Obstetric interventions and their associated effects on maternal and fetal health are critical considerations in pregnancy care. Several factors, such as the patient’s health status, gestational age, and the specific obstetric procedure, influence the decision-making process. In this discussion, we will explore the implications of obstetric interventions on maternal and fetal outcomes.

1. **Maternal Outcomes**
 - **Preterm birth:** The timing of delivery can have significant implications for maternal health, with preterm birth associated with complications such as postpartum hemorrhage, infection, and cardiovascular disorders. The management of preterm labor involves close monitoring and interventions to maintain pregnancy until at least 34 weeks’ gestation, when the risks of preterm birth complications are lower.
 - **Pregnancy-induced hypertension:** This condition can lead to preterm labor, fetal growth restriction, and maternal complications like preeclampsia. Early detection and timely intervention are crucial.

2. **Fetal Outcomes**
 - **Growth restriction:** When fetal growth is compromised, interventions such as maximizing fetal nutrition through maternal nutrition support or early delivery may be necessary to optimize fetal outcomes.
 - **Intrauterine growth restriction (IUGR):** This can lead to long-term health issues, and interventions like delivery of the fetus or treatment of the underlying cause may be required.

3. **Psychosocial Impact**
 - **Postpartum depression:** Obstetric interventions can have psychological effects, and interventions like counseling or medication may be needed.

Conclusion: Obstetric interventions are tailored to individual patient needs and pregnancy circumstances. The decision-making process involves a consideration of maternal and fetal health implications, with the goal of optimizing outcomes for both mother and child.

References
modulation of the AMPK/SIRT1 and TLR4/NF-κB signaling pathways. Moreover, combined therapy of CB2R agonist and AD-MSCs has a synergetic effect on cardiac repair and functional improvement after infarction.

GW26-e2179

RESULTS

A total of 681 CAD patients (334 Han, 347 Uygur) and 770 controls (346 Han, 424 Uygur) were selected for the present Case-control tagging SNPs (rs17047757, rs2161829 and rs21613329) of INSIG2 gene were genotyped using TaqMan® assays from Applied Biosystems following the manufacturer’s suggestions and analyzed in an ABI 7900HT Fast Real-Time PCR System. **RESULTS**

In the Uygur population, for total, men and women the rs17047757 was associated with CAD by analyses of a recessive model (all, \(p < 0.001 \)) and additive model (all, \(p < 0.001 \)), and the difference remained significant after multivariate adjustment in a recessive model (all, \(p < 0.001 \) and rs17047757, additive model (all, \(p < 0.001 \)) and additive model (all, \(p < 0.001 \) and rs17047757, and the difference remained significant after multivariate adjustment in a recessive model (all, \(p < 0.001 \)). However, this relationship was not observed in the two tagging SNPs before and after multivariate adjustment in Han population.

CONCLUSIONS

Our previous study has shown that left renal sympathetic stimulation and ablation affect ventricular activity in a cesium induced long QT canine model. **CONCLUSIONS**

LRS and LRA might facilitate and prevent VA, respectively, by modulating LSG neural activity in cesium-induced long QT canine model.

GW26-e2420

RESULTS

Danhydro Injection Prevents Nitroglycerin-induced Tolerance in Rat

Qian Zhou, Ting Wang, Xiaoqing Jiang, Pan Li, Bin Lv, Xianghui Ma, Xiaoying Wang

Tianjin University of Traditional Chinese Medicine

OBJECTIVES

Danhydro Injection (DHI) is a traditional Chinese medicine consisted by two herbal medicines, Radix et Rhizoma Salviae Miltiorrhizae and Rhizoma Flos Carthami, which is used in clinic as a remedy for cardiovascular diseases. The early studies indicated that DHI has protective effect on endothelial cells. This study aimed to investigate the potential effects of DHI on nitroglycerin-induced tolerance in rats.

METHODS

Nitroglycerin-induced tolerance was induced by pretreatment with nitroglycerin (50 mg/kg) once a day for three days on Wistar rats. DHI was co-treated in this period. In addition, the maximal relaxation response curve was drawn and malondialdehyde (MDA) level, nitric oxide synthase (NOS) activity and cyclic guanosine monophosphate (cGMP) level were measured. In vitro, the tolerance was induced by exposure the isolated thoracic aorta obtained from rats to nitroglycerin (10-4 M) for 60 min with pretreated of DHI. In addition, nitric oxide synthase inhibitor (L-NAME), omaprline cyclase inhibitor (ODQ) and cyclooxygenase inhibitors (Indo) were used to study the mechanism.

RESULTS

DHI could significantly reduce the MDA content (\(P < 0.05 \)), increase NO and cGMP (\(P < 0.05 \)) in comparison with nitroglycerin-induced tolerance. Pre-exposure of aortic rings to nitroglycerin significantly reduced the relaxation to nitroglycerin (\(P < 0.05 \)) in comparison with controls. Treatment with DHI could increase relaxation’s response compare with nitroglycerin-induced tolerant aortic rings (\(P < 0.05 \)).

CONCLUSIONS

DHI significantly attenuates nitroglycerin-induced tolerance in vivo and in vitro. The mechanism is at least partly based on endothelium protection and anti-oxidant.

GW26-e4536

RESULTS

The study of aspartic acid effects on isoprenaline induced cardiac hypertrophy

Wenbin Zhang, Zhenguo Ma, Wenyi Wang, Sichi Xv, Chunxia Wan, Qizhu Tang

Department of Cardiology, Renmin Hospital of Wuhan University

OBJECTIVES

To study whether aspartic acid (AA) attenuate cardiac hypertrophy through the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling.

METHODS

Cardiac hypertrophy in mice was induced by subcutaneous administration of isoproterenol. 30 mice were divided into three groups (10 mice per group): Sham (saline), ISO (saline) and ISO-AA. AA has preeffective on endothelial cells. This study aimed to investigate the potential effects of DHI on nitroglycerin-induced tolerance in rats.

RESULTS

Compared to the ISO group, the HW/BW and HW/TL, CSA of the myocytes was also counted. The signaling pathway involved in the cardiac hypertrophy was also detected by western blot.

CONCLUSIONS

Our data suggest that AA can attenuate cardiac hypertrophy through blocking the MAPK and PI3K signaling.

GW26-e4771

RESULTS

Protective and antiapoptotic effects of luteolin on oxidative injury in H9C2 cardiomyocytes

Hong Chang, Wei Wang

1Beijing University of Chinese Medicine

OBJECTIVES

Luteolin, a falconoid compound in many types of plants, plays important cardioprotective roles in cardiovascular