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Given two rings R and S, we study the category equivalences T 2 Y, where T is
a torsion class of R-modules and Y is a torsion-free class of S-modules. These
equivalences correspond to quasi-tilting triples (R, V, S), where zV is a bimodule
which has, “locally,” a tilting behavior. Comparing this setting with tilting bimod-
ules and, more generally, with the torsion theory counter equivalences introduced
by Colby and Fuller, we prove a local version of the Tilting Theorem for quasi-tilt-
ing triples. A whole section is devoted to examples in case of algebras over a field.
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0. INTRODUCTION

Let R and S be rings, and denote by R-Mod and S-Mod the categories
of left R-modules and S-modules. Given two torsion theories (T, F) and
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(X, Y)in R-Mod and S-Mod, respectively, we say that the couple of func-
F
tors R-Mod % S-Mod induces an equivalence between T and Y if the

restrictions of F' and G give a category equivalence between T and Y and
the kernels of F and G coincide with F and X, respectively. Moreover, we
say that this equivalence is represented by the bimodule gV if it is induced
by the functors F = Hom(V, —) and G =,V ® — .

In a recent paper [CbF2], Colby and Fuller have investigated the
existence of functors between R-Mod and S-Mod which induce pairs of
equivalences, one between T and Y, the other between X and F. If such
functors exist, the torsion theories (T, F) and (X, Y) are said to be
counter equivalent and the pair of equivalences is said to be a torsion theory
counter equivalence.

Since (R-Mod,{0}) and ({0}, S-Mod) are obviously torsion theories,
Morita equivalences are examples of torsion theory counter equivalences.
Nevertheless, the main examples follow from tilting theory: if ;7 is a
tilting bimodule, the functors F = Homg(T, —), G =T Q¢ — and F' =
Extix(T, —), G’ = Tor{(T, —) induce a counter equivalence between the
torsion theories (Ker F’, Ker F) in R-Mod and (Ker G, Ker G’) in S-Mod.

In [CbF2] it is proved that a torsion theory counter equivalence is
represented by a pair of bimodules. Moreover, necessary and sufficient
conditions are given on a pair of bimodules to represent a torsion theory
counter equivalence. Influenced by this paper, generalizing this point of
view, we have studied the existence of category equivalences between a
torsion class in R-Mod and a torsion-free class in S-Mod. These equiva-
lences are shown to be represented by bimodules which have, “locally,” a
tilting behavior. Moreover, these bimodules are tilting exactly when every
injective R-module is torsion and every projective S-module is torsion-free.

In Section 1 we recall the definition and the principal results about
tilting modules, characterizing them by means of the equivalences that
they represent (Theorem 1.5). We introduce a notion of cotilting module
(Definition 1.6), and we prove that the cotiltings are the Ext-injective
modules in the torsion-free classes cogenerated by them (Proposition 1.7).

In Section 2 we introduce quasi-tilting modules (Definition 2.2): they
generalize tiltings as quasi-progenerators [F] generalize progenerators, i.e.,
the bimodules representing Morita equivalences. Indeed, a quasi-tilting
module zV has, in the category Gen(,}) of modules subgenerated by ;V,
similar properties to tilting modules in R-Mod (Proposition 2.1). In [HRS]
Happel, Reiten, and Smalg introduce the notion of tilting objects for an
abelian category. Even if Gen(z}) is an abelian full subcategory of
R-Mod, nevertheless quasi-tiltings are not tilting objects in the sense of
[HRS], since they may have high projective dimension (Example 5.4). If the
ring is either finitely cogenerated or commutative, then a module is tilting
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if and only if it is faithful and quasi-tilting (Corollary 2.4). Similarly to the
tilting case, if zQ is an injective cogenerator and R} is a quasi-tilting
module, then V* = Hom(V, Q) is a cotilting End(;}")-module (Corollary
2.8). Next, generalizing the notion of a tilting triple, we introduce quasi-
tilting triples. These triples (R, V, S) represent, by means of the bimodule
=Vs, any equivalence between a torsion class in R-Mod and a torsion-free
class in S-Mod (Theorem 2.6).

In Section 3 we study the torsion theory counter equivalences which are
given by a tilting module. In particular, we characterize them (Theorem
3.4) as those involving torsion theories (T, F) and (X, Y ) such that one of
the following conditions holds: (a) T cogenerates R-Mod and Y generates
S-Mod; (b) T and Y are faithful, and T is closed under direct products; (c)
the counter equivalence is induced by the covariant hom, tensor, ext, and
tor functors associated to a single bimodule.

In Section 4 we prove that a local version of [CbF1, The Tilting
Theorem] still holds true for quasi-tilting triples (R, ¥V, §). More precisely,
the equivalence T 2 Y represented by (R,V,S) can be completed, by
means of the covariant ext and tor functors associated to Vs, to two
couples of functors inducing a counter equivalence between torsion theo-
ries (T, F') in Gen(zV) and (X', Y) in S/Ann(Vy)-Mod (Theorem 4.1).
Next, comparing [CbF2] with our setting (Corollaries 4.3 and 4.4), we
obtain a criterion (Theorem 4.6) on a pair of quasi-tilting triples to
represent a torsion theory counter equivalence, which is close to [CbF2,
Theorem 2.5].

In Section 5 we collect examples and counter-examples, confining our-
selves to algebras over a fixed field. We stress the fact that these algebras
are very special from several points of view. Indeed, with the exception of
two cases (Examples 5.1 and 5.3), we deal only with finite-dimensional
algebras of finite representation type. Moreover, with the exception of one
case (Example 5.7), these representation-finite algebras are also directed
[R]. As we shall see, it suffices to consider algebras with very few indecom-
posable modules to show that there are more than expected torsion theory
counter equivalences. It actually turns out that the theory developed over
arbitrary rings does not fade in this particular setting. On the contrary, we
may often use finite-dimensional algebras to make sure that our results
cannot be improved.

We recall now some definitions and notation used throughout the paper.

All rings have nonzero identity and all modules are unitary. If R is a
ring, and L € R-Mod, then:

Gen(L) (resp. Cogen(L)) denotes the class of all left R-modules gener-
ated (resp. cogenerated) by L, that is, all M € R-Mod such that there exist
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¢
a cardinal A and an epimorphism L™ — M — 0 (resp. a monomorphism
¢
0—>M-— LY.
Pres(L) (resp. Copres(L)) denotes the subclass of Gen(L) (resp.
Cogen(L)) consisting of all left R-modules M which are presented (resp.
copresented) by L; that is, there exists an exact sequence of the form

U ¢ ¢ ¥
LW S L™ 5 M- 0(resp.0 > M - L* - L*), so that M and Ker(¢) =
Im(y) (resp. Coker(¢) = Im(y)) are generated (resp. cogenerated) by L.
add(L) denotes the subclass of Pres(L) consisting of all summands of
finite direct sums of copies of L.

Tr,(M) (resp. Rej,(M)) denotes the trace {Im(f)|f € Hom (L, M)}
(resp. the reject N{Ker(f)|f € Homz(M, L)}) of L in M, that is, the
largest (resp. smallest) submodule M, of M such that M, € Gen(L) (resp.
M /M, € Cogen(L)).

L* (resp. * L) denotes the class of all left R-modules M such that
ExtL(L, M) = 0 (resp. Extx(M, L) = 0).

E(L) denotes the injective envelope of L.

A module M € R-Mod is self-small if Hom (M, M) = Hom (M, M)
canonically for each cardinal A. Of course, every finitely generated module
is self-small, but the converse is not true in general [FuS, Lemma 24].

If C is a class of left R-modules, we denote by C the smallest subclass
of R-Mod containing C and closed under taking submodules and factor
modules.

All the subcategories are full subcategories of modules, and all the
functors are additive functors.

1. TILTINGS AND COTILTINGS

1.1. DeriNiTION. A module ;T is a tilting module if:
(i) RT is finitely presented and projdim(;7T) < 1, i.e., there is an
exact sequence 0 > R' - R" —» T — 0 with R', R” € add(R);
(i) Extip(T,T)=0;
(iii) there is an exact sequence 0 > R - T' —» T" — 0 with 7", T”
€ add(7).

It can be shown (see [C2, Theorem 3]) that, in Definition 1.1, condition
(ii) can be replaced by

(i) Ext:x(T,T™®) = 0 for each cardinal &
and condition (iii) can be replaced by

(i) for all M € R-Mod, if Hom (T, M) = 0 = ExtL(T, M), then
M =0.
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For instance, every progenerator (= finitely generated projective genera-
tor) is a tilting module.
In [CT, Proposition 1.3(iii)] the following result is proved:

1.2. PROPOSITION. A module (T is tilting if and only if 3T is self-small
(in fact finitely generated) and Gen(zxT) = T+ .

Hence, a tilting ;7 is a self-small module which is Ext-projective exactly
in the class of all modules generated by ;7. In particular, Gen(;T) is a
torsion class containing the injective modules, so that the corresponding
torsion theory is hereditary if and only if Gen(;7T) = R-Mod. Moreover,
every module M € Gen(,7T) has a T-resolution --- — T(®) — T(®) — M
— 0, owing to the following:

1.3. ProposITION [CT, Lemma 1.2]. If Gen(xT) = T *, then Gen(xT)
= Pres(z7).

1.4. DerINITION. A torsion class T € R-Mod is called a filting torsion
class if T is generated by a tilting module.

Given a bimodule T, following [CbF1], we say that (R, T, S) is a tilting
triple if xT is a tilting module and § = End(,T). As proved in [CbF1,
Proposition 1.1], in this case ;T is a faithfully balanced bimodule and T
is a tilting module, too.

Tilting triples (R, T, S) characterize the equivalences between a torsion
class of R-Mod containing the injectives and a torsion-free class of S-Mod
containing the projectives:

1.5. THEOREM. Let R and S be rings and let ;T be a bimodule. Then the
following conditions are equivalent:
() (R, T,S) is a tilting triple;

(i) the functors Hom (T, —) and T ®; — give an equivalence be-

tween a torsion class T C R-Mod containing the injective modules and a
torsion-free class Y C S-Mod containing the projective modules.

In such a case T=Gen(xT) =T+ and Y = Cogen(;T*) ==+ T*, where
sT* = Homg(Ty, Q) for an arbitrary injective cogenerator xQ of R-Mod.

Proof. It follows from [CbF1, Theorem 1.4] and [C2, Proposition 7],
since * T* = Ker Tor{(T, —), by the canonical isomorphism Exti(—, T*)
= Hom ,(Tor(T, —), Q) [CE, Proposition 5.1]. 1

In analogy with [CbF1, Section 2], we give the following:
1.6. DerINITION. A module gW is a cotilting module if:
) injdim(z¥) < 1;
(i) ExtL(W*, W) = 0 for each cardinal k;
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(i) for all M € R-Mod, if Hom (M, W) = 0 = ExtL(M, W), then
M =0.

For instance, every injective cogenerator is a cotilting module.

Note that in the above definition we cannot replace condition (iii) by the
dual of Definition 1.1(iii) (see Example 5.3(c)). However, except for finite-
ness conditions, the notion of cotilting module is dual to that of tilting
module (tiltings without finiteness conditions have been studied in [CT],
and cotiltings are further investigated in [CTT]). Therefore, in light of
Proposition 1.2, the following result is not surprising:

1.7. PROPOSITION. W is a cotilting module if and only if Cogen( W)
=tW.

Proof. Let W be cotilting. Then * W is closed under submodules
because of (i), and ;W* e *W for all k because of (ii). Therefore
Cogen(zx) c - W. Now, let M €+ W. Applying Homy(—, W) to the
exact sequence

0 - Rej, (M) > M — M/Rej, (M) — 0,

we obtain

0 — Homg(M/Rej,, (M), W) 5 Homg(M, W) — Homg(Rej, (M), W)
— Exth(M/Rej,, (M), W) — Extk(M, W) — Extk(Rej, (M), W) -0,

where Extn(M/Rej, (M), W) =0 because W/Rej, (M) e Cogen( W)
C W and Exty(M,W) =0 by assumption. Thus, Hom (Rej, (M), W)
= 0 = Ext}(Rej, (M), W), therefore Rej, (M) =0 by (iii). This proves
that M € Cogen(;¥).

Conversely, if Cogen(z) =+ W, then conditions (ii) and (iii) are clearly
satisfied. Moreover ~ W contains every projective module and it is closed
under submodules. Therefore, for every module M and exact sequence
0—->K—-P—-> M- 0in R-Mod with P projective, we get the exact row

0 = Exty(K, W) - Ext3(M, W) — Ext3(P,W) =0

that produces Ext2(M, W) = 0. This proves (i). 1

The last result shows that a cotilting /¥ is a module which is Ext-injec-
tive exactly in the class of all modules cogenerated by . In particular,
Cogen(zW) is a torsion-free class containing the projective modules, and
the corresponding torsion theory can be hereditary and nontrivial (see
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(X, Y) in Example 5.6). Moreover, every module M € Cogen(,#) has a
W-coresolution 0 » M — W — W* — -.- owing to the following:

1.8. ProrosiTION. If Cogen(yxW) ="+ W, then Cogen(yxW) =
Copres(z ).

Proof. Let M € Cogen(zW) and X = Hom (M, W). Let n: M > WX
be the diagonal morphism n(m) = (x(m)), c . Since M is cogenerated by
gW, m is injective. From the exact sequence

0> M5 WX > C = Coker(n) - 0,

we get the exact sequence
Hom o (WX, W) 5 Hom 4 (M, W) — Exth(C, W) — Exti (WX, W) = 0.

The morphism n* is surjective by construction. Thus we have Extix(C, W)
=0, i.e.,, C € Cogen(z). 1

1.9. DErINITION. A torsion-free class Y € R-Mod is called a cotilting
torsion-free class if 'Y is cogenerated by a cotilting module.

1.10. Remark. Every tilting torsion class is equivalent, as a category, to
a cotilting torsion-free class. In fact, if (R, T,S) is a tilting triple, then
from Theorem 1.5 and Proposition 1.7 it follows that T = Gen(;T) is
equivalent to Y = Cogen(;7*), where T is tilting and (7* is cotilting.
Even in this case, it can happen that (7* is neither finitely generated nor
finitely cogenerated: Example 5.1 shows that Cogen(;7*) # Cogen(;M)
for any finitely generated or finitely cogenerated module ¢ M.

2. QUASI-TILTING MODULES

In [MQ], Menini and Orsatti introduced a class of modules, later called
x-modules, that generalizes both quasi-progenerators [F] and tiltings. A
module ;" is a x-module provided the functors Homz(}/, =) and V @ —
give an equivalence between Gen(z})’) and Cogen(;V'*), where § =
End(;}"). The following result introduces a subclass of #-modules that
generalizes tilting modules similarly as the notion of quasi-progenerator
extends that of progenerator.

2.1. PROPOSITION. Let gV be a module. The following conditions are
equivalent:

() RrVisa *-module and Gen(zV) is a torsion class;
(i) gVisa *-module and Gen(gxV) c V *;
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(iii) gV is self-small and Pres(zxV) = Gen(zxVV) c V *;
(iv) RV is finitely generated and Gen(xV) NV *+ = Gen(zV).

Proof. (i) < (i) It is [C1, Proposition 4.4].

(ii) < (iii) It follows from [C1, Theorem 4.1, (1) < (3)].

(i) = (iv) By [T], gV is finitely generated, and, by hypothesis,
Gen(RzV) c Gen(gxV) NV +. Conversely, let M € Gen(zxV) NV *. Then
there is a short exact sequence 0 > M - M' - M" — 0, where M' €
Gen(zV), and ExtL(}/, M) = 0. From [C1, Proposition 4.3], it follows that
M € Gen(iV).

(iv) = (i) Clearly, Gen(zxVV) cV*. Let M < V. Since M
e Gen(RzV), we have that M € Gen(zV) if and only if M € V'*. This
means that condition (5) of [C1, Theorem 4.1] is satisfied, so that zV is a
x-module. 1

2.2. DerFINITION. A module zV which satisfies the equivalent condi-
tions of Proposition 2.1 is called a quasi-tilting module. A torsion class in
R-Mod generated by a quasi-tilting module is called a quasi-tilting torsion
class.

If ;T is tilting, then Gen(;T) = R-Mod, as every injective module is
generated by 7. Therefore, comparing Proposition 1.2 to Proposition
2.1(iv), we obtain that each tilting module is quasi-tilting. Moreover, we
can say—roughly speaking—that a module V" is quasi-tilting if and only if
RV is “tilting in Gen(,}/).” This situation is analogous to that of quasi-pro-
generators, which can be considered “‘progenerators in Gen(z}V).”

The main aim of this section is to characterize the equivalences between
a torsion class in R-Mod and a torsion-free class in S-Mod by means of
the covariant hom and tensor functors associated to a quasi-tilting module.
The ideas and techniques involved in this project have been suggested by
studying recent results of Colby and Fuller in [CbF2].

We start with a comparison between tiltings and quasi-tiltings:

2.3. PROPOSITION. Let gV be a quasi-tilting module. Then gV is a tilting
module if and only if one of the following equivalent conditions hold.:
(i) Gen(xV) = R-Mod, i.e., xR € Gen(,V);
(i)  Gen(RV) contains every injective left R-module;
(iii) E(zxR) € Gen(zV);
(iv) RVis faithful and Gen(zV) is closed under direct products;,
(V) RV is faithful and V is finitely generated as an End(zV )-module;
(vi) there is an exact sequence 0 — xR — V" for some n € N;
(vii) Gen(RV) is a tilting torsion class.
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Proof. 1t follows from Proposition 2.1, [CM, Proposition 1.5], [C2,
Theorem 3], and [CT, Proposition 2.5]. |

2.4. COROLLARY. Let R be a ring, gV a left R-module, and set R =
R/ANN(RV). If either

(i) R is finitely cogenerated, or

(ii)  there exists a finite spanning set {v,, ..., v,} for V over the commu-
tator of Anng(vy,...,v,),

then Gen(,V’) = R-Mod.

If, moreover, gV is a quasi-tilting module, then gV is a tilting module.

In particular, if R is either finitely cogenerated or commutative, then the
class of tilting modules coincides with the class of faithful quasi-tilting mod-
ules.

Proof. In case (i), the position r + Ann(zV') — (rv),., defines a
monomorphism R — V¥, As R is finitely cogenerated, by [AF, Proposition
10.2] there exists a monomorphism R — V", for some n € N. Similarly, in
case (ii), the position r + Ann(zxV) = (vy,...,r,) defines a monomor-
phism R — I’". In both cases, R € Gen(,}/") c R-Mod, so that Gen(,}")
= R-Mod.

If, moreover, ;) is a quasi-tilting module, then ;17 is quasi-tilting, too,
so that Proposition 2.3 applies to V.

The last sentence is now clear. |

Comparing tiltings to quasi-tiltings, the question of measuring the gap
between the three conditions in Definition 1.1 and the notion of quasi-tilt-
ing naturally arises. If g1 is quasi-tilting, then condition (ii) clearly holds
true. On the other hand, by Proposition 2.3(vi), condition (iii) is strong
enough to imply that R} is tilting, and condition (i) is quite far, as
Examples 5.3 and 5.4 show.

Let zxV5 be a bimodule. Generalizing the notion of tilting triple, we say
that (R,V,S) is a quasi-tilting triple if RV is a quasi-tilting module,
S/Ann(Vy) = End(x}), and V' ® Ann(V;) = 0. Let us prove that quasi-
tilting triples (R, V, S) characterize the equivalences between a torsion
class in R-Mod and a torsion-free class in S-Mod, improving Theorem 1.5.
First, we need the following:

2.5. LEMMA. Let Vi be a right S-module and I = Ann(Vy). Let us
consider the torsion class X = {;L |V ®, L = 0} in S-Mod, and let t(—)
and Y be, respectively, the associated radical and torsion-free class. Then the
following conditions are equivalent:

M I=19);
(i) TeX, ie, V& I=0;
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(i) Tor{(V,S/I) = 0;
(iv) IcAnng(Y), ie., Y CS/I-Mod;
) Y =S/I-Mod.

Proof. (i) = (i) It is trivial.

(ii) < (iii) From the exact sequence 0 > I — S — S/I — 0, we get
the exact row

0 TorS(V.S/I) SV ISV SSV &S/ 0.

(ii) = (iv) Suppose that there is Y € Y such that IY # 0, and let
Iy # 0, with y € Y. Then the right multiplication by y is a nonzero
element of Hom(7,Y), a contradiction.

(iv) = (i) As S/t(S) is an element of Y, by hypothesis we have that
I  t(S). Conversely, V' ® t(S) = 0 implies V't(S) = 0, i.e., t(S) 1.

(i) & (iv) = (v) By (i) we have that S/I € Y, thence S/I-Mod C Y.
The other inclusion follows from (iv).

(v) = (iv) Itis trivial.
2.6. THEOREM. (1) Let R and S be rings, T a to;sion class in R-Mod, Y a
torsion-free class in S-Mod, and suppose that T ? Y is a category equiva-

lence. Let I = Anngy(Y ); then S/I € Y. Denote by Q an injective cogenera-
tor of R-Mod, and let ;Vy = T((S /1) and (V* = H(t;(xQ)). Then:

@ (R,V,S) is a quasi-tilting triple and I = Ann(V5);
() H=Homy(V, =) and T=V Q — ;
(©0 T=Gen(gV) and Y = Cogen({V'*).

(D) Let (R,V,S) be a quasi-tilting triple. Let I = Ann(V), H =
Homg(V, =), T =V Q; — , and (V* = H(3Q), where Q is a fixed injective
cogenerator in R-Mod. Then:

(@ T = Gen(xV) is a torsion class in R-Mod and Y = Cogen(;V'*)
is a torsion-free class in S-Mod with I = Ann (Y );

b)) T % Y is a category equivalence.

() - Assume that (1) or (1) holds. Then (T,Ker Homz(V, —)) and
(KerV ®; —,Y) are torsion theories. Moreover, the following equalities
hold:

Y = §/I-Mod N Ker Tory (V, —) = Ker Tor{/!(V, —)

and Y = S /I-Mod.
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Proof. (1) Under our hypotheses, [CbF2, Lemma 2.1]—which general-
ize [MO, Theorem 3.1]—works. Hence (b) and (c) are proved, and S/I =
End(zV). Hence Y = Cogen(;V'*) and (V* = Homg(;V, zQ), so that
I = Anng(Y) = Ann(;*) = Ann(V). Moreover, V' is a *-module and
Gen(,}V) is a torsion class; thus, by Proposition 2.1(i), we have that V" is
quasi-tilting. To complete the proof of (a), we show that 1V ®; I = 0. Let
X be the torsion class in S-Mod associated to Y. Then (N € X if and only
if Homg(N,V*) = 0. Since Hom (—,V*) = Hom (—,Hom (V, Q)) =
Hom (VV ® —,Q), we have that KerHomg(—,V*) = Kerl Q — .
Thus (N € X ifand only if 1 ® N = 0. Hence we may apply Lemma 2.5,
(iv) = (ii), to obtain the thesis.

(1) By Proposition 2.1(i), Gen(z}V) is a torsion class in R-Mod and
&V is a x-module. Moreover, S/I = End(;}), so that

Hom (Vs =) "
Gen(zV) <—T Cogen(S/IV )

is an equivalence, and Cogen(s/,V*) is a torsion-free class in S/I-Mod
(see [CM, Proposition 1.2]). We can regard Cogen(y ,,J7*) = Cogen(sV"*)
as a subcategory of S-Mod, obtaining (b). In order to prove that
Cogen(V*) is a torsion-free class in S-Mod too, we have to check that it
is closed under extensions. Let

0>N ->N->N"-0

be an exact sequence in S-Mod, where N’, N” € Cogen(s}*). It remains
to be proved that N belongs to S /I-Mod. Let us consider the torsion class
X={L|V ® L =0}in S-Mod. As Ker Homy(—,V*) = KerV ®; —,
we have that Hom(X,V*) = 0. Then Cogen(;}*) is X-torsion-free.
Therefore, N is X-torsion-free, too. As IV ®, I = 0 by hypothesis, and
Lemma 2.5, (ii) = (iv), applies, we obtain N € S /I-Mod.

(111)  Since the torsion class T is generated by ;V/, the corresponding
torsion-free class coincides with the kernel of Hom,(}/, —). Moreover, the
torsion-free class Y is cogenerated by (V*, and Ker Homy(—,V*) =
Ker V ® —; hence the corresponding torsion class coincides with the
kernel of V' ® — . Thus, we may apply Lemma 2.5, (iv) = (v), to obtain
Y = S/I-Mod. Since zV is a *-module and S/I = End(;V), by [CM,
Proposition 1.2] it follows that Y = Cogen(; ,,V'*) = Ker Tory//(V, —). It
remains to prove that a module N € S /I-Mod belongs to Y if and only if
TorS(V,N) = 0. Let 0 » K-> S/I® - N - 0 be exact in S/I-Mod.
Since S/I € Y, we have that S/I®) and K are in Y. Applying VV ®, —



472 COLPI, D'ESTE, AND TONOLO

to the previous exact sequence, and using Lemma 2.5 to obtain
Tor;(V, S/I) = 0, we get the exact row
Ve
0> TorS(V,N) > V & K251 ® 8/I% -V & N - 0.
Since V' ®, — =V ®,, — in §/I-Mod, repeating an argument similar to
[CM, Proposition 1.2], we can see that N € Y if and only if V Qi is a
monomorphism, i.e., Tor;(V, N) = 0. |

2.7. Remarks. (a) By Theorem 2.6, if T % Y is the equivalence associ-

ated to the quasi-tilting triple (R, V/, S), then it is represented (see Section
0) by the bimodule V. Moreover, using Proposition 2.1, the following
identities hold:

T =Gen(,V), Y = End(,V)-Mod,

T=TnKerExty(V,-), Y=YnKerTor](V, ).

This means that the two abelian categories really involved by (R, V, S) are
Gen(zV) and End(;}")-Mod, rather than R-Mod and S-Mod. This will be
definitely confirmed by Theorem 4.1.

(b) It is easy to see that if (R,V, S) is a quasi-tilting triple and I, J
are ideals respectively of R and of S, such that I < Ann(zV) and
J < Ann(Vy), then (R/I,V, S /J) is a quasi-tilting triple too. In particular,
if ;) is a quasi-tilting module, we can put R = R/Ann(,V) and S =
End(;}"), obtaining a quasi-tilting triple (R, V, ), where zV5 is faithful on
both sides.

(c) The notion of quasi-tilting triple is not left-right symmetric. In
fact, [CM, Example 1.6] gives a faithfully balanced bimodule V5 such that
gV is a projective quasi-progenerator and V; is not finitely generated.
Then Gen(zV) = Gen(zV) # R-Mod (see [F, Lemma 2.2] and [AF, Lemma
17.7]. By Proposition 2.1(iv), (R, V, S) is a quasi-tilting triple, but 5 is not
finitely generated, hence not quasi-tilting. Moreover, zV; represents an
equivalence between Gen(z}) and S-Mod (see [F, Theorem 2.6]), which
obviously cannot be extended to a counter equivalence between R-Mod
and S-Mod. Therefore, the existence of an equivalence between a torsion
class and a torsion-free class does not assure that the corresponding
torsion-free and torsion classes are equivalent too (see also Remark 5.9(1)
and Example 5.10).

By Theorem 2.6, we get the following generalization of Remark 1.10:
2.8. CorROLLARY. Let (R,V,S) be a quasi-tilting triple and let

Hom x(V, =)
% Y be the represented equivalence. Then T is a quasi-tilting

torsion class in R-Mod and Y isa cotilting torsion-free class in End(z1")-Mod.
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Proof. By Theorem 2.6, T = Gen(;}/) is clearly a quasi-tilting torsion
class. Since End(zV) = S/I, with I = Anng(Y), by [CE, Proposition 5.1]
we have, for every N € §/I-Mod,

Extg,,(N,V*) = Extg,,(N,Homg(V,Q)) = Homg(Tor{//(V,N), Q).
Therefore, by Theorem 2.6,

Y = Cogen(, ,V*) = KerTor}//(V, =) = KerExts ,,(—.,V*) =¢§,,V*,

S/I

and g, V’* is a cotilting module by Proposition 1.7. ||

3. TORSION THEORY COUNTER EQUIVALENCES

One of the deepest results in tilting theory is a considerable generaliza-
tion of Morita equivalence. A faithfully balanced progenerator P repre-
sents an equivalence between R-Mod and S-Mod. Similarly, a tilting triple
(R,T,S) gives a pair of category equivalences

Hom (T, —) Extk(T, -)
Y and F <:> X,
T® — Tor(T, -)

where (T, F) and (X, Y ) are torsion theories, respectively, in R-Mod and
in S-Mod, canonically associated to (R, T,S) (see [CbF1, The Tilting
Theorem)).

Recently Colby and Fuller in [CbF2], investigating a more general
setting, have proved the following result: given two torsion theories (T, F)

in R-Mod and (X, Y) in S-Mod, a pair of equivalences T % Y and
X% F is represented by a pair of bimodules .V and V%, that is,
H=Homy(V,-), T=VQ —,T'=Homy V', -), H =V' & — and
T=KerH', F=KerH, X=KerT, Y =KerT'. Following [CbF2], w

call these pairs of functors a rorsion theory counter equivalence between

R-Mod and S-Mod, and we denote it by (T, F) gj (X, Y). A characteriza-

tion of a pair of bimodules Vs and (V% that represent a torsion theory
counter equivalence is given in [CbF2, Theorem 2.5].

When (R, T, S) is a tilting triple, the corresponding pair of equivalences
mentioned above produces a torsion theory counter equivalence
(T, F)g:;(x Y), where (T} = Ext:(T, R). In this section we study when

sTr
a torsion theory counter equivalence is of this kind.
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3.1. LEMMA. Ler (T,F) 53 (X, Y) be a torsion theory counter equiva-
lence. Then:

() Anng(T) = Ann(zV) and Anng(F) = Ann(}}) = Tr,(R);

(i)  Anngy(X) = Ann(xV") and Anng(Y) = Ann(Vy) = Tr,.(S).
Proof. (i) Applying Theorem 2.6(1) to the equivalence T 2 Y, we have
T = Gen(zV), so that Ann.(T) = Ann(;V"). Applying the same theorem

to the equivalence X 2 F, we have Ann,(F) = Ann(I}). The equality
Ann(1}) = Tr,(R) is contained in [CbF2, Lemma 3.2].

(i) It can be proved in the same way. |
3.2 DEFINITION A torsion theory counter equivalence of the form
(T, F)gj(x Y) is said to be basic if Anng(T) N Annz(F) =0

and AnnS(X) N Anng(Y) = 0.

This means that the rings R and S are minimal, in the following sense:
there are no proper quotient rings R’ of R or S’ of S such that (T, F) and
(X, Y) are still torsion theories in R'-Mod and $’-Mod, respectively.

There is a basic counter equivalence canonically associated to each
torsion theory counter equivalence:

3.3. ProposITION.  Let (T, F)z:;(X Y) be a torsion theory counter

equivalence. Put R = R/AnnR(T)ﬂAnnR(F) and § = S/Ann(X) N

Ann (Y ). Then (T, F) g:; (X, Y) is a basic counter equivalence between
~ ~ %
R-Mod and §-Mod.  *"

Proof. By the definition of R and S, the pairs (T, F) and (X, Y) are
torsion theories, respectively, in R-Mod and S-Mod. The thesis follows
from [CbF2, Theorem 2.3] and Lemma 3.1. |

Every torsion theory counter equivalence given by a tilting triple (R, 1V, S)
is basic: indeed, ;V is faithfully balanced, so that Anng(T) =10 =
Anng(Y) by Lemma 3.1. Conversely, the following two results explain
when a torsion theory counter equivalence, or the associated basic one, is
given by a tilting bimodule V5.

Ve
3.4. THEOREM. Let (T,F) 5’5 (X, Y) be a torsion theory counter equiv-
sVr
alence. Then the following conditions are equivalent:

(i) gVs is tilting bimodule:

(i) Tori(V, =) and Extx(V, —) induce (see Section 0) an equiva-
lence between X and F,
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(i) V% can be chosen so that there are natural isomorphisms of
functors: Homg(V', =) = Tor(V, —) in S-Mod, V' ®, — = ExtL(V, —)
in R-Mod;

(iv) T contains every injective R-module and Y contains every projec-
tive S-module;

V) E(zR)eTand (SeY;

(vi) T =R-Mod and Y = S-Mod;

(vii) Anng(T) = 0 = Anny(Y) and T is closed under direct products.

Proof. (i) = (ii) It follows from [CbF1, Theorem 1.4].

(ii) = (iii) By[CbF2, Theorem 2.2], the bimodule ¢V = Ext}(V, R)
represents an equivalence between X and F.

(iii) = (iv) By [CbF2, Theorem 2.2] we have the equalities T =
KerV' ®, — and Y = KerHomg (), —). Hence, by hypothesis, every
injective R-module is in T and every projective S-module is in Y.

(iv) = (v) It is obvious.

(v) = (vi) Itis easy as, by hypothesis, R € T.

(vi) = (vii) By hypothesis, ;R is a submodule of a module in T, so
that Anng(T) =0, and ¢S is a quotient of a module in Y, so that
Anng(Y) = 0. Moreover, T = Gen(zV) by [CbF2, Lemma 2.1], and zV is
a *-module by [CbF2, Theorem 2.5]. Since Gen(zV') = R-Mod, by [C1,
Proposition 4.5] we have that T = {, M | Extk(}/, M) = 0}. This proves that
T is closed under direct products.

(vii) = (i) By hypothesis, Lemma 3.1, and [CbF2, Theorem 2.5], we
have that ;1 is a faithful *-module, S = End(;}") and Gen(,}") is closed
under direct products. By [CM, Proposition 1.5], it follows that Vg is
finitely generated. We can conclude by [C2, Theorem 3, (a) < (d)]. 1

When the equivalent conditions of Theorem 3.4 hold true, we say that
the torsion theory counter equivalence is a tilting counter equivalence, and
we denote it simply by (T, F) f:VS; (X, Y). The choice of the bimodule (1}
is not necessarily unique, as Example 5.6 shows (see also [CbF2, “Remark
Concerning Unigueness’]).

From Proposition 3.3 and Theorem 3.4, (i) < (vii), we get immediately:

Ve
3.5. CoroLLARY. Let (T, F);ﬁ;(x, Y) be a torsion theory counter
sVr

equivalence. Then the associated basic one is a tilting counter equivalence if
and only if Anng(T) € Anny(F), Anng(X) 2 Anng(Y), and T is closed
under direct products.
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3.6. Remarks. (1) In Theorem 3.4(iii), the natural isomorphisms
Hom(V', —) = Tor{(V, =) in S-Mod and V' ®, — = Exti(}/, =) in R-
Mod are both needed: Example 5.7 shows that there are non-tilting
counter equivalences where, for instance, the second isomorphism holds in
R-Mod and the first holds in Y, but not in S-Mod, even if Y contains any
simple module.

(2) Example 5.8 shows that there exist basic counter equivalences
between the same torsion theory and torsion theories on nonisomorphic
algebras of the same finite dimension.

4. QUASI-TILTING COUNTER EQUIVALENCES

The equivalence represented by a quasi-tilting triple (R,V, S), intro-
duced in Theorem 2.6, can be completed to a “local form” of torsion
theory counter equivalence. This is obtained, similarly to the tilting case,
by means of the ext and tor functors associated to the bimodule ;V;. The
proof of the following result follows faithfully that of the Tilting Theorem
given in [CbF1, Theorem 1.4], even if almost all the properties of quasi-tilt-
ings basically work to guarantee the validity of the single steps of the
proof.

4.1. THEOREM. Let (R,V, S) be a quasi-tilting triple, S = S /Ann(Vy), Q
an injective cogenerator of R-Mod, and (V* = Hom(V, Q). Let
H=Homg(V,—-), H' =Extix(V,-),
T=VQ —, T' = Torf(V, —)
s

to obtain pairs of functors
H,H':Gen(pV) » 8Mod  and T,T":S-Mod - Gen(,V)
and let

T = Ker H', F = Ker H, X =KerT, Y = KerT'.

Then:
(a) TH' = OGen(,) = T'H and HT' = O5.yoq = H'T;
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(b) there are natural transformations 6 and m that, together with the
canonical transformations p and o, yield exact sequences

0 TH(M) 3 MB TH (M) > 0,
Oy oy
0—->HT(N)>N->HIT(N)—-0

for each M € Gen(,V') and for each N € S-Mod;

(©0 T=Gen(yV), Y = Cogen(;(V*), and, moreover, (T,F) and
(X,Y) are tOI’SlOI’l theories in Gen( V') and S-Mod, respectively;

@ T2 7 Y and F % X are category equivalences.

Proof.  First of all, we check that H, T, H', and T’ are well defined.
This is clearly true for H and H'. Next, for every N € S-Mod there is an
exact sequence of the form

0> K-> S% 5 N-0, (*)
from which we get the exact row
0="T/(8%) > T'(N) > T(K) > T(§¥) = VX > T(N) - 0,

where T'(§)) = 0 by Lemma 2.5, (i) = (iii), as V ®; Ann(V) = 0. This
proves that T(N) € Gen(RV') c Gen(xV) and, similarly, that T(K) €
Gen(zV). Therefore, T'(N) € Gen(zV).

Next, from Proposition 2.1 we have that Gen(zV) NV *+ = Gen(zV)is a
torsion class in R-Mod, so that T := Ker H' = Gen(,)/) is a torsion class
in Gen(RV) too; the corresponding torsion-free class in Gen(zV) is
obviously F := Ker H. From Theorem 2.6, (II) and (Ill), we have that
Cogen(sV*) is a torsion-free class in S-Mod, so that Y = Ker T’ =
Cogen(,V*) is a torsion-free class in §-Mod too; the corresponding
torsion class in S-Mod is X := Ker T. Moreover, again by Theorem 2.6(11),

T % Y is a category equivalence. This proves (c) and the first part of (d).

In order to prove (a), we start with a module M € Gen(zV). Then there
is an exact sequence

0-M->M ->M"—-Q0, (% %)

where M’ and M” belong to Gen(zV"). Applying Hom4(V/, —), we get the
exact sequence H(M') - H(M") - H'(M) — H/(M’)H= 0, as Gen(zl)
= Ker H'. Since T is right exact, T = Gen(zV),and T ? Y is an equiva-
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lence with counit p, we obtain the commutative diagram with exact rows

M — M — 0

PM'T = PM”T =

TH(M') — TH(M") — TH'(M) — 0

which shows that TH'(M) = 0. Moreover, there is an exact sequence
0 - M — QX, from which we derive the exact row 0 - H(M) — H(QX)
= ((V*)X. Thus H(M) € Cogen(;V'*) = Ker T'. This proves that
T'H(M) = 0.

Let N € §-Mod, and let us consider the exact sequence (). We have
that K and S™ = H(,1V®) belong to Cogen(;V’*) =Y. As T % Y is
an equivalence with unit o, we obtain the commutative diagram with exact
rows

0 —> HT'(N) — HT(K) —> HT(§™)

O’KT = crg(X)T =

0 — K — 8§

which shows that HT'(N) = 0. Since T(N) € Gen(izV) = Ker H', we
have H'T(N) = 0, and so (a) is proved.

In order to prove the first part of (b), we consider M € Gen( V). Since
Gen(xV) c V', the exact sequence (* *) induces the exact sequence

v
0->H(M)>H(M)—>H(M") > H (M) - 0.
We obtain two short exact sequences

0->H(M)—>H(M)—->L -0,
0-L—->H(M")—>H (M) —0,

where L = Im(y) € Cogen(;V*) = Ker T'. Then T'(L) = TH'(M) =
T'H(M") = 0, so that the same argument of [CbF1, proof of Theorem 1.4]
gives a natural epimorphism =,,: M — T'"H'(M) with kernel Im p,,. The
last part of (b) has a similar proof. Let us consider N € S-Mod and the
exact sequence (). From the induced exact sequence

0> T'(N) - T(K) 5 T(59) > T(N) 0,
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we obtain two short exact sequences

0> L - T(S%) > T(N) -0,
0->T(N)—>T(K)—>L-0,

where L = Im($) € Gen(zV) = Ker H'. Then H'(L) = HT'(N) =
H'T(K) = 0, so that the same argument of [CbF1, proof of Theorem 1.4]
gives a natural monomorphism 6,: H'T'(N) — N with image Ker oy.

From (a) we get Im(H') € X and Im(T") € F. Moreover, from (b) we
obtain that n | : 1 = T'H' and 61y : H'T' — 1, are natural isomor-
phisms. This completes the proof of (d). |

Under the hypotheses and notation of Theorem 4.1, the pair of equiva-

Hom r(V, =) Extk(V, —
lences T <V:> Y and F ——— B A X given by a quasi-tilting triple
Torl(V -)

(R,V, S) is called a quasi-tilting counter equivalence, and denoted by
(TR 'y (X Y ). It must be noted that (T, F) and (X, Y) are torsion
theorles respectively, in the subcategories Gen(zV) of R-Mod and
End(;})-Mod of S-Mod. Gen(,V) = T and End(,/")-Mod = Y can be
considered as localizations, respectively, of R-Mod and S-Mod, with re-
spect to the bimodule V5 (see Example 5.10).

In the artinian case, quasi-tilting and tilting counter equivalences are
quite close:

4.2. COROLLARY. Let R be a left artinian ring, (R,V,S) a quasi tilting

triple_with associated quasi-tilting counter equivalence (T,F) g (X, Y).
Let R = R/ANN(RV) and S = S/AnNn(Vy). Then (R,V,8) is a tilting
triple with associated counter equivalence (T, F) gR:S; (X, Y).

Proof. By Corollary 2.4, I/ is a tilting module, Gen(z}) = R-Mod,
and S = End(Rz}") = End(z}). It follows that (R V S) is a tilting triple,

and the qua5| tilting counter equivalence (T, F) * (X, Y) coincides with
(T, F)g:,(x, Y) 1

The theory of Colby and Fuller on torsion theory counter equivalences
is in fact a strong generalization of the tilting setting. As proved in

Theorem 3.4, for a torsion theory counter equivalence (T, F) gj X,Y)
the following properties can fail: sV

(a) T contains every injective module and Y contains every projec-
tive module;
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(b) the functors Tor;(V, —) and ExtL(V, —) induce an equivalence
between X and F.

On the contrary, our generalization—from tilting to quasi-tilting triples
—goes in the direction suggested by the previous conditlons Similarly to
the tilting case, a quasi-tilting counter equivalence (T, F) (X Y ) satis-

fies conditions (a) and (b) restricted to the subcategorles Gen(zV) of
R-Mod and End(;}")-Mod of S-Mod, by means of Proposition 2.1(iv) and
Theorems 2.6(111) and 4.1. Therefore, the quasi-tilting context seems closer
than the Colby—Fuller one to tilting theory. Nevertheless, there is a
natural connection between torsion theory counter equivalences and our
setting:

4.3. COROLLARY. Let (T, F)g:g(X Y) be a torsion theory counter

equivalence. Then (R,V,S) and (S V', R) are quasi-tilting triples, giving,
respectively, the quasi-tilting counter equivalences

(TENT) S (XnY,Y)
and
— Vi —
(X, YNX)'g (TNFE,F).

Proof. From Lemma 3.1(ii) it follows that V ®; S/Anng(Y) = V.
Therefore, by Theorem 2.6(1) we get that (R, 1/, S) is a quasi-tilting triple
and T = Gen(xV). Moreover, by Theorem 26(Il11), we have Y =
S/Ann (Y )-Mod = S/Ann(V5)-Mod. Thus, applying Theorem 4.1 to
(R,V,S), we obtain the quasi-tilting counter equivalence of the form

rVs
(TFNT) g XNnY,Y).
The same argument holds for (7. |

From Lemma 3.1 and Corollaries 2.8 and 4.3, we get immediately:

Ve
4.4. COROLLARY. If (T, F) £33 (X, Y) is a torsion theory counter equiv-
V/

SYR
alence, then T and X are quasi-tilting torsion classes in R-Mod and S-Mod,
respectively, and F and Y are cotilting torsion-free classes in R/Ann (F )-
Mod and S /Anng(Y )-Mod, respectively.

4.5. DEFINITION. Two quasi-tilting triples (R, 7, S) and (S,V’, R) are
called complementary if the bimodules gV and (V3 represent a torsion
theory counter equivalence.
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As already observed in Remark 2.7(c), a quasi-tilting triple does not
necessarily admit a complement.

The following result, analogous to [CbF2, Theorem 2.5], complements
Corollary 4.3:

4.6. THEOREM. Let (R,V,S) and (S,V', R) be quasi-tilting triples, and
v,
consider the associated quasi-tilting counter equivalences (T, Fy) ‘&5 (X,, Y)

%
and (X, Yy) 'g (T, F). Then the following conditions are equivalent:

(i (R, V,S) and (S,V', R) are complementary;
(i) (T,F) and (X,Y) are torsion theories in R-Mod and S-Mod,
respectively;
(i) V' @V =0=V & V' and, for all M € R-Mod,

Hom,(V, M) =0=V" & M implies M =0,
and for all N € S-Mod,
Homg(V',N) =0=V ® N implies N =0.

Proof. (i) = (iii) By hypothesis, Gen(z}") = Ker V' ®, — . This gives
immediately V' ®, 1V =0, and M =0 whenever Homg(})/, M) =0 =
V' ®, M. The other two conditions can be proved in the same way.

(iii) = (ii) As observed in Theorem 2.6(111), Y is a torsion-free class
in $-Mod, associated to the torsion class Ker )V ® — . Since X =
Gen(sV'), we have to prove that Gen(;}') = Ker V' ®;, — . From V& V"
=0 we get Gen(sV') c Ker IV ®; — . Conversely, let (L be such that
V' ® L =0.ThenV ® L/Tr,(L) = 0 too. Since Gen(s}') is a torsion
class, Tr,. is a radical; hence Homg(V’, L/Tr,.(L)) = 0. Therefore,
L/Tr, (L) = 0 by assumption, i.e., L € Gen(,V’). This proves that (X, Y)
is a torsion theory in S-Mod. A similar argument works for (T, F) in
R-Mod.

(ii) = (i) It follows by hypotheses and Theorem 2.6(111). |

4.7. Remarks. (1) Remark 5.9(1) shows that there is a torsion theory
counter equivalence (T, F) &3 (X, Y) between R-Mod and S-Mod such
that S is not isomorphic to the endomorphism ring of any R-module
representing the equivalence T 2 Y. Precisely, we construct a quasi-tilting
triple (R, V, S) which has a complement, but, for every quasi-tilting mod-
ule ;U € Gen(iV), the triple (R, U, End(xU)) has no complements.
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(2) Looking at Theorem 4.6(iii), we observe in Remarks 5.9, (2) and
(3), that the class of projective or injective modules and the class of
semisimple modules are not large enough to test the complementarity of
two quasi-tilting triples.

5. EXAMPLES

Throughout this section, K denotes an algebraically closed field, and all
rings are K-algebras given by quivers according to [R]. If R is a finite-di-
mensional K-algebra given by a quiver A and i is a vertex of A, then we
denote by P(i) (resp. 1(i)) the indecomposable projective (resp. injective)
R-module associated with i, and we denote by S(i) the simple top of P(i).

In the following, we always identify indecomposable modules and their
isomorphism classes. If the K-algebra R is of finite representation type,
when we draw its Auslander—Reiten quiver I, we often replace indecom-
posable modules by some obvious pictures describing their composition
series. In this way, it is easy to count the dimension of the K-vector space
of all morphisms between two indecomposable modules belonging to the
same torsion or torsion-free class. More generally, in order to discover
more or less hidden torsion theory counter equivalences, it often suffices
to compare some combinatorial data, for instance, the number of certain
indecomposable modules and the dimension of certain vector spaces. We
also note that some complicated objects involved in torsion theory counter
equivalences are just the duals with respect to the field K of certain right
modules. For instance, let R and S be K-algebras and let zVs be a
bimodule. Then it is well known that D(Ry) = Homg(Rg, K) is an
injective cogenerator of R-Mod. Moreover, applying the adjoint isomor-
phism and proceeding as in tilting theory (see [R, page 171]) over finite-di-
mensional algebras, we see that D(V,) = Hom(Vs, K) is isomorphic to
Hom (;Vs, D(RR)).

As the next example shows, an S-module of the form D(V) may be
extremely large, and does not necessarily satisfy any finiteness condition.

5.1. ExampPLE. There are K-algebras R and S and a tilting triple
(R,V,S) such that if QO is an injective cogenerator of R-Mod and
sV = Hom(zVs, g Q), then we have

Cogen(D(Vs)) = Cogen( V*) # Cogen( M)

for any finitely generated or finitely cogenerated module ¢ M.
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First, the class of the right S-modules cogenerated by Hom z(;Vs, R Q)
does not depend on the injective cogenerator Q (see [C1, Lemma 3.2(a)]);
moreover, the choice ;O = D(Ry) gives (V* = D(V). Next, let R be the
K-algebra given by the quiver

B
Ca-b,

let ¢, and e, denote the primitive idempotents of R corresponding to the
vertices a and b, respectively, and let P(a) = Re,, P(b) = Re,,.
Let z}” denote the module

gV =P(a) ® P(a)/RB.

Then ;) is a tilting module (see [D1, Proposition 5]), and it is easy to see
that End(z}") is isomorphic to the K-algebra S given by the quiver

c—>dJsy.

Next, let (T, F) be the torsion theory in R-Mod with T = Gen(;}/), and
let (X, Y) be the torsion theory in S-Mod with Y = Cogen(D(V5)). Then
we clearly have F = Cogen(P(b)); that is, F consists of all semisimple
projective R-modules. This observation and the existence of an equiva-
lence between F and X assure that X contains exactly one indecompos-
able module. Therefore, X = Gen(l(¢)), where I(c) is the unique simple
injective module associated with the vertex ¢, while Y consists of all
S-modules without simple injective summands. We claim that Y #
Cogen(, M) for any finitely generated or finitely cogenerated module M.
To see this, let e, and e, denote the primitive idempotents of S corre-
sponding to ¢ and d, respectively. Next, let Z = {M € S-Mod |e,M = 0}.
Since S/Se.S is isomorphic to K[x] and Z is a subcategory of Y
equivalent to K[x]-Mod, it follows that

(1) Y contains infinitely many nonisomorphic simple modules.

Moreover, if (Z € Z and (Z is finitely generated, then ¢Z is the direct
sum of finitely many cyclic modules; hence N, 6"Z = 0. Consequently,

(2) Cogen(;Z) # Z for any finitely generated module (Z € Z.

We also note that, if a module ¢M is generated by a subset L of the form
L'yl with L' Ce M, L' Ce,M, then its submodule e, M is generated
by the subset v U L". This implies that

(3) e, F is finitely generated for any finitely generated module ¢ F.
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Assume now that (M is a module such that Cogen(;M) =Y. Since
Cogen(e,M) = Z, we deduce from (2) that e, M is not finitely generated.
Hence the conclusion that ¢M is not finitely generated follows from (3).
On the other hand, any simple module Y €Y may be embedded in
Soc ¢ M. This remark and (1) assure that Soc (M is not finitely generated,
and so ¢M is not finitely cogenerated (see [AF, Proposition 10.7]). This
completes the proof.

We state as a lemma the trick used in the sequel to give an example of a
module, with a very easy structure, which is quasi-tilting but not finitely
presented.

5.2. LEMMA. Let gV be a module satisfying the following conditions:

(@) any module generated by RV is isomorphic to a direct sum of copies
of gV and ExtL(V,V(®) =0 for any cardinal «;

(b) there is an exact sequence in R-Mod of the form
0—->L->P-y V-0,

where P is a finitely generated projective module, while L is not finitely
generated.

Then RV is a quasi-tilting module which is not finitely presented.

Proof.  Since gV is finitely generated by (b), we deduce from (a) and
Proposition 2.1(iii) that 3V is a quasi-tilting module. Finally, the assertion
that ;I is not finitely presented follows from (b) and [K, Theorem 1, page
167]. 1

The existence of quasi-tilting modules which are not finitely presented
in an immediate consequence of Lemma 5.2. As we shall see, the simple
module used to see this is a factor of a projective module with very special
properties.

5.3. ExampLE. There is a K-algebra R such that the unique indecom-
posable faithful projective R-module P satisfies the following conditions:

(@ P/Soc P is a quasi-tilting module of projective dimension one,
but P/Soc P is not finitely presented,;

(b) Gen(P) is a torsion class containing any injective module, but it
is not a tilting torsion class;

(c) P is a cotilting module, but there is no exact sequences of the
form 0 - P - P" - Q — 0, where Q is an injective cogenerator of
R-Mod and P’, P" are direct summands of P* for some cardinal A.
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Indeed, let R denote the K-algebra given by the quiver

with infinitely many arrows, say «, with n € N, from a to b, that is, let R
be the direct limit of generalized Kronecker algebras [HU, p. 182]. Next,
let e, and e, denote the primitive idempotents of R corresponding to the
vertices a and b, respectively. Finally, let P denote the module Re,. Then
P is the unique indecomposable faithful projective R module, and P
satisfies condition (b) [D2, Theorem 2]. On the other hand, Gen(, P/Soc P)
consists of all semisimple injective R-modules, while Soc P is isomorphic
to Re{*). This observation and Lemma 5.2 prove that P/Soc P is a
quasi-tilting module, of projective dimension one, which is not finitely
presented. Hence, P satisfies condition (a). We claim that P is a cotilting
module. In fact, we clearly have

injdim(,P) = 1. (1)

Since the Jacobson radical J of R is the K-vector space generated by the
arrows «,,, it follows that

R/J is semisimple and J? = 0. (2)

Let now H be a nonzero finitely generated right ideal of R. Assume first
Hce,K+ ¥, cna,K Then, for any 0 # h € H, we have AR = hK and
Ann(h) = e, R. Consequently, there exists an exact sequence of the form
0—-e,R'—> R H— 0, where d = dim  H. Now suppose H ¢ e K +
Y,ene,K. Since H is a right ideal of R, we obtain e¢,R € H. Conse-
quently, we have either H =R or H = ¢,R = R/e R. This proves that R
is right coherent, and so [AF, Theorem 19.20] implies that

any direct product of flat left R-modules is flat. (3)
On the other hand, we deduce from (2) and [AF, Theorem 28.4] that

any flat left R-module is projective. (4)
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Putting (3) and (4) together, we get
Exti(P* P) =0  forany cardinal A. (5)

Next, let M be a module such that Hom z(M, P) = 0 and Ext}(M, P) = 0.
We claim that M = 0. Assume the contrary. Since Homz(Re,, P) # 0, our
assumptions on M imply that M has a projective resolution of the form

0> X=Ref) 5>Y=P"» M- 0 for some cardinal A, » # 0. Hence,
the following sequence is exact:

0 = Hom (M, P) — Hom,(Y, P) 5 Homy(X, P) — Exti(M, P) = 0.
(6)

To find a contradiction, fix any 0 #x € X. Since ¢, P = &,_ o, P, we
have e,Y = & _ «a,Y. Consequently, there is some m such that i(x)

neN

@™ , @Y. This implies that
f(i(x)) € @ a,P forany f € Homg(Y, P). (7)
n=0

On the other hand, we have Homg(X, P) = Hom(X, e, P) =
Hom (X, e, P). This means that

{g(x) |g € Homg(X, P)} = e, P. (8)

Since (8) is a contradiction to (6) and (7), we obtain M = 0, as claimed.
Thus, by (1) and (5), M is a cotilting module. Finally, let Q be an injective
cogenerator of R-Mod. Then Q has a projective resolution of the form
0 - P, » P, — Q — 0, where P, & Gen(P), while P, is a direct sum of
copies of P. Now, let L, and L, be direct summands of P* for some A.
Then we deduce from (3) and (4) that L, and L, are projective modules.
This observation and our hypotheses on P, and P, imply that P, ® L, €
Gen(P), while P, & L, & Gen(P). Hence, by [K, Theorem 1, page 167],
there is no exact sequence of the form 0 - L, - L, - Q — 0. This
remark completes the proof of (c).

It suffices to deal with finite-dimensional algebras, of finite global
dimension, to see that there is no restriction on the projective dimension
of quasi-tilting modules, even of a very special kind (compare Proposition
2.3 with conditions (c), (d), and (e) in the next example).

5.4. ExampLE. For any n > 2, there are a K-algebra R and a quasi-
tilting module R satisfying the following conditions:

@ gldim(R) =n + 1;
(b) projdim(zV) = n and Ext}(V, M) # 0 for some M € Gen(zV);
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() R-Mod\Gen(,V) contains exactly one indecomposable module;

(d) R-Mod\Gen(;}) contains exactly one indecomposable injective
module;

(e) dimg(Ann(x})) = 1.
Fix some n > 2, and let R be the K-algebra given by the quiver
n+2
with «,,,a; =0 forany i = 1,..., n. Next, let z} denote the module

V= @ P(i) ®3(2).

a ar ay Ayl
1—-.2—>3— - »>n—>>n+1—>

Then Gen(zV) is the torsion class T of a torsion theory (T, F), and T, has
the following shape:

P(2) P(1)

""""" N N

S(2) S(1)

P(n+2)=S(n+2)

Let R denote the algebra R/Ann(,V). Then it is easy to check that z}/
is a tilting module. Therefore, Theorem 2.6 implies that ;1 is a quasi-tilt-
ing module. Moreover, (a), (c), (d), and (e) clearly hold, and it is easy to
check that the following K-vector spaces are isomorphic:

Exth(V,S(3)) = Exti(V,S(4)) = -+ = Extj(V,S(n + 2)).
Since projdim(,zV') = n and Ext}(V,S(3)) # 0, this remark completes the
proof of (b).

The next lemma shows that the degree of freedom in the choice of an
equivalence between two subcategories of semisimple modules may be as
large as possible.

5.5. LEMMA. Let R (resp. S) be a K-algebra, let C (resp. D) be a
subcategory of R-Mod (resp. S-Mod) closed under direct sums and consisting
of semisimple modules. Let Ind C (resp. Ind D) be a representative system of
the isomorphism classes of the indecomposable modules belonging to C (resp.
D), and assume that the following conditions hold:

(@ End(zC) =K, End(zD) =K forany C € IndC, D € Ind D;
(b) |Ind C|=|Ind D| = n for some n € N.

I
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Then for any bijection F: Ind C — Ind D there is an equivalence C = D,
where F extends F.

Proof. Let IndC ={C,,...,C,}, Ind D={D,,...,D,}, and let F(C,)
= D, for any i. Fix some C € C. Then C is isomorphic to a direct sum of
the form &, C{*), where the cardinals a,..., a, are uniquely deter-
mined [P, Proposition 2.5]. This observation guarantees that F extends to a
bijection between the objects of C and the objects of D, sending &, C{*?
to @', D{*’. On the other hand, by (a) there is a unique choice to deflne
the actlon on morphisms of a functor, say F: C — D, which extends F.
Since F is faithful and full, the existence of a functor G, giving the desired
equivalence, follows from [J, Proposition 1.3, page 27]. |

It is also easy to give an example where even all obvious functors,
related to different pairs of candidate tilting bimodules, are not enough to
obtain all the equivalences involved in a tilting counter equivalence.

5.6. ExamMPLE. There are K-algebras R and S and tilting counter
equivalent torsion theories (T, F) in R-Mod and (X, Y) in S-Mod, with
the following properties:

(a) there is exactly one (tilting) bimodule V5 representing an equiv-
alence between T and Y;

(b) there are exactly two nonisomorphic S—R-bimodules represent-
ing an equivalence between X and F.

In this case, let R denote the K-algebra given by the quiver

a B
15253354 withyg=o0.

Then the injective R-modules generate the tilting torsion class T of the
following torsion theory (T, F):
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Next, let S denote the K-algebra given by the quiver

5565758  with es=0.

Then the projective S-modules cogenerate the cotilting torsion-free class
Y of the following torsion theory (X, Y):

Moreover, the tilting module V' = P(3) @ S(3) @ P(1) & S(1), viewed as a
right S-module in an obvious way, represents an equivalence between T
and Y. Using this remark, and comparing the dimension of the vector
spaces of all morphisms between indecomposable modules in T and Y, we
immediately obtain (a). On the other hand, (b) follows from Lemma 5.5.

The next example shows that we cannot replace condition (iii) of
Theorem 3.4 by a weaker one.

5.7. ExampLE. There are K-algebras R and § and counter equivalent
torsion theories (T, F) in R-Mod and (X, Y) in S-Mod with the following
properties:

(a) there Pi[s exactly one Tpimodule #Vs (resp. (V) representing an
equivalence T ? Y (resp. X ? F);

(b) RV is not a tilting bimodule;
(c) one of the following conditions holds:
(1) Exti(V,-)=H' in R-Mod, Torj(V, =)=T" in Y, and Y
contains any simple module;
(2 Torf(V,-)=T in S-Mod, Extt(V, =)=H' in T, and T
contains any simple module.
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In the following, let 4 and li denote, respectively, the K-algebras given
by the quivers 1 — 2 and 3 ? 4, with aB =0 and Ba = 0. Now, let

R=A,S5 =B, and let (T, F) and (X, Y) be the torsion theories depicted
in Tz and T (with identification along the vertical dashed lines):

Then (a) follows from the choice of T, Y, X, and F. On the other hand, it
is easy to check that the bimodule .V defined in (a) satisfies (b) and
condition (1) of (c). Finally, let R = B, S = A4, and let (T, F) and (X, Y)
be the following torsion theories:

N,

Also in this case, (a) holds. Moreover, the bimodule .V defined in (a)
satisfies (b) and condition (2) of (c).

We also note that, given a finite-dimensional K-algebra R and a torsion
theory (T, F) in R-Mod, the K-algebras and torsion theories related to R
and (T, F) by a basic counter equivalence may be more than expected. For
instance, the next example shows that we cannot use one of the most
obvious combinatorial data, that is the dimension, to distinguish noniso-
morphic algebras with this property. Moreover, two of these algebras with
the same dimension may be quite different from several points of view.
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5.8. ExamMPLE. There are finite-dimensional K-algebras R and S and
torsion theories (T, F), (X, Y)in R-Mod and (X', Y') in S-Mod such that
the following conditions hold:

(a) there is a basic counter equivalence between (T, F) and (X, Y)
(resp. (X', Y"));

(b) R is not isomorphic to S, but dim ;R = dim ,S;

(c) (X, Y) is the unique torsion theory in R-Mod satisfying (a), but
(X', Y’) is not the unique torsion theory in S-Mod satisfying (a);

(d) R = End(xM) for some finitely generated module x M such that
T=Gen(zM)+ M*, but S £ End(;N) for any finitely generated mod-
ule kN €T.

@ B
To see this, let R be the K-algebra given by the quiver 1 — 2 — 3 with
Ba =0, and let (T, F) and (X, Y) be the following torsion theories:

Next, let S be the K-algebra given by the quiver 4 — 6 < 5, and let
(X', Y’)and (X", Y") be the following torsion theories:

Then (a), (b), and (c) obviously hold. On the other hand, let , M denote the
module S(2) & P(1) & S(1). Then we have End(,M) = R, Gen(;M) =T,
and Extix(M, M) # 0. Finally, S admits two indecomposable projective
modules with isomorphic socles. However, it is easy to see that End(z N)
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does not have this property for any finitely generated module ;N € T.
Hence, also (d) holds.

In the next remarks we outline some properties of quasi-tilting triples
with /without complements, and we show that the behavior of all but one
indecomposable modules (either simple or projective—injective) does not
characterize complementary quasi-tilting triples (compare with condition
(i) in Theorem 4.6).

5.9. Remarks. (1) Let (R,V,S) be a quasi-tilting triple representing an
equivalence between the classes T and Y' defined in Example 5.8. Then
we deduce from (a) that

() (R,V,S) is a quasi-tilting triple admitting a complement.

Since End(zV’) admits exactly three indecomposable modules, it follows
that

(x%) (R,V,End(zV)) is a quasi-tilting triple without comple-
ments.

More generally, it is easy to see that, for any nonzero quasi-tilting module
rU € T, the quasi-tilting triple (R, U, End(,U)) does not have a comple-
ment.

(2) Let (R,W,R) be a quasi-tilting triple representing an equiva-
lence between the classes X and F defined in Example 5.8. Then X ¢ T,
FcY, and the following facts hold:

(i) (R, W, R) is not complementary to itself;
(i) W&W=0;
(i) Homgy(W,M)=0=W ®, M implies M =0 for any R-
module M of the form M = P & I with P projective and [ injective (i.e.,
for any M of the form M =X & F with X € X and F € F).

Since KerHom (W, —) =Y and Ker W ®, — =T, there is exactly one
indecomposable module M such that Hom z(W, M) = 0and W ®, M = 0,
namely the simple module S(2).

(3) Using the K-algebra A4 given by the quiver - — - and the simple
injective module I, we immediately obtain a quasi-tilting triple (A4, I, A)
satisfying the analogue of (i), (ii), and the following condition:

(i) Hom (I, M) =0 =1 ®, M implies M = 0 for any semisim-
ple module M (i.e., for any M without nonzero projective—injective sum-
mands).

Also dealing with K-algebras of finite representation type with the same
number of indecomposable modules, it is easy to construct quasi-tilting
counter equivalences which are not torsion theory counter equivalences.
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5.10. ExAMPLE. Let R (resp. S) be the K-algebra given by the quiver

a B
1-52->3 4 with Ba=0 (resp. 5> 6 7 —8), and let (T,F) and
(X, Y) be the following splitting torsion theories:

Next, let (R,V,S) be a quasi-tilting triple representing an equivalence
between T and Y. Then the following facts hold:

(i) (R,V,S) does not admit a complement, because F and X are
not equivalent;

(i) the functors Ext}(V, —) and Tor;(V, —) (see Section 4) give the
unique equivalence between T N F and Y N X.
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