A}) where L, 4, are L|b and A|b respectively,
that is the restriction of L, A4 respectively to elements < b. It is easy
to show that (L, A){b is a d-lattice. A component of (L, A) is a pair
((Ly, Ay), D) such that bisin L, b'isin L, b # ¢, and such that (L, 4,)
is (L, A)| b. We shall somc "imes suppress b and speak of (L}, 4,)asa
component. _

Let (L, 4y), (L,, A4,) be two d-lattices, their direct union (L, A{) X
(L, A,) is defined to be (L X L,, A} X A,) where L X L, is the direct
union of L, L, and 4; X 4, is the direct union of 4,, 4,. [t is easy to
show that the direct union is a d-lattice. A sequence (L, 4;), ...,

(L, A;) of d-lattices is a decomposition of (L, A) if k> 1 and

(1) (LAY =Ly, A X X (L Ap) .

A d-lattice is called indecomposable if it has no decomposition. The
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foilowing is obtained easily by the same reasoning ([1], p. 68) which
gives the corresponding result for partially ordered sets:

Lemma 1.1. Every finite decomposable d-lattice has a decomposition
into u finite number of indecomposable d-lattices; this decomposition
is unique to within order and isomorphism of the components.

A d-lattice is called finite if the order of its algebra is finite.

Let (L, A) be any finite d-lattice. We define a partial ordering of the
atoms of A4 as follows. If b, ¢ are atoms of 4 we say b is within ¢
written b < ¢ if b # ¢ and if for every din L, ¢ < d implies » < d. This
is a partial ordering; for suppose b < ¢ in (L, 4), then since A is gener-
ated by the elements of L, there exist ¢, ¢, in L such that ¢, is the
least member of L containing ¢, ¢, < ¢}, and ¢ = ¢j — ¢,. Now ¢, con-
tains b but not ¢, hence < is irreflexive. The transitivity of < is imme-
diate. We write b= c just if b = ¢ or & < ¢. The atom b is said to be
just within the atom c¢ in (L, A) if b <{ ¢ and there is no atom d such
that b < d < ¢. An atom b is said to be outermost, innermost respec-
tively, in (L, A) if there exists no atom ¢ such that & < ¢, ¢ < b respec-
tively.

We now define the rank and characteristic of a finite d-lattice. A
path in a finite d-lattice (L, 4) is a {inite sequence of atoms by, b,, ..., b;
such that b; is outermost and such that b;,, is just within b; for
1 < i< k. A path is said to end in a member b of A if the last member
of the path is < b, The rank of a finite d-lattice is dcfined to be
(ny, ny, ..., ny) where n; is the number of paths of length i/ and where
k is the greatest i such that n; # 0. The possible ranks cre well-ordered
by the definition: (ny, ..., ny ) is less than, written <, (n,, ..., my ) if
either k< h, or k= h and

ENA<xSnh&AY<y<h-> n,=m,) &n,<m,).

The characteristic sequence (or characteristic for short) of a finite d-

lattice (L, A) is now defined as follows. Let (1) be the decomposition
of (L, A) into indecomposable components arranged so that the com-
ponents on the right have decreasing rank. Then the characteristic of
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(L. A) is the sequence ry, ry, ..., ry, where for 1 < i<k, r; is the rank of
(L;, A)). The possible characteristics are well-ordered by: (rq, ..., ;) is
less than, written <, (sy, ..., §,,,) if either

Ex)ISxSk&1SxSm&ANUISy<x-r,=s)&r <s,),

ork<mandr,=s, for1<x< k.

The lattices R, 4(R,), etc. and our formal language for d-lattices
were introduced on the first page of this paper.

For our formai language, a predicate P is called consistent if there is
some d-lattice (/. .4) and some assignment of values in L to the free
variables of P under which P is true. A sentence is valid if it is true in
every d-lattice.

Let P, Q be predicates all of whose free variables are contained in
{x1, ..., X, }. We say that P implies Q written P |- Q just if (Ax;) ...
(Ax,, JP~ Q)isvalid. Let P be a consistent quantifierless (g-less)
predicate containing just the variables x4, ..., x,,, . We say that P is
complete if for every qg-less predicate Q whose variables are contained
in {x;, ..., x,, } we have either P~ Q or P - ~ Q. A complete g-less
predicate is called a diagram. With any diagram D we associate a finite
d-lattice (L, 4) as follows. Consider the set 7" of terms containing only
variables from D. We define an equivalence relation ~ on T by:

st Hff DEE{(sntHu (' np).

The members of 4 are the equivalence classes into which = splits T7;
there can only be a finite number of these. Meet, join, and complemen-
tation in 4 are to be the operations induced by the respective formal
symbols N, U, . The members of L are the equivalen’;‘e classes which
have some representative ¢ for which D ~ L(#). Thus every diagram
gives rise to a unique finite d-lattice; and it is easy to see conversely
that given any finite d-lattice (L, A) there is some diagram whose asso-
ciated d-lattice is isomorphic to (L, A). The d-lattice of D is uniquely
determined by the property that D is true when for 1 < i< m, x; is
mapped into the equivalence class which it represents. In referring to
the d-lattice of a diagram below we shall often not distinguish between



384 M.Machtey, Admissible ordinals cnd lattices of Q-r.e. sets

terms and the corresponding equivalence classes. We can now define for
diagrams the concepts defined for finite d-lattices. Two diagrams are
isomorphic if their d-lattices are isomorphic. Let D, Dy, D, be diagrams
containing just the variables x, ..., x,, then we say that D is the direct
union of Dy and D, provided there are terms ¢,, #, containing just

X1, ., Xy sSuch that D - E((z; N £,) U (#;" N £,")), and such that for
i=1,2 ;

DbE~E@) &~E(t;) & L(1;) & L(4)),
and such that for any term s containing only x,, ..., x,,,
D;-E@)MfDHEGSN );D; = L(sYiIf D L(sn 1) .

A diagram is decomposable if it can be expressed as the direct union of
two other diagrams, and indecomposable otherwise. Every diagram has
a decomposition into indecomposable diagrams, and this decomposition
corresponds precisely to the decomposition of the d-lattice of the dia-
gram. The rank and characteristic of a diagram are to be the rank and
characteristic of its d-lattice respectively.

Two predicates P, Q are said to be equivalent if P Q and Q - P. If
P, Q are g-less predicates then we can tell effectively whether or not
P @, and thus whether or not P, Q are equivalent. There are only a
finite number of equivalence classes of g-less predicates containing only
a fixed set of variables x,, ..., x,,, . We find it convenient on occasion to
consider g-less predicates mocdulo equivalence. Thus we can say that,
if P is any g-less predicate, then P is equivalent to the disjunction of all
diagrams D whose variables are just those of P and which imply P
(meaning that we select one diagram D for each equivalence class).
Similariy, when we are considering terms constructed from some fixed
finite set of variables.

§2. Separated d-lzttices and existential statements

In this section we shall show that a sentence

(Exl) “en (Exm) P(xl 3 envy xm) ]
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where P is a g-less predicate is true in the d-lattices (R, A(Ry)),

(Ro*, AR, (Ry*, A(R,®)) for any admissible o and in (Q,, 4(Qg));
(Q,*, A(Q¥)) for « projectible into w provided only that P is consis-
tent. We shall rely heavily on the theorem that if A4, B are a-1.e. sets
then there exist disjoint a-r.e. sets A, B, such that 4, £ 4, B; & B,
and A; U B, = AU B. This suggests the following. Call a d-lattice

(L, A) separated if for any pair x, y of elements of L there exists a
disjoint pair x,, y, of elements of L such that x; < x, y; < y, and

x; U y; =x U y. For a finite d-lattice the property of »eing separated
can be expressed in another way.

Lemma 2.1. A finite d-lattice (L, A) is separated if and only if there
exist elements by, ..., b,, of L such that

(2) (Ax)l<x<m(Ay)l<y< m (bxn by =¢ or bxst‘ by)

and such that every element of L is the union of some subset of
by, ... b,.

For a proof of Lemna 2.1 see Lachlan ([5], p. 127). We say that an
element of a lattice can be split non-trivially if it can be expressed as the
union (ioin) of two non-zero disjoint elements of the lattice. For any
finite separated -1-lattice the elem«uts of the lattice # ¢ which cannot
be split non-trivially in the lattice are called canonical generators; it
follows from Lachlan’s proof of L:mma 2.1 that any element of the
lattice can be expressed as a union of canornical generators. Let (L, 4)
be a finite separated d-lattice with canonical generators by, ..., b,,. Any
atom of A is of the form

U{bi:iES} -U{bl.:ir£ T}

where S, T are disjoint sets whose union is{ 1, 2, ..., m}. From (2) we
may also suppose that S, 7T have tae respective forms {j}, {i: b; < b;}.
Thus there is a one—one correspondence between canonical generators
and atoms. Let ¢;, ¢; be the atoms corresponding to b;, b; respectively;
note that ¢; < ¢; if and only if b; < b;. Thus c; is just within ¢; if and



386 : M.Machtey, Admissible ordinals and lattices of G-r.e, sets

only if b; is minimal with respect to properly containing b;. There can
only be one such j for each i from (2). Hence for each atom there is
exactly one path in (L, A) which ends in that atom. This gives a one—
one correspondence between canonical generators and paths under
which the ordering of canonical generators in the lattice corresponds
to the ordering of paths by extension. Thus the rank and characteristic
of a finite separated d-lattice are determined by the partial ordering of
its canonical generators.

The next two lemmas are proved in Lachlan ([ 5], p. 128).

Lemma 2.2. Let (L, A) be a finite d-lattice, then bisin A — L if and only
if there exist atoms ¢y, ¢, such that ¢, < b, ¢, b, and c, is just within
C1-

Lemma 2.3. Every finite d-lattice (L, A) can be embedded in a finite
separated d-lattice which has the same characteristic.

Before we can proceed with Lachlan’s work, there are two results
of ordinary recursion theory which must be proved in abstract recur-
sion theory. They are given in the next two lemmas.

Lexnma 2.4. Let o be any admissible ordinal. Let A, B be a-r.e. sets
such that B € A and A — B is not a-r.e. Then there exists an a-r.e. set
C such that C € B, lub(C) = lub(BY CU (A —B)is not a-r.e. and B~ C
is not a-r.e. If B is regular, then C can be taken to be regular.

Proof. Let 8 be the least ordinal £ « such that B N (a — ) is a-finite.
Find an a-recursive set D such that D € (B N 8) and lub(D) = lub(B N B):
for example let D be enumerated by enumerating B N § and placing in D
all elements which are greater than all previously enumerated elements of
B N B. Now because of the condition imposzd on §, there will be a one—
one a-recursive function mapping « into D. Then, we can find a subset
C; of D such that C, is a-r.e., C; is not a-recursive, and lub(Cl ) = lub{D).
If B is regular, hence unbounded in a, we can take C; to be regular. Now
we let C=C, U (B N (a —P)). Clearly lub(C) = lub(B) and C < B.

Let D; = D U (B N (a — B)) and note that D, is a-recursive and C £D; .
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CU (4 — B) cannot be «-r.e., because ifso A —B=(Cu (4 —-B))N

(@ — D) is a-r.e. contradicting our hypothesis. B — C cannot be a-r.e.,
because if so D — Cy = (B — C) N D is a-r.e. contradicting our choice of
Cy . If B is regular then C=Cj is regular. This completes the proof of
the lemma.

Lemma 2.5. Let « be any admissible ordinal. Let A be an a-r.e. set which
is not x-recursiv. Then there exist disjoint a-r.e. sets B, C such :hat

A =B U Cand siich that for any a-r.e. set R, if R — A is not a-r e. then

R — B and R — C are both not a-r.e. Moreover, if A is regulai, tnen B, C
can be taken to e regular.

Proof. (This, of course, is really just Friedberg’s splitting theorsm [2].)
Let «* be the projectum of @ and let {Rg} o be an enumeration of
all the a-r.e. sets. We will enumeraie A along with {Rg}zcq+- Every
time we enumerate a member of A we will put it into either B or C. f is
said to be satisfied wher. R intersects both B and C.

Let v be enumerated in 4 at stage ¢. If every § such that - has been
enumerated in X, by stage ¢ is satisfied, put v in B and go to stage o+ 1.
Otherwise, attack the first unsatisfied § such that v has been enumer-
ated in R, by stage 0. If that R; intersects neither R nor C, puty in B.
Otherwise, put v in B or C accordingly as Rg N B or Ry N C is empty.
Go tostage o+1.

Now assume R - B is a-r.e. for some a-r.e. set R, and that R — B = R;..
No £ is attacked more than twice; after two attacks a § is satisfied; and
only an unsatisfied § is ever attacked. Moreover, no partial a-r.e. func-
tion can map an unbounded a-r.e. set one—one into a proper initial
segment of a* (any «a-r.e. set bounded below a* is a-finite). Therefore,
there is a stage ¢’ after which no § = §' is ever attacked. Thus, after
stage o', no member of A is enumerated which has previously been
enumerated in Ry.. This allows us to enumerate R — 4. Similarly, for
C. It is clear from the construction that if A is regular, then 3, C will
both be regular. This completes the proof of the lemma.

We now return to Lachlan’s paper by introducing some sp<cial termi-
nology. Let P be any relation of order n 2 1 defined on R,. For an
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n-tuple A of a-r.e. subsets of B we say that P(A) holds in B just if for
some one—one a-recursive function F mapping a onto B we have
P(F-1(A)). Thus in this paper “A is e-recursive in B” with A a subset
of B will not have its usual meaning, but will mean simply that B — A
isa-r.e.

Theorem 2.6. Let a be any admissible ordinal. Every finite separated
d-lattice is embeddable in (Ry, A(Ry)), (Ry*, ARM), and (RF, A(RF)).

Proof. Let (L, A) be a finite separated d-lattice. It is sufficient to show
that (L, A) can be embedded in (R, A(R,)) such that the images of the
atoms of A are unbounded. For we then take equivalence classes modulo
finite sets and modulo bounded sets to get the result.

We define a map of the canonical generators by, ..., b,, of (L, A) into
R, which preserves disjointness and inclusion. Moreover, the images of
the canonical generators will be regular, unbounded sets. Let nzy, ..., ny;
be the maximal canonical generators and let Ny, ..., N; be regular, un-
bounded, pairwise disjoint a-recursive sets whose union is «. Map m, to
N, for 1 < x <j. The definition of the map now proceeds by induction
“downwards” with respect to the order of the lattice. Let b be a canon-
ical gengrator not yet mapped such that all of those which properly con-
tain it have already been mapped. Let ¢ be the least canonical generator
which properly contains b, and let n,, ..., n; be the canonical generators
which are maximal with respect to being properly contained in ¢ among
which must occur b. Assume for induction that none of ny, ..., 7y has
been mavned. Let C be the image of ¢, choose an a-r.e. set B as follows:

Case 1. If ¢ is a maximal canonical generator, let B be any subset of C
which is a-1.e., not a-recursive, and regnlar (hence unbounded).

Case 2. Otherwise, let d be the least canonical generator which prop-
erly contains ¢ and let D be the image of d. Let B be any a-r.e. subset of
C which is regular, unbounded, not a-recursive in C, and such that
B U (D - () is not a-r.e. We assume as part of the induction hypothesis
that C is not a-recursive in D, therefore by Lemma 2.4, such a B exists.

Having chosen B we decompose it into a-r.e., regular, unbounded,
pairwise disjoint sets By, ..., By such that each like B is not c-recursive
in C. This is possible by Lemma 2.5. We now define the images of
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ny, ..., ng tobe By, ..., By respectively. This completes the definition of
the mapping; the definition is a good one because the induction hypo-
thesis can be discharged.

By inspection of the definition of the mapping, wc have that the
mapping of the canonical generators induces an isomorphism of 4 into
A(R,) such that the images of atoms of 4 are regular, unbounded sets.
Let A* be the image of A then the lattice L is mapped onto the sub-
lattice L™ of R, whose canonical generators are the images B, ..., B,,
of by, ..., b, respectively. Let d be any member of A — L; then by
Lemma 2.2 there exist atoms e, f such that e < d, f £ d, and such that
fisjust within e. Let b, ¢ be the canonical generators corresponding to
e, f respectively. Then ¢ is maximal with respect to the property of
being properly contained in b. Let B, C be the images of b, ¢ respectively;
by the construction the image of e is B — & where G is an a-r.e. sub-
set of B not a-rzcursive in B. Suppose that D, the image of d, isa-r.¢e.;
then D contains B — G and so intersects C, otherwise we should have
B — C equal to the a-r.e. set (BN D) U (G — C) contrary to the provi-
sion in the construction which makes C not a-recursive in B. If ¢ were
minimal, then ¢ = f, and we have a contradiction. Otherwise, by the
construction there is an a-r.e. subset H of C such that HU (B — () is
not a-r.e. and such that fis mapped into C — H. Since D cannot inter-
sect the image of f we have D N C € H, therefore HU (B — C) is a-r.¢.
which is a contradiction . Therefore the image of any member of 4 — L
is not a-r.e. Thus (L*, A*) is a sub-d-lattice of (R, A(R,)) with the
required properties, and the theorem is proved.

Corollary. 2.7. Let a be an admissible ordinal projectible into . Every
finite, separated d-lattice is embeddable in (Q,, A(Qy)) and (Qy*, A(Q,*));

Proof. It is enough to show the result for (U, 4(Q,)) with the images
of atoms being infinite. To do this simply replace “regular, unbounded”
throughout the proof of Theorem 2.6 by “contained in w”’. Ncte the
the corollary is false for & not projectible into .

We wish to show that all possible existential sentences are true in the
d-lattices mentioned in the statement of Theorem 2.6 and in the state-
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ment of Corollary 2.7. Consider any sentence
3) (Exy) ... (Exp, ) P(xy, ... x,,)

where P is a consistent g-less predicate containing just the variables
X5 ooy X Since P can be expressed as the disjunction of all the dia-
grams containing just x4, ..., x,, which imply P, to show that any such
sentence (3) is true in some d-lattice it is sufficient to show that any
sentence (3) holds when P is a diagram. Let (L, A) be the d-lattice
associated with P; this can be embedded in a finite separated d-lattice,
which in turn can be embedded in all the d-lattices under consideration.
Let By, ..., B,, be the images in the lattice under consideration of the
elements in (L, A) represented by x,, ..., x,, respectively; then

P(By, ..., B, ) holds in the lattice under consideration, and so (3) is
true in that lattice. We have proved:

Theorem 2.8. Any sentence (Ex;) ... (Ex,,)P(x,, ..., x,) where Pisa
consistent q-less predicate containing just the variab.es xq, ..., X,, is
true in all the d-lattices mentioned in the statements of Theorem 2.6
and Corollary 2.7.

There is a sensc in which Theorem 2.8 is the best possible result. If
sentence complexity is measured in terms of the number of zlternations
of quantifiers in the prefix when the sentence is in prenex normal form,
then the class of one-quantifiet (no alternations) sentences :s the largest
class of sentences for which the lattices covered by Theorem: 2.6 could
be equivalent. This is because it has been shown by Sacks [9] that there
are countable admissible ordinals « such that R,* has no maximal ele-
ments, and elsewhere by Sacks [3], that if « is an admissible projectible
into w then R, * does have maximal elements. The sentence expressing
the existence of a maximal element is a two-quantifier sentence, and
therefore it cannot be that exactly the same two-quantifier sentences
are true in all the lattices covered by Theorem 2.6. As has already been
mentioned, Corollary 2.7 is false if’ a is not projectible into w (the
sentence (Ex) ~ L(x) is false in (Q,. A(Q)) for such a). Therefore the
d-lattices covered by Theorem 2.8 is the largest class of such d-lattices
for which the theorem is true.
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§3. A preliminary reduction

In this setion we begin to generalize Lachlan’s decision procedure
for AE-sentences to all admissible ordinals projectible into w. To that
end, for the remainder of this paper a wili always denote an admissible
ordinal pro,ectible into w unless it is specified to be otherwise. Also,
for the remainder of this paper (R, 4(R)) will stand for any one of
(R ARM), (R, ARGF)), or (QF, A(Q,*)). Thus any assertion
about (R, A(R)) is an assertion about all three of the d-lattices. We
first narrow down the class of sentences we need consider to those in a
special form. To obtain the special form we need the following:

Theorem 3.1. Let (L, A) be any finite sub-d-lattice of (R, A(R)) with
characteristic ¢; there exists a finite separated sub-d-lattice (L*, A*) of
(R, A(R)) which is an extension of (L, A) and whose characteristic is

< c. Also, given (L, A) we can effectively enumerate a finite number of
isomorphism types, together with for each type an isomorphism of

(L, A) into it, so that (L*, A*) can be found in one of these types with
the isomorphism picking out (L, A).

Proof. Note: Lachlan has proved this theorem for any separated d-lattice
in the piace of (R, A(R)); therefore, the proof below is presented solely
for heuristic reasons.

It is sufficient to prove the theorem for R, instead of R,* and R ¥,
and for Q, instead of Q,*. Lachlan proves this theorem in three steps,
which we state as follows:

Lemma 3.2. It is sufficient to suppose that (L, A)is indecomposable.

Lemma 3.3. Suppose that (L, A) is indecomposable. Then there is a map
T of the paths of (L, A) intoc Ry, or Q, (depending on whe her we started
with (L, A) in (Ry, A(Ry)) orin (Q. A(Qy)) respectively) satisfying the
following three conditions:
({)ForBin L, B=U {T(p): pisapathin (L, A) ending in B}.
(ii) If p is a path extending a path q, then T(p) & T(q).
(iii) If neither p nor q extends the other, then T(p) N\ T(q) = ¢.
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Lemma 3.4. For (L, A) indecomposable, the sets T(p) from Lemma 3.3
generate the required sub-d-lattice (L*, A*).

" The only non-algebraic fact which Lachlan uses in the proof of Lemma
3.2 is that if B is an infinite recursive set then (R ,, A(R_))) is isomorphic
to (R,,, AR )| B. Lachlan uses this fact to establish that, assuming the
theozem holds in (R ,, A(R ) for (L, A) indecomposable, then it holds
in (R, AR ))IB for (L, A) indecomposable. For the case where we
start originally with a sub-d-lattice of (R ¥, A(R*)) or (Q,¥, A(Qy*)) and
B is an unbounded a-recursive set or an infinite a-recursive subset of w
respectively, it is certainly the case that (R,, A(R)) is isomorphic to
(Rg AR | B or (g, A(Qy)) is isomorphic to (Q,, A(Q,)) | B respec-
tively. For the case where we start originally with a sub-d-lattice of
(Ry*, A(Ry*)) and B is an infinite a-recursive set, we have that (R,

A(R )1 B is isomorphic to either {n,, A(Ry)) or (Q,. A(Q)) depending
on whether B is unbounded or not. In any case, since we are assuming
the theorem for both R, and Q,, in the case when (L, A) is indecompo-
sable, Lachlan’s proof of Lemms 3.2 now applies.

Lachlan’s proof of Lemma 3.4 is purely algebraic; therefore, we now
need only prove Lemma 3.3 to prove the theorem.

Proof of Lemma 3.3. Suppose that (L, 4) is indecomposable and that
a, a, ..., a,, are the atoms of (L, 4). For 1 £ i< m let B, be the least
member of L containing a;. We carry out a construction as follows.
Suppose we are given “boxes” Sy, 53, ..., S, corresponding to a,, a,, ...,
a,, respectively. In the course of the construction we shall place ordi-
nals < a or natural numbers (depending on whether we are in R, or in
Qg) in these boxes; henceforth we shall refer to the contents of these
boxes as elements. We shall also move elements from one box to
another. A particular element can be in at most one box at a time. At
each step we enumerate one element in one of By, B,, ..., B, in such
a way that in the course of the construction each B; has each of its
members enumerated an unbounded set of times. At the beginning of
the construction, no element is in any box.

Step o: Suppose n is enumerated in B; at this step. Case 1. a; is
outermost and = is not in any box, then put n in §;. Case 2. If n is cur-
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rently in S; and g; is jst within g;, then move » from S§; into S;. Other-
wise, do nothing.

Consider ar element n of ;. At some stage n will be placed in one of
the boxes. For there exists i such that @, < a; and g; is outermost, hence
n will eventually be enumerated in B; and placed in S; if not in any box
earlier. Alsc, if nisin Sj at some stage, then q; < a; since By c B, Ifnis
moved from SP into Sq then a, is just within a,. Thus, if n ever reaches
Sy, it wil' remain there. However, if n never reaches Sy, then n remains
in S; at all sufficiently large steps. In this case there exists @, such that
a, is just within g; and such that a; < a,,. Since n is in 4, it is in B, and
so n cannot remain in S; forever. Thus if n is in q, it eventually reaches
S; and stays there.

Leta; ,a;,, .. a, be any path in (L, A). We say that » follows this
path if in the above construction » is placed first in S; , next in S; y e
and next in S,-q ; n need not remain in S,-q. For any path p in (L, 4) we
let T(p) be the set of elements which follow p. It is easy to see that
7(p) is a-r.e. for every p. Morcover, the mapping: p goes to T(p) clearly
satisfies the three conditions stated in Lemma 3.3. This completes the
proof of the lemma and of the theorem.

Consider now any sentence (Ax)(Ey) P(x,y) where x is xy, ..., x,,
andy is y,, ..., ¥,, and where P is a g-less predicate. In any d-lattice this
is equivalent to the conjunction of the sentences

4) (AX)(Ey)(D(x) = P(x,y)) ,

where D runs through the finite number of isomorphism types of dia-
grams containing just the variables x. A sentence of th: form (4) is
called primitive; its characteristic is defined to be the characteristic of
D. By the last theorem, given D we can enumerate a finite sequeace of
pairs (L1, A1), F1), ..., ((Lg, Ap), Fy) satisfying the fcllowing condi-
tions:

() (L;, A,) is a finite separated d-lattice with characteristic < that
of D.

(ii) F; is an isomorphism of the d-lattice D into (L, 4)).

(iii) If G is an isomorphism of the d-lattice of D into (R, A(R)), then
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for some j, 1 < j < k, there is an isomorphism H of (L]-, A i) into (R, A(R))
such that G = HF;. We can find a natural number p and diagrams

D1, ..., D* containing just the variables zy, ..., z, such that for 1 S i< &
the d-lattice of D! is isomorphic to (L, 4;) under a map X say, of the
former into the latter. Further, for each i, 1 < i< &, we can find terms
X!, ..., X,/ containing just z,, ..., z, such that mapping x; into X, ;# for

1 < j < m induces the isomorphism K1 F; of D into D'. Now we see

that (4) is equivalent in (R, A(R)) to the conjunction of the sentences

(Az) (Ey) (D'(z) > P(X{, .. X'y YD

where z is zy, ..., Z,, and where i runs from 1 to k.

Call a primitive AE-sentence separated if it has the form (4) with D a
separated diagram. We conclude that to obtain a decision procedure for
AE-sentences in (R, A(R)) it is sufficient to reduce the decision problem
for a separated AE-sentence to the decision problem for primitive AE-
sentences of lower characteristic. This is the program to be carried out
below.

§4. A necessary condition

In this section we establish a certain condition as being necessary for
a separated AE-sentence to be true in (R, A(R)). We need five facts
about a-r.€. sets which can be expressed as follows:

(i) The lattice of a-r.e. subsets of an a-r.e. set which is not a-finite is
isomorphic to the lattice of a-r.e. sets.

(ii) There exists B in R, B # ¢, such that B' is in R and B’ # ¢.

(iii) R has maximal elements.

(iv) For any a-r.e. set B which is not a-recursive there exist disjoint
a-r.e. sets C, D such that B = CU D and such that for any a-1.e. set R,
if R — B is not a-r.e. then R — C and R — D are both not a-r.e. Moreover,
if B is regular then C and D can be taken to be regular.

(v) For any regular a-r.e. set B which is not a-recursive or for any a-r.e.
subset of «w which is not a-recursive there exists an a-r.c. subset C of B
which is regular or not respectively, and which has the following proper-
ties:
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(a) lub(B) = lub(B - ();

(b) for every a-r.e. set R such that BU R =2 lub(B), lub(B) - (CUR)
is finite;

(¢) for any a-r.e. sets R, Ssuch that S 2 Rn (B~ (), SU R~ B) is
a-r.€.
Note that eny a-r.e. set C satisfying (a) and {b) is called a major subset
of B.

The first two facts are too elementary to require any comument. The
third fact was proved by Sacks [3]. The fourth fact was proved in
Lemma 2.5. We now prove the fifth fact.

Theorem 4.1. Fact (v) above is true.

Proof. Let B be enumerated one element at a time without repetitions
and call B, = {b,}, the set containing the first ¢ clements enumer-
ated in B. We shall a-effectively enumerate the required set C in steps
0, 1, ..., 0, ... letting C, be the set of elements which have been placed
in C before step 0. For i < w, let X; run through all a-r.e. sets; enumer-
ate the sets X; simultaneously letting X; , be the set of elements enu-
merated in X; by step ¢ in this enumeration. Similarly, fori < w, let
(R;, §;) run through ali pairs of a-r.¢. sets; enumerate the sets R, S;
simultaneously letting R; ,, S; , be the set of elements enumerated in
R; or §; respectively, by step ¢ in this enuineration.

To the end of satisfying condition (b) we define two helpful auxiliary
functions:

F(i, 0) = min(min(B, ' N X; ), lub(B))
and for x in B we define W(x, i) by letting

Wb, )=Z{277:j<i &b, € X; & b, < F(j, 0)}.
Note that .~(i, o) is increasing in o for fixed i and that limaF(z’, o)=
lub(B) if and only if B U X, 2 lub(B).

To satisfy condition: (c) we shall enumerate simultaneously with C
a-r.e. sets Ty, Ty, ..., Ty, ... for i < w letting 7; , denote the set of ele-
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ments which have been placed in 7; before step 0. It is our intention
that, if S; 2 R; 0 (B —0), then T;U S; shall be S; U (R; — B). Becauss
of conflict with the need to satisfy condition (b), this intention will
not be fulfilled, but we shall succeed sufficiently to make S; U (R;— B)
a-r.e. whenever S; 2 R; N (B — C). We say that x is protected by i at step
oifxisin(B,N7T; ;) - (C,US;,).

The requirements which we want C to meet are

Py;: BU X; 2 lub(B) - lub(P) — (CU X;) finite, i < w;
and
Pyi1:Si2R;N(B =)~ S;U (R;— B) are., i< w.

In the construction we give these requirements priority according to
the sequence Py, Py, ... Instep o we define a one—one finite function
D, . Let f be an a-recursive function mapping @ one—one into w.
Step 0. Define Dy(0) = by and Dy(x) to be undefined otherwise.
Step o (0 > 0). Case 1. There exist z, x, y such that z < x < y < flo);
such thatlim___D (x) andlim__ D _(y) are both defined; such that

W(im_. D (x),z) < W(limrq D (¥),2);

and such thatlim__ _D_(x) is not protected by any i < z. Choose the
least possible x, and the least possible y for that x, enumerate
lim__ D _{(x)in C and let

limT <ODT(W) if defined, w < f(0), and w # x, y,
v w)=1{lim D () ifw=x,
bo* fw=y,

andlet D_(w) be undefined otherwise, where bo* is the least member of
B, ., —C, such that b* # limTqDT(w) for any w < f(o).

Cuase 2. Otherwise. Let x be the least number such that limr <aD,r(x)
is undefined, if any. Let y = min(x, f(0)):let D _(w) = im__ D.(w) for
w<y;letD, (y)= ba* ify=x;andletD, ()= limv,\,aDT(y) otherwise.
For each i < w let M{i) be the greatest number m < y such that

S, s 2R, ,0{D,(0),D,(1),..,D,(m},
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and enumerate in 7; all members 6 of R; , — B, such that f(8) < M().
This completes the construction. Let D =1lim__,D, .

Proposition 4.2. Lim, ., D, is well-defined (i.e. cither lim, ., D,(x) is de-
fired or D_(x) is undefined for all sufficien:ly large v < o, for all x < )
for all 0 < «, and dom(D) = w.

Proof. By induction on o and x. Assume the proposition false and let o
be least and x least for that ¢ such that lim, . D, (x) is not well-defined.
It cannot be that D_(x) is undefined for all sufficiently large 7 < o.

From our assumption on ¢ and the fact that there are only finitely many
p < o such that f(u) < x it follows that D_(x) is defined for all sufficient-
ly large 7 < 0. From the definition of W we have for any p, n in B that

[zSx & W(p, 2) < W(n, 2)] ~ [Wip,x) < W(n, x)] .

Therefore, by examining Case 1 of the construciion we see that in order
for lim, ., D,(x) not to exist, W(D_(x), ) must take on arbitrarily large
integer values as 7 approaches . But this contradicts W(D_(x), x) < 2x+l
which fcllows immediately from the definition of W. Therefore lim_ D,
is well-defined for all 0 < a.

From the fact that there are only finitely many g < « such that
f(u) < x for any x < w and from the result of the preceding paragraph
it follows by induction on x that for all x < w, D(x) is defined. Thus
dom(D) = w. Also, observe that since D, is one—one for all 0 < «, D too
is one—one.

Proposition 4.3. C=B - g(D) and B — C has order type w.

Proof. First we show that for any § in B there is a ¢ such that for all
T> 0

3) BN(B, 4y —(ngDIVC, yN=¢.

Assume that this is false and let 3* be the least 8 for which it fails; let 3%
be the least 8 in B such that B < §* and such that for all ¢ there is a
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7> 0 such that
pre@*n (B, — gD IV C, ).

Let ¢’ be such that for all 7> ¢', b, is greater than 3*. That ¢ exists
follows from the assumptions on B in the statement of the theorem.
Nuw for any 7' > o' such that

p*e@E*N(B,,,, - (mgD_ IV C,,),

there is a 0'' > 7' such that ¥ is b * forall 7' < g < ¢" and g% is

D, (x) for some x < w. Thus, for all 7 > ¢' there is a u > 7 such that
D, (x)=4* for some x < w. From our minimality assumption on g* it
follows that if &' > pu> o' such that D, (x) = B¥ and D= B* then
y<x,andif thereisat,u<7<pu’, such that D, (w) -# B¥ for any

w < w then y = x. Therefore, we have deduced that for some x < w,
p* = D (x) for all sufficiently large u. But this contradicts our assump-
tions about # - therefore, for any f in B there is a o such that for all
7>0 (5) holds.

It follows directly from the result of the preceding paragraph that
rng(D) has order type w. It also follows directly that C £ (B — mg(D)).
Let b, be a member of B — C, and let o’ be such that for all 7 2 o',

b, > b, and (5) holds with g = b_,. Thus there exist x(¢"), x(¢' +1), ...
such that for all u> o', D, (x (1)) = b,. By inspection of Step o of the
construction we have that x{¢") 2 x(¢' +1) 2 ... . Hence b, is in rng(D).
This completes the proof of the proposition.

Consider a fixed natural number e. Let
G={iti< e& X;UB 2 lub(B)}.
Letw= E{2“"i: i€ G}. Then for each i in G we have limoF(i, o) = lub(B),

and for each i £ e in G’ we have lim_F(i. 0) < lub(B). Let H be the a-1.c.
set

{(u:(Ec)ue B, &(AN(GEG ~» (MEX; , & u< F(, o))}

Clearly lub(B) — B is contained in /1, aad since B is not a-recursive,
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lub(B) = lub(B N H). Thus the set
BOHN {p: (ADGEG & i< e~ u21im, F(i 0)}

also has lub = lub(B). We conclude that for each ¢ thereisa 7 = o,
such that W(bd,, ¢) = w. We also observe that for an e-finite set of o,
W(b,,e) > w.

Proposition 4.4. For infinitely many x < w, W{D(x), e) = w.
p

Proof. Fromi our last renwark it is sufficient to show that W(D(x),e) = w
for infinitely many x. Suppose to the contrary that W(D(x), ¢) < w for
all x 2 y, where y is fixed > e. Then there exists o such that D,(x)=
D(x) for all x < y and u > 0. Hence we can choose ¢ and z such that
W(b,. e)=w, D (z)=b,,and z 2 y. It is easily shown by induction
that ferallu 2 o

(Ev)(vSv<z & WD,©).e)2 w).

Thus W(D(), ) = w for scme v, y < v < z. This is a contradiction and
the proposition is proved.

Propcsition 4.5. For each i < w there exists vi) such :hat for each
v > v(i) and all sufficier:tly large o, v is not protected by i at step o.

Proof. We may suppose 5; 2 R; N (B — () for otherwise there exists x
such that D (x) is in R; ;— S, ,, for all sufficiently large o, whence
only a finite number of elements are ever enumerated in 7;. Supposing
that S, 2 R; N (B—C), only a v in B N R, can ever be protected by i,
thus eventually any such v will either be in §; , or C,, and thereafter
it can never be protected by i.

Proposition 4.6. W(D(x). e) = w for all sufficiently large x.

Proof. If not, choose x 2 e such that

WD), e) < w, D(x) > lub{v(i):i<e},
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and choose y > x such that W(D{y), ¢) = w. From Case 1, at all suffi-
ciently large steps 0 we have D (z) # lim ., D_(z) for some z < x, which -
is a contradiction.

<0

Proposition 4.7. If S, 2 R, N (B - O), then S,V (R, —B) is a-r.e.

Proof. By the separation property there exist disjoint a-recursive sets
B*, H* included in B, H respectively such that B*U H* = lub(B) and
such that B* and H* are regular if B is regular. It is clearly sufficient to
show that, if we assume the hypothesis of the proposition, then

S, VR, =B d*=(S,u T*)n H*

for a set 7 which differs only a-finitely from T,. The set of steps at
which case 2 oceurs must be unbounded, otherwise the domain of D
would be finite. Hence T, certainly includes R, - B. Consider a step ¢
at which a member § = lim_.,D,(x) of H* is enumerated in C, then
W(B, e) 2 w. Thus either z in Case 1 is > e, in which case we say  enters
C in the first way, or z < e and W(B, ¢) > w in which case we say
enters C in the second way.

Let 7% = T, — {B: B enters C in the second way}. Then T* 2 R, — B
andR,C T*. Ifvisin T* — (R, — B) then v is in B and either v is not
in C or v enters C in the first way; if v isnot in C thenvisin R, N (B-0(),
kence v is in S, ; if v enters C in the first way then » was not protected
by e when it entered C, and since » cannot be enumerated in 7, after
it enters C, » must be in S,. Therefore,

S, uTHNH*=(S, VU (R, -B) N H*

T, — T* is certai..ly an a-recursive set. There is only an a-finite set
of members 8 of B satisfying W(, e) > w; therefore, this set has an
upper bound ¢ < lub(B). Since rng(D) has order type w, there are only
finitely many x such that D(x) < &. Therefore, there is a step ¢ in the
construction after which no member of B can enter C in the second way.
We conclude that the set of members of £ which enter C in the second
way is a-finite. Thus 7, — 7™ is a-finite, and the proposition is proved.
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From the preceding proposition, P,,,; is certainly met. From pro-
position 4.6, W(D(x), e) = w for all sufficiently large x whence D{x) is
in X, if B U X, 2 lub(B). From Proposition 4.3 it follows that
lub(B8) —(Cu X,) is finite if B U X, 2 lub(B), which proves that £y, is
also met. Finally, that lub(B) = lub(B — () follows from Propositions
4.2 and 4.3, and that C is regular if B is follows from Proposition 4.3.
This completes the proof of the theorem.

The necessary condition mentioned at the beginning of this section
will be deduced from the foliowing:

Theorem 4.8. Let (L, A) be ¢ finite separated d-lattice. There exists a
sub-d-lattice (L*, A*) of (Ry, A(Ry)) in which all the atoms are un-
bounded and regular, and there exists a sub-d-lattice (L*, A¥) of

(Qq. A(Qy)) in Which all the atoms are infinite, such that each (L*, A*)
is isomorphic to (L, A) and satisfies the following four conditions:

(A1) Let A be an outermost atom in (L*, A*) which is not innermost,
then A' is maximal.

(A2) Let Ay, A, beatoms in (L*, A*) such that Ay is just within A,
and such that Ay is not innermost, then for any o-r.e. set R such that
R 2 A,, A, —R is finite.

(A3) Let Ay, A, beatoms in (L™, A*) such that Ay is just within A,,
then for any a-r.e. set R, lub(R 0 A,) =lub(A4,) implieslub(R N A ) =
lub(4 ,).

(A4) Let A be an atom of (L*, A*) and let B be the least canonical
generator containing A, if R, S are a-r.e. sets such that S 2 R N A, then
SUFE -R)isa-re.

Proof. To prove this thcorem we use a refinement of the construction
used in the proof of Theorem 2.6. Let m;, ..., ni; be the maximal
canonical generators of (L, 4), and let Ny, ..., N]- be pairwise disjoint
a-recursive sets whose union is o or w respectively, and which are reg-
ular and unbounded when the union is «. We map m, to N, for

1 £ x <. The definition of the map of the canonical generators of
(L, A) now proceeds downwards with respect to the inclusion of the
lattice. Let b be a canonical generator not yet mapped such that ail
those which properly contain it have already been mapped. Let ¢ be
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the least canonical generator which properly contains b, and let ny, ..., n;,
be the canonical generators which are maximal with respect to the
property of being properly contained in ¢; among them must occur b.
Assume for induction that none of n4, ..., n; has already been mapped.
Lzt C be the image of ¢, and choose an element © of R as follows:

Case 1. If ¢ is a maximal canonical generator, let B be any a-r.e. sub-
set of C which is maximal in C and which is regular and unbounded if
Cis.

Case 2. Otherwise, let d be the least canonical generator which prop-
erly contains ~ and let D be the image of d. Let B be an a-r.e. subset of
C which has the following properties:

@) lub(O) = lub(C - B,

(ii) for every a-r.e. subset 2 of Dsuchthat CUR =D, D —(BUR)
is finite;
(iii) for any a-r.e. subsets R, S of D such that S2 R N (C - B),
SUR-0O)isa-r.e.;
and such that B is regular and unbounded if C is. Such a B can be found
by facts (i) and (v) above provided C is not a-recursive in D, which we
assume as part of the induction hypothesis.

Having chosen B we decompose it into pairwise disjoint a-r.¢. sets
B, ..., By such that each B; is regular and unbounded if B is and such
that for any a-r.e. subset R of C, R — B not «-r.e. implies R — B; not
a-1.e. for each i. We let the images of 1, ..., n; be By, ..., By respec-
tively. It is clear from the proof of Theorem 2.6 that this gives a well-
defined mapping which is an isomorphism of (£, 4) onto a sub-d-lattice
(L*, A*) of (R, A(R)) because this construction is a refinement of that
given in the proof of Theorem 2.6. Also, (Al) is clearly satisfied
through Case 1. To prove (A2) consider atoms A;, A, of (L*,A4*)
such that 4, is just within 4, and such that 4, is not innermost. By
the correspondence between atoms and canonical generators there are
canonical generators B;, B, in L* and members C;, C, of L* such that
C; €8,S€C,€8B,,4,=8, —C;, Ay=B, - C,, and such that C, - B,
is a-r.e. and regular if C, is regular. Let R be any a-r.e. set 2 4, then
R U (Cy — Byj) is an a-1.e. set which is complementary to B in B,. By
Case 2 we have C; a major subset of By in B, whence (B; - C;) —

(R U (C, — B,)) is finite, whence 4; — R is finite. Thus (A2) is satisfied.
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With the same notation let R now be an a-7.e. set such that lub(RN 4,) =
lub(4 ;). Then (R N B,) — €y =R N A, is not a-r.e. since 4, is clearly
immune, and the construction of By makes (RN B;) — .3, not a-r.e. also.
If A, is innermost, i.e. if 4= B, it follows that lub(R 1 ;) = lub(4,),
since we can replace R by the portion of R above a leve! arbitrarily high
below lub(4,) and still have the preceding sentence hold. Ctherwise,
tiien C; is constructed by facts (i) and (v). Note that fiom the construc-
tion it follows that any atom which is not innermost hat order type w.
If lub(R N 4,) # lub(4,) then R N A4, is finite, hence a-r.c., whence
(RN AV (R N By) — By)is a-r.e. (from peroperty (¢) in fact (v)),
which is impossible. Thus in any case lub(R N 4,) =lub:4,), and (A3)
is proved. .

Let A be an atom of (L*, A*) and let B be the least canonical gener-
ator containing A. Let C be the union of the canonical generators
properly contained in B; then 4 = B — C. Let R, S be a-r.e. sets such
that § 2 R N A. We wish to prove that SU (R ~ B) is e-r.e. This is
trivia' if 4 is either innermost or outermost, thus suppose A is neither
innermost nor outermost, and without loss of generality, suppose S € B.
Let B =By, ..., Bp be a maximal increasing sequence of canonical gener-
ators. Then B P is a-recursive. Since C is constructed by (i) and (v) in
Case 2 we have that

SUWR- 3,)N By)
is a-r.e. Now

where C, is the union of the canonical generators properly included in
B,. Thus we may repeat the argument if p > 2 to see that

SUR-BINBNUR-B)INB)=SU((R~B)NB,)

isa-r.e.,andsoon. ThusS U ((R-B;)N B,) isa-r.e., whence S U (R -B)
is a-r.e. This completes the proof of (A4) and of the theorem.
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Consider now the separated AE-sentence
(Ax)(Ey)(D(x) » P(x,y)) .

Let {L, A) be the d-lattice of the separated diagram D. From Theorem
4.8 we can find a sub-d-lattice (L ¥, A*) of (Ry, A(Ry)) or (Qy. A(Qy))
in which all the atoms are unbounded and regular or infinite, respec-
tively, and which is isomorphic to (L, 4) and satisfies (A1)—(A4). Now
xisxy, .., x,,and welet By, ..., B,, be the images in L* of the ecle-
ments represented by x, ..., x,, respectively in L. Clearly, D({B;}, ...,
{B,,}) holds in (R, A(R)). Suppose that the separated AE-sentence we
are considering holds in (R, 4(R)), then there exist a-r.e. sets Cy, ..., C,
such that P({ By}, ..., {B,,}, {C}}, ..., {C,}) holds in (R, A(R)). Let
be the unique diagram containing just the variables x, y such that
QUB;}, ... {B,}, {C1}, ..., {C,}) holds in (R, A(R)). Then certainly
Q implies P. Let (L, A) be the d-lattice of Q, then (L, A) is a sub-d-
lattice of (L, A;). From (A1)—(A4) we can deduce the following:

(B1) An outermost atom of (L, A) which is not innermost is an atom
of (L, 4,).

(B2) If a; is an atom of (L. 4;) contained in an atom a of (L. 4)
such that a is just within b and not innermost, then there is an atom b,
of (Ly, Ay) contained in & such thata,<b,.

(B3) If by is an atom of (L, 4;) contained in an atom b of (L. 4)
and if a is just within b, then there exists an atom a; of (L;, 4,) con-
tained in a such that ¢; < b,.

(B4) If a;, b, are atoms of (L, A ) contained in the respective atoms
a b of (L, A), and if g, is just within b,, then a=b or a is just within b.

We have (B1) directly from (A1). Suppose the hypothesis of (B2).
For each 0, contained in b let ¢, be the least member of L, containing
by. From (A2) the union of all the #; covers a since it covers b, whence
for some b; we have a, < b;. This proves (B2). Suppose the hypothesis
of (B3), and iet ¢} be the least element of L, containing b,. From (A3),
t; Na+# P, and soq; X b, for some a; contained in a. This proves (B3).
Finally, suppose the hypothesis of (B4) and that @ # ». Since L is a sub-
lattice of L, a < b. Let ¢ be the atom of (L, A) such that g is just within
¢, and let 7; be the least element of L, containing &, . For each atom ¢,
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of (L,, A;) contained in #; N ¢ let s; be the least element of L,
containing ¢, . Then the union s;* call the 5, is 2 #; N ¢. From (A4),
§;*U (ty —w) is in L, where u is the least element of L containing c.
Hence r; < s;* U (1} — 1), whence £; 0 u < 5,*. Thus ¢, is contained

in some s5;, and so there exists ¢, contained in ¢ such that 4, ¢y < b;.
This completes the proof of (B4).

Thus for (AxYEy)(D{x) » P(x,y)) to be true in (R, A(R}) where D
is a separated diagram it is necessary that there exists a diagram Q con-
taining just the variables X,y such that Q(x,y) implies D(x) and P{x,y)
and such that (B1)—(B4) hold.

§5. The Decision Procedure for AE-sentences

Let x.y stand for x,, ..., x,, and y,, ..., y,, respectively. Call the
separated sentence (AX)Ey (D(x) - B(x,y)) potentially true in
(R, A(R)) if it satisfies the condition shown to be necessary in the last
section. In the statement of the following theorem ‘“holds’ means
“hoids in (R, A(R))”, and {B}, {C} abbreviate {B,}, ..., {B,,} and
{Cy1, ..oy {C,) respectively.

Theorem 5.1. Let (AXEyHD(x) ~ P(x.y)) be a separated sentence
which is potentialiy true in (R, A(R)). Let Q(x,v) be a diagram which
implies D(X) and P(x,y) and such that (B1)—(B4) are true when (L, A),
(L, Ay)are the d-lattices of D, Q respectively. For any m-tuple B such
that D({B}) holds either there exists an n-tuple C such that CQ({B},{C})
holds or there exists an a-recursive set C and a diagrom D*(x, y) of
characteristic less than that of D such that D¥({B}, {C}) holds.

Proof. Suppose the hypothesis of the theorem holds. We attempt to
construct an .7-tuple C such that @Q({B}, {C}) holds. We may surpose
without loss of generality that the m-tuple B generates a sub-d-lattice
(L*, A%) of (A . .1(R)) or (Q,, A(Q,)) which is isomorphic to (L, A)
and which has only infinite atoms or unbounded atoms whichever is
appropriate. For C to make Q({B}, {C}) hold in (R, 4(R)) the follow-
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ing conditions are sufficient by Lemma 2.2:

(C1) For each atom a; in (L, A), a,(B, C) is infinite or unboundeq,
whichever is appropriate; where for any term ¢ containing only the
variables x, y we let #(B, C) denote the interpretaticn of / when x,y are
interpreted as B, C respectively.

(C2) For each pair of atoms ay, b; of (L}, 4;) such that q; i just
within b, and for each a-r.e. set R, if R 2 b; (B,C) :hen R N a,(B.C) # ¢.

(C3) For each term ¢, which is equal to ¢ in (L, 4,), ,(B,C) = ¢.

(C4) For each term ¢, in L,, ¢, (B,C) is a-r.e.

QOur construction of the a-r.e. sets C attempts to meet (C1)—(C4).
Before we state the corstruction we need tne following:

Lemma 5.2. There is a function C, defined on each pair (a,, a) such that
aisan atom of (L, A) and a, is an atom of {L, A,) not contained in an
innermost atom of (L, A), for which the following hold.
(D1) Ifa, b are atoms of (L, A) such that a < b, then C(ay, a),
C(ay, b) are atoms of (L, A,) such that C(ay, a) < Cay, b).
(D2) If a* is an atom of (L, A) containing a,, then C(ay, a*) = a;.
(D3) C(ay, o) L a.

Proof. This is a purely algebraic lemma, therefore we omit its proof and
refer the reader to Lachlan ([5], p 141).

Before continuing with the proof of the theorem, we separate the
cases for R equal to R*, R,*, and Q,*. We shall deal first with the
cases R = R,* and R = @,*. The construction we give will have the
property that if all the sets B are subsets of w then s vill be C and C.
The case of R = R;# will be dealt with later.

Before giving the construction we can dispose of some of the sub-
conditions which go to make up (C1), (C2). For eacl innermost atom
a of (L, A) we choose an infinite a-recursive subset W <f #(%.). Then
(Rg, AR W will be isomorphic to (Ry, A(Ry)) or (Qy, A(Q4)) de-
pending on whether W is unbounded or bounded. P; Theorem 2.6 and
Corollary 2.7 we can choose the intersections of the sets C with W so
that the sub-d-lattice of (R,, A(Ry)) | W generated by them has no finite
atoms and is isomorphic to (L, A) under the map which takes B, C, W
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into x, y, a respectively. This is enough to satisfy (C1) when a, is corn-
tained in an innerniost atom of (L, 4) and (C2) when both a, and b,
ave contained in an innermosi atom of (L, 4). At the same time (C3)
and (C4) are satisfied as regards the intersections of the s>ts C with W.

The rest of (C1) can be split into conditions (a, ; /) where a; runs
through all the atoms of A, not contained in innermost atoms of (L, A)
and i runs tiirough all natural numbers. This condition requires that
the cardinality of a, (B, C) be at least i. The rest of (C2) can be split
into conditions (a;, by ;i) where {a;, b;) runs through all pairs of atoms
of A, such that a; is just within b, and such that b, is not contained
in an innermost atom of (L, A), and where / runs through all natural
numbers. This condition requires that if X, is the i-th a-r.e. set then
X; 2 by(B,C) implies X; N a; (B,C) # ¢. We zrrange all the conditions
(ay; 1), (ay, by ;i) in an effective one—one correspondence with the
natural numbers. When we speak of the k-th condition we mean the
one corresponding to the natural number k.

Let T be the union of all the a-recursive sets W as a runs through the
innermost! atoms of (L, A). Just as in the proof of Lemma 3.3 let
Al A2 .., AP beall the atoms of (L*, A*) and leta', 42, ..., aP be the
atoms of (L, A) so that A/ = gi(B), and let S?, 52, ..., SP be respective
corresponding boxes. At each step ¢ of the construction we may place
one member of 7’ in an outermost box, or we may move an element
from one box to another just within it. (We carry over the partial
ordering X from atoms to boxes via the correspondence.) From the
proof of Lemma 3.3 this can be done so that for 1 < i< p any member
of T' N A eventually reaches S’ and remains there. Our procedure for
this will be that of Lemma 3.3 except that we may temporarily restrain
some elements from leaving outermost boxes. These restraints will be
made explicit below.

Welet S, !, Slz, ...» $;7 be boxes corresponding respectively to the
atoms all, alz, ..., a7 of (Ly, Ay). At each step, if an element is placed
in an S-box or moved from one S-box to another it will also be placed
in an §)-box or moved from one §;-box to another respectively. This
will be done so that at any stage, if £ is in a box S corresponding to an
atom q of A, then at the same stage £ is in just one S;-box and that S;-
box corresponds to an atom a; of 4; which is < a. Simultaneously with the
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rest of the construction we shall be enumerating all the a-r.e. sets X;; we
let X; , denote the set of elements which have already been enumerated
in X; at the beginning of step 0. If Y denotes a box, then Y(o) dsnotes
the set of elements which are in Y at the beginning of step 0.

The auxiliary functions f, G are defined as follows. If the k-th condi-
tion is (a, ; ) where a; corresponds to the box S;, then for all elements
x let f(k, x) be the least o such that x € S;(0) if one exists and unde-
fined otherwise: let G(k, 7) be the i-th member of { f(k,x): X € S(7)}
in order of magnitude if one exists and let it be 7 otherwise. If the k-th
condition is (1, by ;i) where a;, b correspond to boxes R}, S; respec-
tively, then for all elements x let f(k, x) be the least o such that

XE€R10)NX; JU (S (0)NX;,")
if one exists and undefined otherwise; let G(k, 7) be the least member of
{fk,x):x e (RN X; DUS;(MNX,;,")}
if one exists and let it be 7 otherwise. Since G is not quite convenicnt
for the construction, we define F from it by double induction; but first
let g be any a-recursive function such that g{k, o) is increasing in ¢ for

k fixed, strictly increasing in & for o fixed, lim, g(k, 0) = g(k) exists for
all natural numbers &, and such that lim; g(k) = a:

F(0,0) = G(0, 0) ,
F(k+1,0) =max{ £k, 0+ 1, G(k+1,0)1}:
F(0, 0) = max {lub({ F(0,7)} . ), G(0,0)},0> 0 ;

F(k+1,0)=max{F(k, 0)+1, G(k+1,0), g(k+1,0),
1ub({F(k+l,'r)}T<o)}, c>0.

It is also useful to make the convention that F(—1,¢) = —1. Now F(%, 0)
is increasing in ¢ for k fixed, strictly increasing in k for ¢ fixed, and
2 G(k, 0). Further, lub({ F(k, 0)}, ) < « if and only if lub({G(y. 0)}, ) < a
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for all y € k, and for all 7 there exist k, ¢ such that F(k, 0) > 7. Finally,
let H(E, o) equal the least number & such that § < F(k, 0) if such a num-
ber exists and let it equal —1 otherwise.

For any element £ let 2(¢) be ihe first step o such that £ is enurnerated
in some set of L* corresponding to an atom of A* (see proof of Lemma
3.3). If at step o the procedure in the proof of Lemma 3.3 would move
the element § from S to S/ where S' is outermost and H(h(§),0) = 1
then in our present procedure we do nothing and go to step o + 1. This
is the restraint mentioned above, and is the only change in the proce-
dure of Lemma 3.3. If at step o an element £ is moved from S to S/
where S is outermost, then at that step we assign ¢ to the H(h(§),0)-th
condition and £ remains assigned to the H(h(§), o)-th condition for the
rest of the construction.

A condition (ay ;i) is said to be of the first kind; a condition
(@y, by ;1) issaid to be of the second kind if ay, by are contained in the
same atom of 4, and to be of the third kind otherwise.

If at step o of the construction an element is put in somre S-box or is
moved from one S-box to another, the remainder of the o-th step of
the construction consists of the following two parts:

Part 1. Let k be th= least number, if any, such that the k-th condition
is of the second kind, (a,, b; ;) say, and such that there exists v in X; ;
where » has been assigned to the A-th condition and where v is currently
in the box of b; . If the k exists, move the least such » from the box of
b, into the box of a; .

Part 2. Case 1. At step o suppose that £ is placed in the outermost
box S corresponding to the atom a of A. Place £ in the outermost box
S corresponding to the atom @, of 4, whichisequal toainA4,. If
Case 1 does not hold, then at step o some £ is moved from box S? to
S? and £ is now or already has been assigned to some condition.

Case 2. § is or has been assigned to a condition (a; ; i) of the first
kind. If ¢ is in the box of C(a,, aP), we move it from that one to the
box of C(a,, a?). Otherwise, £ is in a box Sxk say, then we move £ from
S,¥ into the box of C(a,*, a?).

Case 3. £ is or has been assigned to a condition (a,, by ;i) of the
second kind. If £ is in the box of C(b,, a”), we move it from that one
to the box of C(b,.a%). Otherwise, £ is ina box S 1" say, then we move
¢ from S,% into the box of C(a,f, a%) .
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Case 4. £ is or has been assigned to a condition (a,, b;;{) of the thira
kind. If & is in the box of C(b,, a”) and C(b,, a°) # b,, then we move
¢ from that box into the box of C(2,, a?). If £ is in the box of b; and
a? contains a,, we move § from the box of b , into the box of a 1 Other-
wise, proceed as in Case 3.

This completes the construction. For 1 £ i< n define C;n T’ to
consist of all elements & such that there exists a box S, , corresponding
to an atom a; of A; which is < y,, and a o such that § is in S, (0). This
defines the sets C completely, because their intersections with 7 have
already been chosen. It is clear that all the sets C are a-r.e. As stated
above, if at any stage £ is in box S corresponding to the atom a of 4,
then at the same stage £ is in a box S corresponding to an atom a; of
A such that a; is included in a. This follows from (D3). From (D1)
we see that if £ isin §,"(0) and £ is in S/(r) and ¢ < 7, thena/ < a/.

It follows that for each atom a; of 4,, ¢, (B,C)N T " consists of just
those elements which eventually come into S, the box corresponding
to a;, and remain there for the rest of the construction. From this we
see that (C3) is satisfied, because every element in 7' is in a,(B, C) for
somz term a; which is # ¢ in 4. It also follows that if ¢, is any term in
Ly, then t;(B,C) is a-r.e. Forif a;, b, are any atoms of A, such that

a; = by then by < ¢, implies ¢; < ¢;, whence

t1(B,C) N T' = {x: (Ea;)(Es,}Eo) (box §; corresponds
to atom a; OfAl &)(15 in Sl(o)&al < tl)}

The set on the right is clearly a-r.e. and so (C4) is satisfied.

There are two possibilities to be considered. First, suppose that
Tub({ F(k, 0)}a<a) < « for every k. If the k-th condition is (@, ; 7)
then from the fact that Wb({F(%, 0)} _,) < a it follows that
lub({G(k, 0)} . o) < « and thus that at least i elements eventually
reach S, the box corresponding to a;, and remain there. Thus
a;(B,C) © T' has cardinality 2 i. If the k-th condition is (a;. by: ),
then we see that

lub_(min{ fik,x): X€ (R (0)N X; YU (S ()N X; M<a
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where R, . §; are the boxes corresponding to a;, 51 respectively. There-
fore

(a,(B,O)N X)U (b;(B,O)N X))+ ¢ .

In either event, the k-th condition is satisfied, and therefore (C1)—(C4)
are satisfied.

The other possibility is that lub({ F(%, o) }
the least such & and choose 0, such that

.<a) = @ for some k. Choose

(AG)(A (e < og & t< k)— F.1,0) = F(t,04)) .

Now the &-th condition is concerned with a particular indecomposable
compcnent of (L, A) in the sense that there is a unique term £, contain-
ing just the variables x such that #;, ;" are bothin L, #; # ¢ in 4, such
that no ¢ which is < 7 in L also has thesc properties, and such that in
A, the atom(s) of the k-th condition is (are) contained in ¢, . We define
C to be the union of #;'(B) and {x: x :s assigned to some condition
other than the &-th}, then C is clearly a-r.e. Also at step 0 > 0 if

F(k—1,09) < h(¥) £ F(k, 0)

then we know that subsequently £ cannot be assigned to any condition
but the k-th. As x increases F(k, X) increases without bound (below «).
Thus we can a-effectively enumerate C’ as well as C. Therefore C is a-
recursive.

Suppose that the k-th condition is (a; ; i). Let a* be the atom of A
which contains a, . Consider ¢ in C'N a*(B); we suppose for the sake of
argument that such & exists. Then in the construction & follows a path
a, ...,a' =a¥in (L, A). From Cases 1, 2 of step o we see that in the
Sy-system & occupies in turn the boxes corresponding to the respcctive
atoms C(a,, a"), ..., C(a,, a'P) = a, and that £ remains in the last of
these boxes indefinitely. This is because if p > 1, then £ is assigned to
the A-th condi‘ion when it is moved from S to S%. It follows at once
that C' N @*(B" is {inite; otherwise we should have a, (B, C} infinite
whence G(k, ) would be bounded as ¢ increases, whence
lub({F(k, o)}, ) <a.
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Suppose the k-th condition is of the second kind, (a;, b, ;i) say,
where a,, b, are contained in the same atom a* of 4. Consider the
least & in C' N a*(B) as before; then again & follows a path @', ..., a'p = a*
in (L, A). From Cases 1 and 3 in step o we see that in this case § occu-
pies in turn the boxes of C(b,g, am, ..., c(d,, a'r) = b,. But £ does not
necessarily remain indefinitely in the box of b;. From Part 1 of step ¢
we see that in fact £ remains in the box of b, justif £ is in Xi'; if£isin
X, then & eventually gets moved from the box of b; into the box of a;
where it remains indefinitely. Thus if any such § exists G(k, o) is
bounded as o increases, whence lub({ F(k, 0)}, o) < a. Thus from our
hypothesis that & is the least number such that lub({ F(%, 0)}0 =@
we again deduce that C' N g*(B) is finite.

Suppose finally that the X-th condition is (a;, b;; ) and of the third
kind. Let a4, b; be contained in the respective atoms a*, b* of 4. Con-
sider £ in C" N b*(B). From Cases 1 and 4 of step o we see that while ¢
follows a path a’t, ..., a’P = b* in (L, A), in the Sy -system & occupies in
turn the boxes of C(b;, a') = @', ..., C(b,,aP) = b, and § remains indefi-
nitely in the last of these. Hence C' N b*(B) is the same as C' N by (B, C).
If £isin 77N C'N a*/B), then & follows the path @™, ..., = b*, a* in
(L, A), and in the S;-system & occupies in turn the boxes of C(b;. ah),
..., C(by, a'?) = by, a; and remains indefinitely in the last of these. Thus
7' C' N g*(B) is the same as T' N C' N g, (B.C) Also, since
lub({F(k, »o)}aqx) = o, we cannot have lub({ G(%, 0)}a<a) < a whence
X;Nnb,(B,C)and X,N 7' Na, (B,C)=¢. It foliows that X, 2 BN C
and that X, N T'N a*(B) = ¢. Let u, v, w be terms in L such thatu S v
<w, b*=w—v, and a* =v—u. Then C'N (b*(B) U u(B)) is a-1.e. since
it can be expressed in the form

C'Nn((X;nT'Nnw(B)) UuB)).
At this point we need the following lemma:

Lemma 5.3. Let (K, B), (K, By) be finite d-lattices. Let F be a one—one
map of the atoms of B into the atoms of By such that ifa < b in (K, B),
then F(a) < F(b) in (X, 81 ). Then the characteristic of (K, B) is less

than or equal to the characteristic of (K, By) and the characteristics are
equal only if F is onto and induces an isomorphism of (K, B) onto (Ky, By).
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Proof. Since this is a purely algebrai: proposition, we omit the proof
and refer the reader to Lz hlan ([ 5], p. 145).

Now suppose that C has been adjusted so that the sub-algebra of
(Ry» A(Ry)) generated by B, C has no finite atoms; this adjustment
consists of adding one finite set to C and subtracting another from it.
This saves taking equivalence classes modulo finite sets, because after
the adjusiment the sub-d-lattice of (R, A(R)) generated by {B}, {C}
is isomorphic 1o ti.. sub-d-lattice of (R, A(R)) generated by B, C.
We now compare the sub-d-lattice D = (L*, A*) of (R, A(R,)) gener-
ated by B with D(C) generated by B, C. Outside the indecomposable
component C; (B) of D which is obtained by restricting to subsets of
t; (B) the indecomposable components of D and D(C) are exactly the
same, because C 2 t;'(B) by the definition of C. Thus D(C) differs
from D in that the component C (B) of D is repiaced by the two com-
ponents of D(C) obtained by restricting to subsets of C N 1, (B),

C' 0 t,(B) respectively. Denote these components by C(C), C(C")
respectively; they may or may not be indecomposable.

Define a map cf the atoms of C(C) into the atoms of C; (B) by
mapping each atom of C(C) to the unique atom of C; (B) which con-
tains it. This map clearly pr:serves the relation <, and so Lemma 5.3
may be applied. An outermost atom of C; (B) is an outermost atom of
D and any element of an cutermost atom of D does not get assigned
to any condition; therefore, any element of an outermost atom of
C;(B)isin C'. Thus an outermost atom of C; (B) is not the image of
any atom of C((), whence the characteristic of C(C) is less than that of
Ci(B).

Define a map F of the atoms of C(C") into the atoms of C; {B) by
mapping each atom of C(C") te the unique atom of Cy(B) which con-
tains it. We may apply Lemma 5.3. If the k-th condition is of the firs¢
or second kinds we know that C' N ¢*(B) is finite for some atom a*
of A, whence F is not onto in this case. I the x-th condition is of the
third kind (ay, ¢ 1) say, where a,, by are contained in the respective
atoms a*, b* of A, then we know that C' N (b*(B) U u(B)) is a-r.e.
Because this set contains 7' N b*(B) while excluding a*(B), we cannot
have C' N a*(B) X C'N b*(B) in C(C"). Thus although F can be one—one
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onto in this case, it cannot induce an isomorphism of C(C') onto C;(B).
In any event, C(C’) has characteristic less than that of Cj (B).

Let r be the rank of C} (B); then the characteristic of C;.(B) is {r}.
Let {ry, ..., r; } be the characteristic of C(C) X C(C"). It follows that
r; <rfor1<i<j, and from that it follows that the characteristic of
D(C) is less than that of D. Letting D*(x, y) be the diagram such that
D*(B, C) is true in (R, A(R,)), the proof of the theorem is complete
for the cases where Ris R * or Q*.

We now show how to modify the preceding proof to handle the case
of R=R a# . We begin by having the a-recursive subset of ¢(B) for each
innermost atom a of (L, A) be unbounded instead of merely infinite.
Then (R,, A(R)) | W will be isomorphic to (R,, A(R,)) and we may
proceed as before. The next change has the condition (a, i) require
that there be an element in a, (B, C) which is greater than g(i) =
lim g(i, 0). Then if the k-th condition is (@, ; /) we define f(k, o) as
before but we alte: the definition of G(k, o) as follows: let G(k, 7} be
the least membci of { f(k, X): x € §;(7) & x > g(k, 7) }if one exists
and let it be 7 otherwise. The rest of that paragraph remains unchanged.

The statement of the construction and the definition of the sets C
remain unchanged. Likewise, the proofs that (C3) and (C4) are satisfied
need no change. The proof that, assuming lub({ F(%, 0)} _,) < a for
all k, (C1) and (C2) are satisfied needs to be changeu only for the case
of conditions of the first kind; in that case it follows from
lub({ G(%, a)}am) < a thate,(B,C) N 7' has an element greater than
g(i) where the k-th condition is (a, ; ).

We now give the changes in the procf following the assumption that
lub({F(k, 0)} _,) = a for some k. The first change is that if the k-th
condition is (a, ; {) then it follows that C' N a*(B) is bounded, instead
of being finite. The next change is thai we cannot conveniently avoid
taking equivalence classes modulo bounded sets, so we do not, we com-
pare the sub-d-lattice D of (R, A(R)) generated by {B} with D(C) gener-
ated by {B}, {C}. The only remaining change is to note that if the 4-th
condition is of the first or second kinds we know that C' N a*(B) is
bounded for some atom a* of 4, whence our map of atoms F is not onto
in this case. We have then made all the changes needed to show that if
D*(x, y) is the diagram such that D*({B}, {C}) is true in (R, A(R)), the
proof of the theorem is complete {or the case R =R Of .
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We are now readyv to give the long-awaited decision procedure. By the
conclusion of Section 3 it is sufficient to reduce the decision problem
for a separated AE-sentence to the decision problem for primitive AE-
sentences of lesser characteristic. Now, the separated AE-sentence

(AXXEy)XD(x) = P(x,y))

is false in (R, A(R)) unless it is potentially true; and if it is potentially
true then from Theorem 5.1 it is true in (R, A(R)) just if each sentence

(AX)(AY N EY)X(D*(x, y) = P(x,y))

is true in (R, A(R)) where DD* runs through all diagrams containing just
the variables x, y which are consistent with D and which have charactex-
istic less than that of D. This constitutes an effective decision procedure,
proving the following:

Theorem 5.4. There is an effective decision procedure which for any AE-
sentence tells whether that seritence is true in the lattices (R *, A(R a*)),
R AR, (Q,F, A(Q 1) for a any admissible ordinal projectible
into w, or whether the senience is false in all of these lattices.

§6. Conclusions
As an immediate corollary to Theorem 5.4 we have the following:

Corollary 6.1. Let « be any admissible ordinal projectible into w and le:
(R, A(R)) be any of the three lattices (R *, AR })), (Ra#, A(Ra# ),
(@, A(Q*)). Then exactly the same two-quantifier sentences are true
in all the lattices (R, A(R)).

Using a result of Owings [8] we can show that Corollary 6.1 is the
best possible result in that there is no larger class of sentences for
which all the lattices (R, A(R)) are equivalent, where sentence com-
plexity is measured in terms of the number of alternations of quanti-
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fiers. Let 4 be a maximal element in R; following Owings [8] we say
that 4 is of type 1 if whenever B is maximal in A there is a maximal
element C such that B= A4 n C; otherwise, we say A4 is of type 2. It is
a result of Laclilan [6] that every maximal element in R * is of type 1.
Owings has shown that if « > w and « is projectible into w then R,*
has maximal elements of both types and Q,* has maximal elements of
type 2 only. The existence of maximal elements of type 1 can be
asserted by a four-quantifier sentence, and the existence of maximal
‘elements of type 2 can be asserted by a three-quantifier sentence.
Therefore, there is a three-quantifier sentence true in some (R, A(R))
and false in some (R, A(R)).

It is not known at present of what types are the maximal elements
of R a# for a > w and projectible into cw. It seems likely that they are
all of type 1. Obviously, knowledge of their types would provide val-
uable information about the lattices R *. Ideally, one would like to
have three-quantifier sentences which distinguished between all pairs of
lattices among R *, R j#, Q. for a fixed a > w. At present we have no
such sentences.

As was mentioned at the beginning of this paper, Corollary 6.1 is
actually a metatheorem which gives a criterion for “lifting” a fairly
large class of theorems of ordinary recursion theory to generalized re-
cursion theory. Needless to say, any other such criteria would be a
welcome addition to the subject of generalized recursion theory.
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