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Abstract

In this paper, the existence and uniqueness of positive fixed points for a class of convex operators
is obtained by means of the properties of cone, concave operators and the monotonicity of set-valued
maps. In the end, we give a simple application to certain integral equations.
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1. Introduction

It is well known for some time that concave and convex operators defined on a cone in
a Banach space play an important role in theory of positive operators (see, for instance,
[6, Chapter 6]). In [7] A.J.B. Potter introduces the definitionsee€oncave operators
and«-convex operators, and shows that éoe= 0, increasingx-concave and decreasing
(—a)-convex mappings have contraction ratios less than or equalaiod gives the ex-
istence of solutions to the nonlinear eigenvalue probkem= Ax. The method is based
upon Hilbert’s projective metric (see [1] for details). In [8] the author improves the cor-
responding results presented in [7] by using contraction mapping theorem. In [3] Guo
Dajun widens the conditions and removes the hypotheses of continuation for operators,
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and then extends the results of fixed points, eigenvectorg-fmncave {«-convex) op-

erators. However, they restrict their attention ta (x| < 1, while for the remaining cases

a > 1anda < —1, the research proceeds slowly and appears difficult because the Hilbert's

projective metric is useless for these cases. Up to now, pleasant results are seldom obtained.
The aim of this paper is to obtain the existence and uniqueness of positive fixed

points fora-convex ¢ > 1) operators. Our method is based upon the properties of cone,

a-concave (O< a < 1) operators and the monotonicity of set-valued maps. To demonstrate

the applicability of our results, we give in the final section of the paper a simple application

to certain integral equations.

2. Preliminaries

In this section we summarize some basic concepts in real Banach spaces.

Suppose thak is a real Banach space which is partially ordered by a ®eE, i.e.,
x <yifandonlyify —x € P. If x <y andx # y, then we denote <y ory > x. By ¢
we denote the zero element Bf Recall that a nonempty closed convex fet E is a
cone if it satisfies

xeP, A>20 = lxeP, (2.1)
xeP, —xeP = x=6. (2.2)

Putting P= {x € P: x is aninterior point of P}, a coneP is said to be solid if its
interior P is nonempty. MoreoverpP is called normal if there exists a consta¥it> 0
such that, for allkk, y € £, & < x <y implies ||x|| < N|ly||; in this caseN is called the
normality constant ofP. In the casey — x € P, we writex < y. If x1,x2 € E, the set
[x1,x2] = {x € E: x1 < x < xp} is called the order interval betweenandxo. We say that
an operator : E — E is increasing (decreasing)if< y impliesAx < Ay (Ax > Ay).

For all x, y € E, the notationx ~ y means that there exiat> 0 andu > 0 such that
Ax <y < ux. Clearly,~ is an equivalence relation. Givén> 0 (i.e.,h > 0 andh # 0),
we denote byP, the set

Py = {x € E: there exist.(x), u(x) > 0 such thak(x)h < x < u(x)h},

and it is easy to see th&y, C P.

All the concepts discussed above can be found in [4,5].

Let D be a subset of andc be a real number we denat® = {cx: x € D}. Recall the
following definition from [7].

Definition 2.1. Let A be a positive mapping o and leta € R. Then we sayA is
a-concave ¢-convex) if and only ifA(zx) > t*Ax(A(tx) < t*Ax) for all x € P and
t €(0,1].

Let A be a positive mapping oR which isa-concave ¢ € [0, 1]). Choosé: € 13, then
P, = P. So there exisk, u € RT (RT denote the positive reals) such that< Ax < uh
and A(tx) > t“Ax > tAx for ¢ € (0, 1]. Thuse-concave mappings are concave in the
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sense of Krasnoselskii [6, p. 185]. Similar remarks apply-tmnvex mappings. Note also
A is a-concave g-convex) if and only ifA(sx) < s*Ax(A(sx) > s*Ax) forall x € P and
s> 1.

3. Main results

In this section we consider, far > 1, the existence and uniqueness of fixed points for
a-convex operators. The main theorems, under reasonable conditions, show that increasing
a-convex operators have a unique fixed point in order intervals or totally ordered sets.

Theorem 3.1. Let E be a real Banach space amlbe a normal, solid cone, and let> 1.
Suppose thati: P — P is an increasingx-convex operator which satisfies the following
assumptions

(i) there existug, vo € P such tha® < Aug < ug < vg < Avg;
(i) there exists a linear operatdr : E — E which has anincreasing inverde 1 : E — E
such that

Ay —Ax<L(y—x), forVy>=x2>6. (3.1
ThenA has a unique fixed point ifxg, vol.
Proof. Firstly, for Vx € P, by (3.1), we haved < Ax — A9 < Lx, i.e., Lx > 6. Thus,
Lx € P. Further, ford < x <y, we have
0 <Ay —Ax < L(y—x)=Ly—Lx.

This impliesLy > Lx, sOL: P — P is increasing.
Consider the operator

Bx=L"YLx+x—Ax) forvxeP,
thenB is increasing inP. In fact, forx € P, we have by (ii),
Bx=L"YLx+x—Ax)>L"1x)>L"10) =0.
By (3.1), we obtain
Ly—Ay>Lx—Ax>6 fory>x=6. (3.2)
Consequently, by (ii) and (3.2), we have
By=L"YLy+y—Ay)>L YLx— Ax+y)>L YLx — Ax +x) = Bx.

Hence,B is increasing inP.
Secondly, by (i), we obtain

L™ Y(Lug + Auo — Aug) = uo, (3.3)
LY (Lvg + Avg — Avg) = vo. (3.4)

Bug= L™ Y(Lug+ uo — Aug)

>
Bvg = L_l(Lvo + vg — Avg) <
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Then (3.3), (3.4) together implig([uo, vo]) E [ vol.
Sinced <« Aug < ug < vg < Avg, and thenAug < ug < vg < Lvg + vo, there exist
r, &0 € (0, 1) such that

uo>=rvg and &o(Lvg+ vo) < Aug. (3.5)

Consider the following function:
1-y

1
TO=1"w

a—y’

vVt € (0,1), wherey € (0, 1).

It is easy to prove that is decreasing ir0, 1), thus

1—r1-r 1—rlry
1oy = JTOSfO=7—"27"

Further

vVt el[r,1).

) 1—rl-v
im ——=0.
y—1- 1—roe—v

So there existgg € (0, 1) such thati::iiz < &0, Vy € [y0, D). In particular,
1—rl
1—re—n <o.

Hence

1—tlro 1yl

1— t9—%o ~ 1—r2—70 < ‘5;:07 vt € [rs 1) (36)

Consider (3.5) and (3.6), far € [ug, vol, t € [r, 1), we have

1—¢ln 1—rlr
(Lx +x) < T a5 (Lvo+vo) < £o(Lvo + vo) < Auo < Ax.

1—r@n
Then we obtain

tO(Lx +x — Ax) < L(tx) +tx —t*Ax < L(tx) +tx — A(tx), Vtel[r1).
Applying the monotonicity of. 1, we have

B(tx) = L™ L(tx) + tx — A(tx)] > L™} [1"(Lx + x — Ax)] = 1" Bx.
That is

B(tx) > t"™Bx forVx € [ug,vol, t €[r, 1), yo€ (0, 1).

Finally, we show thatB has a unique fixed point* in [ug, vg]. Denoteu, = Bu,,_1,
v, = Bv,—1 n=1,2,...), and by the monotonicity aB, we have

up S UL KUK Sy < KUy <00 S U2 < v < Vo
Note that-?" € [r,1) (n=0,1,2,...) andrvg < ug < vo. It follows that

u, = r"" v, n=0,12..),
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and for any natural number we have

O0< tpyp — Un <y — Up, 0< vy — Unp < Up — Un. (3.7)
Further

Up — ity <y — 170 v, = (1- r”on)vn <(1- ryon)vo.
SinceP is normal, we have

vy — unll < N(1—r"")|voll = 0 (@sn — o). (3.8)

Here N is the normal constant. So (3.7) and (3.8) together implies{thatand{v,} are
Cauchy sequences. Becausés complete, there exist', v* € [ug, vo] such that,,, — u*,
vy, — v* asn — oo. By (3.8), we know that* = v*. Evidently,

0< Bu, =uyt1 < Bu® < Bv, = vy41. (3.9)

Passing the limit in (3.9), we havu™* = u*, which impliesu* is a fixed point ofB, and
it is unique in[uo, vo]. In fact, suppose is a fixed point ofB in [ug, vo] With i # u*,
thenug < u < vg. By the monotonicity ofB, we haveu, < u < v,, lettingn — oo yields
i = u*. This is a contradiction. Therefor®, has a unique fixed point* in [ug, vg]. Obvi-
ously, Bx = x & Ax = x. Thus,A also has a unique fixed point in [ug, vo]. O

Corollary 3.2. Let E be a real Banach space atibe a normal, solid cone, and let> 1.
Suppose thati: P — P is an increasingx-convex operator which satisfies the following
assumptions

(i) there existug, vo € P such tha® < Aug < ug < vg < Avo;
(ii) there existayf > 0 such that

Ay —Ax < M(y —x) forvVy>x>0.
ThenA has a unique fixed point ifxg, vo].

Proof. Put L = M1, where[ is the identity operator irE. Then we have that.~! =
%I : E — E isincreasing. Hence, the conclusion follows from Theorem 3.

Remark 3.3. Up to now, we have not seen such results as discussed above in literature
available.

The following statements play a very important role in the proofs of Theorems 3.4
and 3.5.

ForC,BC E,wewriteC <* B(C>*B)ifc<b(c>b)foranyceC,be B. Aset-
valued mapA : S(C E) — 2F (here Z denotes the family of nonempty subsetsEfis
said to be increasing it < y implies Ax <* Ay. As a direct consequence, we have: if
C <f C, thenC is a singleton.

Theorem 3.4. Let E be areal Banach space atlbe a normal cone iik. LetA: P, — Py,
be an increasingy-convex operatofa > 1), i.e., A(tx) < t*Ax for all x € P, andt €
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(0, 1]. In addition, assume that there exists a honempty, totally ordered seP, such
that

i AScS(re(0,1),AS =S,
(i) Avg > v, for certainuvg € S.

ThenA has exactly one positive fixed pointSn
Proof. We divide the proof into several steps.

Step 1. Consider operato:S — S. ForVy € S, setA~1y = {x € S: Ax = y}. Then
A~1:§— 25 is a set-valued mapping, and we have the following conclusions.

(a) A~lisincreasing in the sense of set-valued mappings.

In fact, if y1 > y2 for ¥y1, y2 € S, thenA=1y; >* A~1y,. Suppose that is not the case,
then we have; < xp for Vxg € A~1yq, xo € A~1y,. Using the monotonicity oft, we have
Ax1 < Axp. Thatis to sayy; < y2. This is a contradiction.

(b) A=1(sy) >* sY*A-1yforye §,s € (0,1).
Forx € A~1y, thenAx = y and A(rx) < r*Ax for ¢t € (0,1). Let s = t*, we have
A(sY*x) < sAx. So (a) impliesA~1(A(s/*x)) <* A~1(sAx). Thus
{sl/"‘x} < AN sy), VxeAly.
By the arbitrariness of, one obtains that
{sl/“x: X € A_ly} <' A_l(sy),
namely,sY*A=1y <& A= 1(sy).
Step 2. Forvg € S, t € (0, 1), we haveA(tvg) < t*Avg. SinceAvg € S C Py, there exist
A, u > 0 such thakvg < Avg < uvg. SOA(tvg) < 1% Avg < ut“vg, and we can choosg
sufficiently small satisfyinger® < ¢, thenA(t1vg) < r1v0, 11 € (0, 1).
Now we write ug = t1vg, then Aug < ug and ug < vg. Take Ag = tl2, then g €
(0, 1), up = t1vg > t2vg = Agup.
Step 3. By Step 2 and (i), we know that
ug,v0 €S, uo<vo, ug=»iovo, Aug<uo, Avo=vo.

By Step 1, we haved~1(Aug) <* A~lug, then there existsi; € A~lug such that
uo < u1, if ug=uq thenAug = Au1 = ug, i.e., ug is a fixed point ofA. So without loss
of generality we can assumg < u1, therefore A=1ug <* A~1u1, so thereisi, € A=1u;
such thatug < up, if ug = up, thenuy is the fixed point ofA. Also, we can assume that
u1 < uz, repeating this process, we can obtain an increasing sequence as follows:

UOSULS - SUp S
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Similarly
VOZUVLZ 2 U 2

Evidently,v, > u,, whereu, € A~ u,_1, vp e A v,_1,n=21,2,....

Sinceug > Aguo, we haveAd tug >* A= 1(hguo) >* 10Y/* A~1vg, which impliesuq >
2oM%v1. ThenA—Lug >* 20Y%* A=1v;. So we havers > 10Y/%"v,. Repeating this process,
we can obtain, > 2oY%"v,. Therefore

0 < vp — ity < vy — 207 vy = (1= 20" v < (1= 20" )vo.
By the normality of coneP, we have
lvn = ll < N(L=20"*")llvoll = 0 (n — o0),

hereN is the normal constant.

Further
0 <Upyp —Up < Vy — Up, O <V —Upyp SUn—uy, (pEN).
Thus
”uner —upll <K N|[vy —upll = 0 (n— 00),
lvw — vaapll < Nlvp — upll — 0 (n— 00).

So we can claim thau,,} and{v,} are Cauchy sequences. Then there existsuch that
u, — u* asn — oo andv, — u* asn — oo. It follows thatu, < u* <v,. Thus

A, <A< Ay,

Sinceu,1 € A~ u,, vop1 € A1, we haveu, 11 <u < v,41 for Yu € A~1u*. Passing
the limit, we obtairn = u*. Thatis,A~1u* = {¥*}, which impliesAu* = u*. Thenu* is a
positive fixed point ofA.

Step 4. In the following we prove that* is the unique fixed point ol in S.

In fact, supposeé € S is a positive fixed point oA with u # u™*. Evidently,u, u™ > 6.
SinceS is a totally ordered set, without loss of generality we assumeithat*. Write
x1 =u*, xp =i, thenxy > x1. The fact thatx1, xo € P, shows that there exisfsy > 0
such thatvy > pox2. Obviously,uo < 1.

If x1 = uox2, then Ax1 = A(uox2) < no%*Axz, i.e., x1 < wo*x2 < wox2, which is a
contradiction. Thus1 > uox2, and soA ~1xy >* A~ L(uox2) >° no'’*A~1x,. This shows
X1 = /Lol/axz. If x1= /Lol/“xz, thenA(xy) = A(/Lol/“xz) < nox2. This is a contradiction.
Hencex1 > uo*x,. Repeating this process, we obtain> 10" x,. Consequently
1/01")

0 <xp—x1 < x2— o xp = (1— o) xz,
by the normality of cone?, we have
lrz = x1ll < N(1= po"*")llx2l > 0 (n — o00),

thusx; = x2, which is a contradiction. This completes the proofi
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Remark. The condition ofa € (0, 1), AS C S is very important to prove our conclusions
and can assure that we discussSinlf it were removed, we can not seek certaifie S

such that«g < vg, Aug < ug, with the result that neither the existence nor the uniqueness
of fixed points could be obtained.

Theorem 3.5. Let E be areal Banach space amtlbe a normal cone k. LetA: P, — Py
be an increasingx-convex operatofa > 1), i.e., A(tx) < t*Ax for all x € P, andt €
(0, 1]. In addition, assume that there exists a honempty, totally ordered se®, such
thataS Cc S (A > 0), AS = S. ThenA has exactly one positive fixed pointSn

Proof. FromAsS c S for A > 0, it follows thatAS c S for A € (0, 1). Therefore, the con-
dition (i) of Theorem 3.4 is satisfied.

In the following, we show the condition (ii) of Theorem 3.4 is also satisfied.
ForVxg e S,s > 1, we haveA(sxg) > s¥ Axg. SinceAxg € S C Py, there exisfu, A >0
such thatuxg < Axg < uxo, thusA(sxg) > s*Axo. SO we can choosg large enough such

thatsg > so, hence A(soxo) > soxo.
Now we write vg = soxg, thenwvg € S, Avg > vg. Thus, the conclusion follows from
Theorem 3.4. O

Remark 3.6.

(i) Underthe hypotheses of this paper, the tool—Hilbert’s projective metric used in papers
[1,2,7]—cannot be used.

(ii) By using the properties of inverse mapping (set-valued mapping), we give similar re-
sults tow-concave operators (@ « < 1), so our results compliment the theory of
concave and convex operators. Moreover, the method is new and different from previ-
ous ones.

4. Applications

Theorem 3.4 or Theorem 3.5 can be used to discuss the solution of the following special
integral equation:

1

x(t) = /k(t,s)x“(s) ds, a>1 (*)
0
Suppose thak(t,s) = h(t) f(s), and h, f are nonnegative continuous functions with
f@t)>0,h(t)>0forr €[0,1].
Then Eq.(x) has exactly one positive continuous solution.

Proof. First some notation. PW = C[0, 1] (the space of continuous functions defined on
[0, 1] endowed with supremum norm). L&t be the cone of nonnegative functionsin

So P is normal andP is the set of positive functions iX. Note thatP is a closed solid,
the norm is monotonic.
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Consider the integral operatdr: P — X defined by
1
Ax(t):/k(r,s)x“(s)ds, xeP.
0
Therefore

1
Ax(t) =h(t) / f()x“(s)ds = ah(t),
0

wherea = folf(s)x“(s)ds =x“(§)f01f(s)ds, for certaing < (0, 1).

Evidently,a > 0,ah € P, s0A: P — P.LetS = {x: x(t) =ah(t), a € R*}, then we
haveS c P andS is a totally ordered set withS C S(A > 0).

In the following we proveAS = S.

ForVy € S, y = ah, there isx = (a/H)Y*h € S such thatAx = y, where H =
J3 f(s)h®(s)ds. ThusAS = S.

SinceA is increasing in?, Theorem 3.5 implies that has exactly one fixed point*
in S. Further,x* = HTah. In fact, let x* = agh, then Ax* = A(agh) = ag® Ah =
ao® Hh = aph. S0 we obtaing = Hﬁ, thus, Eq.(x) has one positive solution*(r) =
HTeh(r). O

Remark 4.1. For Eq.(x), we can also use the following lemma generalized from [1,2] to
prove the results.

Lemma 4.2. Let the norm in Banach spaceé be monotonic on coné, A: P — P be

positive homogenous of degrege O < |p| < 1 (i.e., A(tx) =tPAx, Vx € P, t > 0). In

addition, A is increasing(0 < p < 1) or decreasing(—1 < p < 0). ThenA has exactly
one positive fixed point i®.

Proof of Eq. (x). Asinthe proof aboved:S — S, AS = S. Forxy, xz € § with x1 # x2,
we will prove Ax; # Axa.

In fact, letx1 = a1h, x2 = a2h, a1 # az, a1, a2 > 0. ThenAxy = A(a1h) = a1 Ah and
Axz = A(azh) = a* Ah, these together with1“ # a>* implies the conclusion.

S0 A is a one-to-one mapping, consequenly!: § — S exists and further

A7) =Y*A7x, 1€(0,1).

SinceA is strictly increasing, we obtaia~! is also increasing. Otherwise, for, y2 € S,
y1 < y2, we haveA~1y; > A1y, thus,AA~1y; > AA~1y,, i.e.,y1 > y». This is a con-
tradiction. An application of Lemma 4.2 implies that! has exactly one positive fixed
pointinS. SinceAh = Hh, A=Y (Ax) = AY*A~1x, we haveA~1h = H~Y%}h. Letug = h,
up=A"lu,_1(n=12,...). Then

ur=AYug=A"th=H Y,
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1
Up = A_ll/ll — A—l(H—l/C(h) — (H_l/a)(1+”)h,

1.1 -
Unp1=A"tu, = (1‘171/0()(”‘er Yy = H T b

Thus, we have

1
g

ltnss — HOoh| = |H T4 — HTa ||l > 0 (n — o0).

Consequentlyy,, — Hﬁh (n — o0). In addition,
AN HTah) = (HT#) Y H Yo = HTah.

This implies thatH T / is a fixed point ofA~1. Hence,A has exactly one positive fixed
pointHﬁh inS. O

Remark 4.3. For the uniqueness of the solution of Eg), we can also prove it by using
the following method.

Proof. Let x1, x2 are the solutions of Eq:). Note thatx1 = a1h, x2 = axh, thenxy =
%xz = axy, wherea = % Evidently, 0< a < oc.

Whena > 1, we haveAx1 = A(axp) = a“Axo = a%x2 > axp, i.e.,x1 > axp. This is
a contradiction. Whem < 1, we haveAx; = A(axp) = a*Axy = a%x» < axp, i.€.,x1 <
axz. This is a contradiction.

Soa =1, we obtaink; = x». This completes the proof.O
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