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A neurogenic component in atopy and allergy is evident and potentially of great pathogenic relevance. Stress
was recently shown to activate elements of this component and is vividly discussed as a cause of exacerbation.
However, to date, scientific proof of stress-induced neuronal plasticity and neuro-immune interaction in atopy
or allergy remains lacking. Here we show early evidence that exposure to sound stress and atopic dermatitis-like
allergic dermatitis (AD) equipotently raise the number of cutaneous nerve fibers containing the prototypic
stress neuropeptide substance P (SP) in mice. Stress increases AD readout parameters by at least 30%
(eosinophil infiltration, vascular cell adhesion molecule-positive blood vessels, epidermal thickness). This
dramatic pathologic exacerbation is associated with increased neurogenic inflammation (degranulated mast
cells; interstitial neuropeptidergic dense core granules, mast cell apoptosis, endothelial gaping). Key features of
AD exacerbation could not be induced in mice lacking the neurokinin-1 SP receptor (NK1). Interestingly, stress
had no significant additional effect on CD4þ cell number, but shifted the cytokine profile toward TH2 in skin.
Thus, we conclude that stress primarily exacerbates AD via SP-dependent cutaneous neurogenic inflammation
and subsequent local cytokine shifting and should be considered as a therapeutic target, while it offers a
convincing pathogenic explanation to affected patients and their frustrated physicians alike.
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INTRODUCTION
Strong psychoemotional stressors have long been expected to
exacerbate or even trigger atopic or allergic diseases such as
atopic dermatitis (Buske-Kirschbaum and Hellhammer, 2003;
Joachim et al., 2004; Peters et al., 2005). The interested
reader will find reference to this effect in almost every
textbook on dermatology, psychosomatics or psychoneu-
roimmunology and intriguing hypothesizes based on our
knowledge of stress effects on neurogenic inflammation and

cytokine production in general have been formulated
(c.f. Pallanti et al., 2005; Wright et al., 2005). However,
few comprehensive experimental investigations have resulted
from this common assumption.

All respective studies on psychopathology in atopic
dermatitis so far have been performed in humans. Many
authors found associations between personality traits and
psychic disturbances such as stress perception, anxiety, or
depression and atopic dermatitis severity or even onset (Brown,
1972; Garrie et al., 1974; Gil et al., 1987; Gieler et al., 1990;
King and Wilson, 1991; Lammintausta et al., 1991; Scheich
et al., 1993; Gupta and Gupta, 1999; Kodama et al., 1999;
Kilpelainen et al., 2002; Hashizume et al., 2005). However, an
‘‘AD personality’’ could not be identified, and most of the
psychopathological features of atopic dermatitis-like allergic
dermatitis (AD) patients were also present in other chronically
diseased patients. Also, these studies remained on the level of
associating disease severity (SCORAD, itch, IgE, eosinophilia,
TH1/TH2 balance) or onset (retrospectively) with psychometric
data (life events, anxiety, depression).

Only a small number of investigations focused on
immediate stress effects in allergic dermatitis, among them
the path-breaking studies by Buske-Kirschbaum and co-
workers (Faulstich et al., 1985; Munzel and Schandry, 1990;
Arnetz et al., 1991; Buske-Kirschbaum et al., 1998, 2001,
2002a, b; Schmid-Ott et al., 2001), which employed a mainly
mental experimental stressor. Such well-conducted studies
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exploring stress effects in atopic or allergic disease
mostly deal with an abnormal systemic activation of the
hypothalamic–pituitary–adrenocortical axis or the sympa-
thetic nervous system (Black, 2002; Buske-Kirschbaum and
Hellhammer, 2003). Activation of these systems initiates a
systemic response that ultimately leads to a pathogenically
relevant shift in the cytokine balance in various inflammatory
disease models (Niess et al., 2002; Buske-Kirschbaum and
Hellhammer, 2003; Dhabhar, 2003; Frieri, 2003). From the
psychoneuroimmunological perspective, anxiety and depres-
sion can be interpreted as stressors, as was done by
Hashizume, but so far only Buske-Kirschbaum and co-
workers employed a defined, inducible stress response in
correlation with systemic alterations of neuroendocrine and
immunological parameters in atopic disease.

Ectodermal organs such as the lung, gut, and the skin
however are characterised by their dense innervation and a
close neuro-immune crosstalk (Bauer and Razin, 2000;
Darsow and Ring, 2001; Black, 2002; Groneberg et al.,
2004; Renz et al., 2004; Wood, 2004), which enables them
to respond to systemic stressors by local neuronal plasticity
and neuro-immune interaction (Peters et al., 2005). Accord-
ingly, more and more reports support a close neuro-immune
connection in ectodermal organs such as the skin and the
existence of a brain–skin axis has therefore been postulated
(Scholzen et al., 1998; Slominski and Wortsman, 2000; Arck
et al., 2001, 2006; Peters et al., 2006; Hendrix and Peters,
2007).

We are now aware, that stress exposure can lead to
activation at the nerve fiber–mast cell interface, with
subsequent neurogenic inflammation at least in mice (Singh
et al., 1999; Arck et al., 2001; Black, 2002; Peters et al.,
2004, 2005). At the same time a neurogenic component has
been identified in the pathogenesis of peripheral inflamma-
tory diseases such as allergic dermatitis (Pincelli et al., 1990;
Ostlere et al., 1995; Huang et al., 2003; Mihara et al., 2004;
Ohmura et al., 2004a). These observations led to the
frequently drawn conclusion, that stress-induced local
neurogenic inflammation plays a role in atopic or allergic
disease pathogenesis (Theoharides and Cochrane, 2004).
Surprisingly, this conclusion remained a hypothesis to be
tested to date.

This hypothesis is especially intriguing in the context of
atopic dermatitis, since one of the central cutaneous stress
mediators, the neuropeptide substance P (SP), is not only a
key player in neurogenic inflammation and itch (Steinhoff
et al., 2003), but is also a central feature of atopic dermatitis
(Mihara et al., 2004). SP also affects cellular infiltration by
eosinophils (Quinlan et al., 1999; Foster and Cunningham,
2003) and cytokine production by T-lymphocytes (Payan
et al., 1984; Levite, 1998; Kang et al., 2000), which are
critical features of the exacerbation and chronic course of
atopic dermatitis (AD).

To our knowledge, neither a functional in vivo animal
model nor investigation of local, intracutaneous pathways of
stress effects in AD have been introduced to date. Against this
background, atopic dermatitis appears an ideal disease model
to investigate stress-induced alterations in the interaction

between the peptidergic cutaneous innervation and the skin
immune system and their effects on the severity of atopic or
allergic disease and T-helper cell (TH) cytokine balance. We
therefore combined two models long established in dermatitis
research (Sawada et al., 1997; Cho et al., 2001) and stress
response research (Arck et al., 1995b, 2003), to investigate
the effects of noise stress exposure on experimental AD to
resolve the following questions:

K Do stress exposure and AD similarly affect neuronal
plasticity?

K Does stress exposure change the quality and degree of
AD?

K Does stress affect AD via neurogenic inflammation?
K Are the stress-associated effects on AD dependent on SP

signalling?
K Does stress exposure alter the cutaneous cytokine

balance in AD?

With the data presented here we aim to define the neuro-
immune interaction pathways by which stress is linked to the
exacerbation of cutaneous inflammation. This will allow us to
provide a sound pathogenic framework to explain the
contribution of stress to the exacerbation of cutaneous
inflammation to affected patients and their frustrated physi-
cians. Based on these findings we lay out a blueprint for the
future development of new therapeutic strategies in the
management of stress-sensitive recurrent inflammation in the
skin (Wright et al., 2005).

RESULTS
All C57BL/6 mice sensitised to ovalbumin to establish AD
showed the characteristic reddening and scaling of the
injected skin site 48 hours after injection as well as increased
total and ovalbumin-specific IgE levels (not shown). Upon
histological investigation by routine hematoxylin and eosin
staining, the dermis and subcutis were thickened and
contained an expected cellular infiltrate rich in eosinophils
and mononuclear cells (not shown). This infiltrate concen-
trated around dermal and subcutaneous blood vessels, which
appeared dilated and enlarged (not shown). These findings
demonstrate effective induction of AD in our model.

SPþ nerve fibers are equally increased in stressed as well as AD
skin

By immunofluorescence, a few single SPþ nerve fibers in
relative distance to dermal mast cells were present in the
interfollicular dermis of untreated control mice as described
before (Peters et al., 2001) (Figure 1a). After challenge with
ovalbumin or stress exposure SPþ nerve fibers became
abundant (Figure 1b and c). These nerve fibers also showed
close contacts to mast cells, indicating facilitation of
neurogenic inflammation.

Stress exposure worsens AD parameters

As compared with control animals and stressed animals,
eosinophils (detected by routine Giemsa histopathology)
were prominent in AD lesions, and these increased significantly
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in number when animals were additionally exposed to noise
stress (Figure 2).

Vascular cell adhesion molecule (VCAM)þ blood vessels
were rare in control, stressed, and AD mice, and where
present, were mostly located in the upper dermis adjacent to
the epidermis (Figure 2). Upon stress exposure, numerous
VCAMþ blood vessels could be detected in mice with AD
throughout the dermis and subcutis (Figure 2). These blood
vessels were small to medium size and appeared dilated
(Figure 2).

The epidermis overlaying dermal and subcutaneous
dermatitis in mice with AD was thickened (Figure 2), with
more than two cell layers, as compared with 1–2 cell layers in

control animals without AD with or in stressed mice.
Thickness of the epidermis was significantly increased if the
mice had AD and were additionally exposed to stress, and
these mice also displayed pronounced spongiosis and
hyperkeratosis (Figure 2).

Stress exposure enhances neurogenic inflammation in AD skin

Mast cells were present in the dermis and subcutis of all mice.
Frequently they were located adjacent to the epidermis, close
to blood vessels or nerve fiber bundles, and at the
dermis–subcutis border. The cells were so densely packed
with granules that individual granules could not be distin-
guished in control mice (not shown) and extracellular
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Figure 1. Immunohistochemistry reveals increased nerve fiber density in AD and after stress. Bars represent the mean number of nerve fiber profiles

in 10 consecutive microscopic fields per mouse pooled from five different mice per group. P-values were determined by Mann–Whitney-U; o0.01¼ **.

Abbreviations: apm, arrector pili muscle; d, dermis; e, epidermis; hf, hair follicle. White-bordered boxes indicate the location of higher-magnification

excerpts labelled with same letter and i as indicated in the boxes. SPþ nerve fibers : red label, mast cells; green label, cell nuclei; blue label, autofluorescence;

orange label. (a, d) A small SPþ nerve fiber bundle (arrowhead) is visible close to a control animal’s hair follicle in telogen. Note the mast cells in the far

distance. (b, e, and f) A mouse sensitised to and challenged with ovalbumin (AD) shows numerous single SPþ nerve fibers (arrows) and a SPþ nerve fiber

bundle close by a telogen hair follicle. Note the close proximity to mast cells. Please note, that as compared to (a) and (c), the hair follicle is cut of at the right,

the hair shaft is therefore only partially visible despite identical section orientation and dermal area shown. (c, g, h, and i) a stressed mouse shows numerous

SPþ nerve fibers and mast cells close by similar to AD.
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granules were only occasionally visible (not shown). In
stressed mice and in mice with AD, mast cells appeared less
packed and individual granules could be detected within the
cytoplasm as well as outside the cell membrane, indicating
more frequently occurring degranulation than in control mice
(Figure 3). These changes in mast cell morphology were

strongly increased in stressed AD mice (Figure 3). Accord-
ingly, the proportion of degranulated mast cells per total
number of mast cells was significantly increased compared
with AD mice (Figure 3).

Associated with mast cell activation, we observed the
deterioration of dermal nerve fibers in stressed AD mice by
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Figure 2. Histomorphometric analysis of allergic dermatitis lesions. Bars represent the mean number of eosinophils or VCAMþ blood vessel profiles or the

mean epidermal thickness measured in 10 consecutive microscopic fields per mouse at �400 magnification. Data were pooled from five different mice per

group. P-values were determined by Mann–Whitney-U; o0.05¼ *, o0.001¼ ***. Abbreviations: d, dermis; e, epidermis; hf, hair follicle; sc, subcutis.

Black-bordered boxes indicate area from which higher-magnification micrographs have been taken. Differences of special interest (between AD and stressþAD

groups) are indicated by larger asterisks. Eosinophils: in a hematoxylin and eosin staining, eosinophilic granulocytes (arrows) are highly present in AD skin and

their number further and significantly increases upon stress exposure. Eosinophil infiltration was increased 61% over AD in the stressþAD group.

VCAMþ blood vessels: immunofluorescence labelled some VCAMþ blood vessel profiles (red, arrows) in AD skin and the number dramatically and

significantly increases in AD animals exposed to stress. VCAMþ blood vessel count is increased 339% over AD in the stressþAD group. Cell nuclei are

counterstained with 40,6 diamidino-2-phenylindole (blue). Epidermal thickness: in a hematoxylin and eosin staining, epidermal thickness is increased in AD skin

showing enlarged cells and more than the normally present 1–2 cell layers. Upon additional stress exposure, epidermal thickness increases significantly.

Morphologically, spongiosis, as evidenced by clear spaces between epidermal cells, is present. Epidermal thickness is increased 33% over AD in the stressþAD

group. Gray, transparent striped longitudinal bars indicate thickness in micrometers.

www.jidonline.org 437

S Pavlovic et al.
Neurogenic Inflammation Stresses Dermatitis

http://www.jidonline.org


electron microscopy. As a potential sign of massive neuro-
peptide release, unmyelinated nerve fibers in the dermis lost
shape, orderly structure, and granularity (Figure 3). We even
observed dense core granules in the intercellular space
between nerve axons and mast cells (Figure 3), a rare sight,
and these granules were less dense and smaller in stressed
AD mice, suggesting release of neuropeptides. In addition,

we observed mast cells showing signs of apoptosis and
degranulated eosinophils close by the neuropeptide releasing
nerve fibers (Figure 3).

Associated with the nerve fiber–mast cell interaction,
stressed AD mice also showed prominent separation of
endothelial cells (ie, short gaps) lining capillaries (Figure 3).
AD mice without stress exposure (Figure 3) and stressed mice
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when degranulated (arrows) in AD skin, and their number significantly increases upon stress exposure. Note the eosinophils close by the degranulated

mast cells. NF–MC interaction: several nerve fiber bundles are located close to intact mast cells containing large and round intracellular mast cell granules in
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mast cell with an apoptotic nucleus (amc) and multiple mast cell granules dispersed in the surrounding tissue. Dense core granules in the intercellular

space (insert) appear less dense and may shed their content. At the bottom of this image, another cell has degranulated and this cell appears to be an eosinophil

as judged by the presence of eosinophil granules. Endothelial gaps: the endothelial cells of a blood vessel form a small gap (arrow) in a blood vessel from

an AD mouse. In the skin of a stressed AD mouse, gap formation is prominent in blood vessel endothelia (arrows).
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(not shown) showed few gaps, and control mice without any
treatment virtually none (not shown).

NK1�/� mice are resistant to stress-induced worsening of AD

In mice with defective SP receptor neurokinin-1 SP receptor
(NK1)-mediated signalling induced by genetically engineered
knockout of the NK1 gene, AD could effectively be elicited
and eosinophil infiltration and epidermal thickening were
only slightly but not significantly reduced when compared
with littermate wild-type controls (Figure 4). By contrast, mast
cell degranulation in AD skin was significantly reduced in
NK1�/� mice compared with age-matched control mice
(Figure 4). This observation indicates that neurogenic
inflammation plays only a minor role in the initial response
to an allergen. However, when NK1�/� mice were

additionally exposed to stress, the stress-induced increase in
eosinophil infiltration was significantly reduced as was the
increase in epidermal thickening (Figure 4). Correspondingly,
the stress induced increase in mast cell degranulation was
completely blocked (Figure 4).

Stress does not affect CD4þ cell numbers, but shifts the
cytokine profile toward TH2 in AD mice

Immunohistochemistry revealed a dense infiltrate with
CD4þ T cells in mice that were stressed, AD-affected, and
in stressed AD-affected mice especially in the interfollicular
dermis. However, we could not detect significant differences
other than compared with untreated controls (Figure 5).
CD4þ cell numbers appeared even less in stressed AD mice
compared with controls, but this difference did not reach
significance.

Semi-quantitative reverse transcription–PCR performed on
skin samples showed significantly increased IL-4, IL-5, and
tumor necrosis factor a (TNF-a) levels and mildly increased
IFN-g mRNA levels in AD lesions as compared with controls
without AD (Figure 5). This demonstrates the successful
induction of an AD-like lesion in our mice, with a prominent
expression of cytokines that are traditionally attributed as
TH2 (humoral response) but also TH1 (cellular response)
cytokines. Stress exposure further increased IL-4 and IL-5
cytokine mRNA expression, while it decreased TNF-a levels
48 hours after termination of stress and induction of AD
(Figure 5). These changes resulted in a shift from a more
TH1-like cytokine pattern in stressed mice to a more TH2-like
cytokine pattern in AD and a prominently TH2 like cytokine
pattern in stressed AD mice (Figure 5).

DISCUSSION
With the establishment of a new animal model for the
investigation of stress and cutaneous disease, we here
demonstrate that the local neuro-immune stress response is
a key player in the exacerbation of peripheral inflammatory
diseases such as AD. Stress significantly aggravates peripheral
inflammation dependent on enhanced local neuro-immune
interaction and subsequent neurogenic inflammation in an
SP-dependent manner, followed by a cytokine shift. We
therefore conclude that exposure to stress has indeed
great pathogenic potential in atopic and allergic disease
and operates through local neurogenic mechanisms. In
detail we found the following answers to the above posed
questions:

K Stress exposure is as potent as AD in inducing neuronal
plasticity in the skin. This finding is of particular note, as
inflammation is currently assumed to be much more
potent than the rather mild exposure to a perceived
stressor such as noise.

K Stress enhances AD read-out parameters by at least a
third above AD levels in a controlled animal experi-
mental setting. The effect can therefore be expected to be
of clinical relevance.

K Neurogenic inflammation appears to be a key feature of
stress-induced exacerbation of AD. Interference with this
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feature therefore deserves to be reconsidered as a
therapeutic target in stress-induced worsening, for ex-
ample, by mast cell stabilizers, NK1 antagonists, inter-
ference with neuropeptide processing etc.

K SP receptor NK1-dependent signalling mediates neuro-
genic stress effects in skin and can be identified as a key
player and potential pharmacological target in stress-
induced aggravation of peripheral inflammatory disease.

K Stress further skews the cytokine balance toward a
humoral, allergy-relevant pattern. Stress-induced neuro-
genic inflammation may therefore contribute to establish-
ment as well as chronic course of AD via local alteration
of the cytokine milieu.

Histologically, the atopic lesion is characterised by dense
infiltrates containing many eosinophils around blood vessels.
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The overlaying epidermis thickens and displays discrete
spongiosis and cell adhesion molecule expression on blood
vessels increases (Li et al., 2001; Akdis et al., 2002; Ma et al.,
2002). All of these features were present in our mouse model
and were increased after exposure to stress. This increase was
dependent on the NK1 receptor for SP, demonstrating the
clinical relevance of neurogenic inflammation and its key
player SP in stress-induced exacerbation of atopic or allergic
disease.

Previously we have shown that stress causes an increase in
SPþ nerve fibers and in mast cell degranulation and that
these changes are induced by nerve fiber growth. This was
evidenced by the presence of the nerve-growth marker Gap-
43 on cutaneous nerve fibers, a key feature of true neuronal
plasticity (Peters et al., 2005). The reported increase is
comparable to the increase in SPþ nerve fiber numbers and
mast cell degranulation we observe here in AD skin. We
conclude that an increase of SPþ nerve fibers in the skin
exposed to a danger signal such as noise or inflammation is
a prerequisite for an enhanced and deleterious neuro-
immune communication upon double challenge (ie, stress
and AD). Thus, stress enables peripheral ectodermal organs
equipped with nerve fibers and mast cells, such as the skin, to
respond faster to an additional stressor by mounting an
efficient neurogenic inflammatory response. Normally, this
would enhance host defense capacities against, for example,

parasites and microbes. However, when a true target is
lacking, this would facilitate ongoing and prolonged inflam-
mation in acute and chronic disease (Steinhoff et al., 2003;
Peters et al., 2005) and serve as an adjuvant for exacerbated
inflammation. We here confirm this hypothesis by the
ultrastructural detection of massive mast cell degranulation
close to deteriorating nerve fibers in stressed AD skin during
the course of stress-induced disease exacerbation (Figure 6).

After consulting the relevant literature on stress and atopic
or allergic dermatitis, we find multiple hints at the close
potential regulation of cutaneous inflammation by stress-
induced neurogenic inflammation, which focus either on
stress or atopy.

Stress affects neurogenic inflammation in skin. Upon stress,
mast cell degranulation depends on the presence of SPþ
nerve fibers (Singh et al., 1999). Stress and SP induce
deleterious local neurogenic inflammatory processes in the
context of hair growth regulation in the mouse (Arck et al.,
2001, 2003; Peters et al., 2004).

Neurogenic inflammation is altered in atopic or allergic
dermatitis. Local expression and sensitivity to neuropeptides
have been reported (Giannetti and Girolomoni, 1989; Tobin
et al., 1992; Ostlere et al., 1995; Sugiura et al., 1997;
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Figure 6. Neuronal plasticity and neurogenic inflammation play a key role in stress-induced worsening of AD. This schematic representation delineates an easy

to comprehend and convey scenario of stress-induced worsening of AD. Stress via SP-dependent mechanisms, neuronal plasticity, and neurogenic inflammation

elevate the classical features of AD lesions. SP release degranulates mast cells and alters cytokine production of lymphocytes, thereby leading to cellular

infiltration and a TH2-dominated cytokine profile, which completes a circulus vitiosus involved in the worsening and chronification of AD lesions. Potential

remedies are depicted on the left.
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Urashima and Mihara, 1998). Mast cell numbers increase and
mast cells maintain close contacts to peripheral nerve fibers
(Sugiura et al., 1992; Toyoda and Morohashi, 1998;
Urashima and Mihara, 1998; Bauer and Razin, 2000). In a
mouse model of AD, SPþ nerve fibers were found close to
putative mast cells, indicating neurogenic inflammation
(Huang et al., 2003). And last but not the least, increased
SP levels and numbers of SPþ mast cells were also detected
in the inflamed skin of NC/Nga mice with AD (Katsuno et al.,
2003; Ohmura et al., 2004b). However, to our knowledge
this is the first report, which focuses on stress and AD in an
animal model, and on the local, cutaneous circuitry in stress
aggravation of the disease, providing convincing evidence of
a long-suspected interaction, which is clinically relevant at
least in mice.

The stress-associated and NK1-dependent eosinophil
influx in AD skin lesions coincided with an increased
expression of VCAM in cutaneous blood vessels. This
endothelial adhesion molecule facilitates eosinophil extra-
vasation. Intriguingly, VCAM expression on endothelial cells
can be upregulated by SP (Quinlan et al., 1999), and by
various mast cell products. It is thus highly suggestive that
increased SP release from nerve fibers and subsequent
neurogenic inflammation is responsible for the observed
VCAM expression with subsequent eosinophil infiltration.
Therefore, stress-enhanced neurogenic inflammation is not
only responsible for the classical hallmarks of itch, reddening
and swelling, it may also contribute to atopy and allergy-
specific infiltration.

It is interesting to note in this context, that the skin has the
full capacity to match the central release of stress mediators.
Nerve fibers, immunocytes, endothelial cells, keratinocytes,
and fibroblasts not only produce and display the correspond-
ing receptors of SP, but also of the classical stress mediators
CRH, cortisol, or noradrenaline (McGillis et al., 1990; Ansel
et al., 1993; Staniek et al., 1998; Slominski and Wortsman,
2000; Grando et al., 2006; Peters et al., 2006). Consequently,
investigating the role of SP in the context of a cutaneous stress
response is merely the beginning of our understanding of the
role of stress in cutaneous inflammation.

Moreover, NK1 is a key player in the central mediation of
anxiety (Czeh et al., 2006) and relaxation techniques
reducing stress and anxiety also reduce disease severity and
itch in atopic patients (Kimata, 2003; Hashizume et al.,
2005). Thus, a behavioral approach for example employing
progressive muscle relaxation or enriched environmental
housing, as well as a psychopharmacological approach with
NK1 antagonist or i.e. 5-HT(1A) receptor agonists may reduce
anxiety on the central level. Thereby, the neuro-immune
circuitry may be altered through attenuated central repre-
sentation of itch and inflammation (Figure 6).

As mentioned above, SP can increase IL-4 and IFN-g
expression in lymphocytes. IL-4 and IL-5—the central
cytokines of the so-called TH2 response—contribute to the
humoral component of the acute and chronic atopic
dermatitis lesion and to increased eosinophilia (IL-4) and a
thickened epidermis (IL-5) (Jujo et al., 1992; Spergel et al.,
1999). In chronic AD the central cytokine of the so-called

TH1 response—IFN-g (Werfel and Kapp, 2002) contributes to
the cellular component of the disease, for example, with
influx of CD4þ T cells.

In our model, stress-induced neurogenic inflammation is
associated with a dramatic increase in IL-4 and IL-5 levels,
which shifts the cytokine balance in skin to a more prominent
TH2 profile associated with eosinophilia and epidermal
thickening, but not with an increase in IFN-g or CD4þ
cells. Neurogenic inflammation therefore appears to promi-
nently enhance the humoral more acute aspect of AD lesions,
most of which can be induced by SP and blocked by non-
functional NK1 signalling.

It remains to be determined what other players are
responsible for the observed stress-induced increase in IL-5
or decrease in TNF-a in AD. Nerve growth factor appears to
be a partner mediator to SP in stress-induced neurogenic
inflammation and its deleterious effects in skin (Toyoda et al.,
2002; Kimata, 2003; Peters et al., 2004; Tometten et al.,
2004), and this molecule not only contributes to neurogenic
inflammation, but is also a potent inducer of a TH2 cytokine
profile, for example in allergic disease (Braun et al., 1998;
Tokuoka et al., 2001; Botchkarev et al., 2006).

Taken together, the combined stress–AD model presented
here provides good evidence for stress-induced mechanisms
of disease exacerbation and offers a new and promising
strategy for the dissection of stress-modulated cutaneous
inflammatory disease. Therapeutic options suggested by this
prominent role of neurogenic inflammation in stress-induced
AD worsening which are currently available, include the
following: capsaicin crème (Weisshaar et al., 1998; Marsella
et al., 2002; Takano et al., 2004), NK1 antagonists, (Andoh
et al., 1998; Brain and Cox, 2006; Chahl, 2006; Rost et al.,
2006; Hill and Oliver, 2007), mast cell stabilisers (Baluk,
1997), relaxation techniques (Haynes et al., 1979; Ehlers
et al., 1995; Kimata, 2003), and cyclosporin A derivatives
(Tanaka et al., 2007).

The exploitation of our model of stress and AD offers a
new and promising target to test pharmacological manipula-
tion and attempt the neutralization/elimination of stress-
mediated effects to benefit patients suffering from highly
irritating allergic and atopic inflammatory diseases. Future
studies will follow up on these options and explore additional
stress mediator effects and their impact on disease develop-
ment, as well as alternative stressors that allow us to
differentiate between acute and chronic stress effects.

MATERIALS AND METHODS
Animals

Female C57BL/6 mice (Charles River, Sulzfeld, Germany) were

randomly distributed into experimental groups of 10 mice per

community cage and left undisturbed for 1 week to adjust to their

new environment. Breeding pairs of C57BL/6 NK1-R�/� mice were

obtained from the University College London, UK, and a respective

mouse colony was initiated. All mice were kept in the animal facility

at the Charité, Virchow Hospital, University Medicine Berlin,

Germany under pathogen free conditions in a barrier facility with

a 12 hours light/dark cycle. Six- to 8-week-old mice in the telogen

stage of the hair cycle were used for subsequent experiments, since
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cutaneous innervation and immune response depend on hair cycle

stage (Paus et al., 1997, 1998; Peters et al., 2005). Animal care and

experimental procedures were followed according to institutional

guidelines and conformed to requirements of state authority for

animal research conduct (LaGetSi, Berlin, Germany).

The AD–stress model

Mice were sensitised to ovalbumin (20mg, Grade VI; Sigma-Aldrich

Chemie GmbH, Schnelldorf, Germany) diluted in 100 ml sterile

isotonic phosphate-buffered saline containing 2.25 mg. Aluminium

hydroxide (AL(OH)3 AlumImuject; Pierce, Rockford, IL) (Sawada

et al., 1997; Cho et al., 2001). AD was induced by intradermal

injection of ovalbumin (50 mg, Grade V; Sigma-Aldrich Chemie

GmbH). This protocol rather than epicutaneous sensitization

was applied since it allows exact timing of the onset of AD,

which is a prerequisite for the combination of this protocol with the

stress protocol. In the stress protocol, mice were exposed to a sound

stress (300 Hz tone emitted at irregular intervals four times per

minute) (rodent repellent device; Conrad Electronics, Nuremberg,

Germany) for a single 24-hour period (Arck et al., 1995a, b; Peters

et al., 2004). Stress exposure immediately preceded cutaneous

ovalbumin challenge. Mice that were neither stressed nor chal-

lenged, stressed mice and AD mice without stress exposure served as

controls. Mice were killed 48 hours after challenge or after

termination of stress exposure, followed by processing of the skin

as indicated below.

Tissue collection

For immunohistochemistry, mice were perfusion-fixed using a

mixture of paraformaldehyde and picric acid (Botchkarev et al.,

1997; Peters et al., 2002a). All mice included into the study showed

hair follicles in the resting stage of the hair cycle (telogen) in their

back skin. This is important since during the growth phase of the hair

cycle (anagen) the skin thickness increases up to two-fold and the

entire architecture of the skin including innervation, blood vessels,

and immunocytes changes dramatically (Hoffman et al., 1996;

Botchkarev et al., 1997; Paus et al., 1999a; Mecklenburg et al.,

2000; Peters et al., 2001). For real-time reverse transcription–PCR,

mice were killed by cervical dislocation and skin was immediately

snap frozen.

Routine histochemistry

Epidermal thickness and the presence of eosinophils and mast cells

in murine back skin were determined on 10-mm thick sections

processed for Giemsa or hematoxylin and eosin staining (Merck,

Darmstadt, Germany) (Paus et al., 1999b) using a digital image

analysis system (AxioVision; Zeiss, Göttingen, Germany). Cells were

classified as eosinophils when they showed the classical eosino-

philic granular cytoplasm and the nuclei had ring-like morphology.

Mast cells were classified as ‘degranulated’ when eight or more

granules could be found outside the cell membrane. CD4þ T cells

(BD Biosciences, Plymouth, UK, dilution 1:100) were detected using

the ABC staining method (Paus et al., 1998).

Immunofluorescence

SPþ nerve fibers and VCAMþ blood vessels were determined in

14-mm thick sections. Primary antibody binding (SP antiserum,

monoclonal; Chemicon, Temecula, CA, 1:100, or 1:500; VCAM

antiserum, monoclonal; BD Biosciences, 1:500) was either detected

by a rhodamine-labelled secondary antibody (Dianova, Hamburg,

Germany, dilution, 1:200) (Peters et al., 2001) or by tyramide

amplification (Renaissance TSAFM-Direct [Red]; NENTM Life

Science Products, Boston, MA) (Peters et al., 2002b). Nuclei were

counterstained with 40,6 diamidino-2-phenylindole (Mecklenburg

et al., 2000) and mast cells with fluorescein-labelled streptavidin

(Botchkarev et al., 1997). The use of antibody abbreviations in

expressions like ‘‘SP-immunoreactive’’ or ‘‘SPþ ’’ implies labelling

with the antibody to that antigen in recognition that an antibody

could possibly be cross-reacting with some other antigen.

Qualitative histomorphometry

Epidermal thickness and number of eosinophils, CD4þ cells,

VCAMþ blood vessels, mast cells, and immunoreactive nerve

fibers were determined in the center of the AD lesion in defined

areas of the skin such as the epidermis, hair follicle epithelium,

dermis, and subcutis (Peters et al., 2002a, b). For each experimental

group, at least 10 microscopic fields per mouse of five different mice

per group were studied at a magnification of � 400 (ie, more than

100 microscopic fields were studied for each parameter and

experimental group). Representative staining patterns were photo-

documented using a digital imaging device (Visitron Systems,

Puchheim, Germany).

Electron microscopy

Skin sections (1� 1 mm) were fixed in sodium cacodylate-buffered

2.5%, glutaraldehyde and 4% paraformaldehyde, post-fixed in

osmium tetroxide and embedded in araldite resin. Ultrathin sections

were stained with uranyl acetate and lead citrate. All cutaneous

compartments mentioned above were screened for the presence of

nerve fibers with or without contact to mast cells, mast cell

degranulation, eosinophils, and gap formation between blood vessel

endothelial cells.

RNA isolation, DNAse treatment, reverse transcription–PCR,
and real-time PCR

About 100 mg skin tissue /mouse were treated with 1 ml Trizol

(Invitrogen, Karlsruhe, Germany) and RNA was then extracted.

The total RNA was then treated with DNAse I 1 U/1 mg-RNA

(Invitrogen), followed by inactivation with EDTA (Invitrogen). There

was no detection of genomic DNA via PCR. First-strain cDNA

synthesis was performed using Superscript II reverse transcriptase

(Invitrogen).

Real-time PCR was employed to obtain quantitative data on

differences between IL-4, IL-5, TNF-a and IFN-g mRNA expression

between AD mice with and without stress exposure. This assay

exploits the 50 nuclease activity of AmpliTaq Platin (Invitrogen) DNA

Polymerase to cleave a fluorogenic probe designed for the above

transcripts (TipMolBiol, Berlin, Germany) and a fluorogenic probe

for the housekeeping gene hypoxanthine phosphoribosyl transferase

was used to normalize our samples in real-time PCR.

The real-time PCR reactions were normalised to hypoxanthine

phosphoribosyl transferase by calculating the difference between the

CT for hypoxanthine phosphoribosyl transferase and the CT for the

respective transcript as DCT¼CT HPRT�CT transcript�CT. Amount

mRNA was calculated 1=2DCT and expressed as difference to control,

when control equals 100.
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