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Abstract

We describe PCTL� a temporal logic extending CTL with connectives allowing to

refer to the past of a current state� This incorporates the new N� �From Now On��

combinator we recently introduced�

PCTL has branching future but determined� �nite and cumulative past� We

argue this is the right choice for a semantical framework� and show this through an

extensive example�

Finally� we demonstrate how a translation�based approach allows model�checking

speci�cation written in NCTL� a fragment of PCTL�

� Introduction

Temporal Logic� Following Pnueli�s pioneering work� the temporal logic

�TL� framework has long been recognized as a fundamental approach to the

formal speci�cation and veri�cation of reactive systems ������	 TL allows

precise and concise statements of complex behavioral properties	 Additionally�

it supports the very successful model�checking technology that allows large and

complex 
�nite� systems to be veri�ed automatically ���
����	

Still� TL has its well�known limitations	 Here we are concerned with its

limitations in expressive power� both in a practical and in a theoretical sense	

On the theoretical side� it is well�known that not all interesting behavioral

properties can be expressed in the most commonly used temporal logics	 On

the practical side� it is well�known that not all expressible properties can be

expressed in a simple and natural way� so that speci�cations are often hard to

read and error�prone	 A typical situation is that some temporal properties are

more easily written in �rst�order logic over time points� or in an automata�

theoretic framework� than in temporal logic	

Past�time� Ever since ���� it has been known that allowing both past�time

and future�time constructs makes TL speci�cation easier and more natural�
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the English sentence �if a crash occurs� then necessarily a mistake took place

earlier� is directly rendered by �
crash � �
��mistake�	 If we don�t allow

past�time constructs� we may end up with the clumsier ��
�mistakeUcrash�	

Today there exists a huge body of literature where a variety of TL�s with

past are used to specify systems 
less frequently to verify them and even

less frequently to model�check them�	 Surprisingly� these proposals use quite

di�erent semantics for past� and the reasons behind the semantical choices are

not discussed in depth	

Model�checking with Past� Only a few papers 
e	g	 ����������� propose

model�checking algorithms for a TL with past	 None of the widely available

model�checking tools supports past�time constructs	

Translation between logics� Instead of building new model�checking tools

for TL with past� we suggest an alternative� so�called translation�based� ap�

proach �������� larger logics are translated into CTL 
or related logics�� so that

the existing model�checkers� e	g	 SMV ����� can be used with no adaptation

at all	 Contrasting its many advantages� the main drawback of this approach

is that the diagnostic a model�checker sometimes provides refers to its input

formula� i	e	 the translated formula and not the original formula written by a

human speci�er	

Translations between past�and�future logics into pure�future logics have

been known since ���	 They were used to argue that past�time does not add

theoretical expressivity	 They were not suggested as an actual practical ap�

proach to the model�checking problem for extended logics	

Our contribution� In this paper� we extend our previous results ���� in

several directions � we prove a translation theorem for NCTL� a fragment of

PCTL 
i	e	 CTL � Past� that extends the CTL � F
��

solved in ���� and we

show that the translation is correct even in a framework with fairness	

By necessity� NCTL only permits a restricted use of the Since modality	

We show� through an extensive example 
the well�known Lift example �����

that these restrictions are not too drastic in practice	 Indeed� we only iso�

lated the NCTL fragment as a by�product of writing our Lift speci�cation in

PCTL	 This unexpected development was a good example of practical studies

suggesting hard theoretical results	

Also� because the di�erences between semantic frameworks for Past are

not much discussed in the literature� we take some time discussing them and

classifying the di�erent proposals we found	

Plan of the paper� We assume familiarity with CTL	 Section � gives the

syntax and semantics of PCTL	 The semantical framework for past�time is

discussed in section � where the main related works are categorized	 Section 


gives the lift speci�cation	 Section � presents the translation�based approach

before section � de�nes NCTL and gives the translation theorem	

�
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� PCTL� or CTL�Past

Syntactically� the PCTL logic we de�ne is the CTL�S�X���N of ����	 It in�

herits the syntactic restrictions of CTL 
no nesting of linear�time combinators

under the scope of a path quanti�er� for the future�time part	 Semantically�

this logic is interpreted into Kripke structures with fairness while ���� only

used structures without fairness	

��� Syntax

We assume a given non�empty �nite set Prop � fa� b� � � � g of atomic proposi�

tions	 PCTL formulas are given by the following grammar�

�� � ��� �� j � � � j EX� j E�U� j A�U� j X��� j �S� j N� j a j b j � � �

Here� the well�known future�only CTL logic is enriched with past�time con�

structs X�� 
�Previous��� S 
�Since�� and N 
�From now on��	

Standard abbreviations include ���� � � �� � � �� � � � as well as

EF�
def
� E�U�

AF�
def
� A�U�

EG�
def
� �AF��

AG�
def
� �EF��

AX�
def
� �EX��

F
���

def
� �S�

��� Semantics

PCTL formulas are interpreted over histories 
that is� a current state with a

past� in Kripke structures with fairness constraints	 Formally�

De�nition ��� A fair Kripke structure 
a �FKS�� is a tuple S � hQS� RS� lS�

IS��Si where

� QS � fq�� � � � g is a non�empty set of states�

� RS � QS 	QS is a total transition relation�

� lS � QS 
 �Prop labels every state with the propositions it satis�es�

� IS � QS is a set of initial states�

� �S is a fairness constraint 
see below�	

In the rest of the paper� we drop the �S� subscript in our notations when�

ever no ambiguity will arise	

A computation in a FKS is an in�nite sequence q�q� � � � s	t	 
qi� qi��� � R

for all i � �� �� � � � 	 Because R is total� any state can be the starting point of

a computation	 We use �� � � � to denote computations	 As usual� �
i� 
resp	

�i� denotes the i�th state� qi 
resp	 i�th su�x� qiqi��� � � � �	

A fair computation in an FKS is a computation satisfying the fairness

constraint� which is just some way of telling fair from unfair computations	

Formally�

�



Laroussinie and Schnoebelen

De�nition ��� A fairness constraint 
for S� is a predicate � on S�computa�
tions satisfying the following properties�

�	 fairness only depends on the �end	 of a computation
 for all � and su�x
�n� �
�� i� �
�n��

�	 any �nite behaviour can be continued in a way ensuring fairness
 for all

� � q�q� � � � � for all n � �� there exists a fair �� starting with q�q� � � � qn	

In practice� fairness constraints are always given through some precise
mechanism 
e	g	 in�nitely repeated states�	 We let �S
q� denote the set of

fair computations starting from q� and write �
S� for the union of all �S
q�	

An history is a non�empty �nite sequence q�q� � � � qn s	t	 
qi� qi��� � R

for all i � n	 We use �� � � � to denote histories	 Histories are pre�x of com�

putations	 Given i � � and � � q�q� � � � � we let �ji denote the i�th pre�x of

�� i	e	 the history q� � � � qi	 By extension� we write �
�� for the set of all fair
computations starting from �	

The intuition is that an history � � q�q� � � � qn denotes a current state
qn of some computation still in process� with the additional information that

the past of this computation has been �	 From this history� the system can

proceed to a next state qn�� and then the past will be �� � q� � � � qnqn��	 Any

state q is a history 
where the past is empty� by itself	

Figure � de�nes when a history �� in some FKS S� satis�es a formula ��
written � j�S �� by induction over the structure of �	

Then satisfaction can be de�ned over fair Kripke structures through

S j� �
def

 �j� j� � for all � � �S
IS�

adopting the anchored�view of satisfaction ���� common in TL speci�cations ���	

The semantics we just gave justi�es the usual reading of combinators as

EF�� �it is possible to have � in the future�� AF�� �� will occur in any

future�� EG�� �it is possible to have � holding permanently�� AG�� �� will
always hold�� F���� �� held at some time in the past�� �S�� �� held at some

time in the past� and � has been holding ever since�	

��� N� or �From now on	

The N combinator was introduced in ����	 N� reads �from now on� � holds��
or �starting anew from the current state� � holds�	 Assume we want to state

that any crash in the future is preceded by an earlier mistake	 This can be

written in PCTL as AG
crash � F
��mistake�	

Assume we now want to state that after a proper reset is done� any crash is

preceded by an earlier mistake	 Then AG�reset � AG
crash � F
��mistake��

will not do� because it allows the earlier mistake to occur before the reset
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�j�a i� a � l
qn��

�j��� i� � �j� ��

�j�� � � i� � j� � and � j� ��

�j�EX� i� there exists � � �
�� s	t	 �jn�� j� ��

�j�E�U� i� there exists � � �
�� and k � �

s	t	 �jn�k j� � and �jn�i j� � for all � � i � k�

�j�A�U� i� for all � � �
�� there exists a k � �

s	t	 �jn�k j� � and �jn�i j� � for all � � i � k�

�j�X��� i� n � � and �
� j� � 
where �

�
� q� � � � qn����

�j��S� i� there exists k � n s	t	 �jk j� � and

�ji j� � for all k � i � n�

�j�N� i� qn j� ��

when � is q�� � � � � qn	

Fig� �� Semantics of PCTL

is done � This is a situation where we do not want to consider what hap�

pened before� and the right way to formally express our requirement is with

AG�reset � NAG
crash � F
��

mistake�� 
see ���� for more details�	

� The di�erence between past and future

There exists several di�erent ways to add past�time constructs to a pure�future

temporal logic	 Many proposals choose to view past and future as symmetric

concepts	 This gives rise to more uniform de�nitions	 We choose to view

Past and Future as having di�erent properties	 This view is motivated by

considerations on what is the behavior of a non�deterministic reactive system�

and what are the kind of properties we want to express about it	

The key points behind our choice are

�� Past is determined� We consider that� at any time along any computa�

tion� there is a completely �xed linear history of all events which already

took place	 This is in contrast with the branching view of Future where

di�erent possible continuations are considered	

�� Past is �nite� A run of a system always has a starting point	 This is in

contrast with the usual view of Future where we do not require that all

behaviors eventually terminate	

�� Past is cumulative� Whenever the system performs some steps and ad�

�
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vances in time� its history becomes richer and longer	 At termination 
if

ever�� the past of the system is the whole computation	

We believe point �� is the most crucial	 Logicians call it the Ockhamist

past ����	 Some proposals 
e	g	 ��
�� consider a non�determined past� also

called �branching past�� most typically through a clause like

q j� EX
��

f i� there exists a q
�
R q s	t	 q

� j� f


then making past potentially in�nite	� We believe such a clause is often mo�

tivated by a concern for symmetry between past and future	 Additionally�

this allows the same e�cient model�checking procedures	 But such an �EX
��

�

combinator is not very meaningful in terms of computations	 It really ex�

presses properties of a graph of states� and not of a behavioral tree	 Indeed�

the resulting logic is not compatible with bisimulation equivalence while our

PCTL is	

Point �� is less crucial because it is often possible 
but clumsy� to write

formulas in such a way that they only apply to behaviors having a de�nite

starting point� much as we can express termination	 However� we believe such

a fundamental idea as �behaviors have a starting point� is better embedded

into the semantic model	 
Observe that �past is �nite� is independent from

the anchored notion of satisfaction	�

Point �� has its pros and cons 
but the issue is only meaningful when past

is determined�	 In ����� we explicitly asked whether we need a cumulative

or a non�cumulative past when specifying reactive systems	 Our answer was

that most often a cumulative past is better suited� and we introduced the

N combinator to deal with the few cases where a forgetful view of past is

preferable	 Observe that the combination of both views is only possible in a

basic model with cumulative past	

Figure � classi�es the di�erent treatments of past in the literature	 ��
�

is an important paper� it proposes extensions of CTL and of CTL
�
� with a

branching and with an Ockhamist past	 Then it compares these extensions

in term of expressive power� complexity� 			 Basically� their Ockhamist past

is like our proposal 
from ����� but without N	 The paper does not give any

indication of how its branching�past would be used for expressing natural

behavioral properties of reactive systems� lending additional support to our

views	

� Speci�cation of a lift system

We use the classical example of a lift system 
from ������� to experiment with

the PCTL logic	 We want to see whether temporal speci�cations are clearer

and closer to our intuitions when written in PCTL	 This example has been

chosen because it is rich and realistic but still easy to understand	

Our background hypothesis are�

�
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Structure of past
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Fig� �� The semantics of past in the literature

� The lift services n �oors numbered �� � � � � n	

� There is a lift�door at each �oor� with a call�button and an indicator light

telling whether the cabin is called	

� In the cabin there are n send�buttons� one per �oor� and n indicator lights	


�� Informal speci�cation

The informal speci�cation we have in mind gathers several properties we list


by order of importance� in Figure �	

P��� are su�cient to guarantee a correct and useful behavior 
admittedly

not too smart�	 The remaining properties can be seen as describing a notion of

optimized behavior	 Of course� this is still very informal and the whole point

of the exercise is to now write all this down� using a formal logical language	

At any given time� some parameters of the system are observable	 The

speci�cation will only refer to these parameters 
and their evolution through

time�	 We assume they are�

� a �oor door is open or closed�

� a button is pressed or depressed�

� an indicator light is on or o��

� the cabin is present at �oor i� or it is absent	

�
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P�� Safe doors� A �oor door is never open if the cabin is not present
at the given �oor	

P�� Indicator lights� The indicator lights correctly re�ect the cur�

rent requests	

P�� Service� All requests are eventually satis�ed	

P�� Smart service� The cabin only services the requested �oors and

does not move when it has no request	
P	� Diligent service� The cabin does not pass by a �oor for which

it has a request without servicing it	

P
� Direct movements� The cabin always moves directly from pre�
vious to next serviced �oor	

P�� Priorities� The cabin services in priority requests that do not
imply a change of direction 
upward or downward�	

Fig� 	� An informal lift speci�cation


�� Atomic propositions

Formally� the assumption we made about the observable parameters just
means that we consider a set Prop of atomic propositions consisting of�

� Open Door
i

i � �� � � � � n�� true if the �oor door at �oor i is open�

� Calli 
resp	 Sendi� 
i � �� � � � � n�� true if the call�button at �oor i 
resp	

send�button for i� is pressed�

� Call Light
i

resp	 Send Light

i
� 
i � �� � � � � n�� true if the indicator light for

the i�th call� 
resp	 send�� button is on�

� Ati 
i � �� � � � � n�� true if the cabin is at �oor i	


�� The formal speci�cation


���� P�� Safe doors

This leaves no room for interpretation �

n�

i��

AG
Open Door
i
� Ati� 
S��


���� P�� Indicator lights

This has to be interpreted	 We choose to express that each time a button is

pressed� there is a corresponding request that has to be memorized until ful�
�llment 
if ever�	 A request for �oor i is satis�ed when the lift is servicing �oor

i� i	e	 present at �oor i with its door open	 We introduce the corresponding
abbreviation�

Servicingi
def
� Ati � Open Doori 
i � �� � � � � n� 
D��

�
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We decompose the intuition into several component	 First� when a button is

pressed� the corresponding indicator light is turned on�

n�

i��

AG�Calli � 
Servicing
i
� Call Light

i
�� 
S�	��

n�

i��

AG�Sendi � 
Servicing
i
� Send Light

i
�� 
S�	��

Then� lights on stay on until the corresponding request is ful�lled 
if ever�	

For this we use W� the �weak until� 
also �unless��� de�ned by

E�W�
def
� �A
���U
�� � ��� A�W�

def
� �E
���U
�� � ���

and write
n�

i��

AG�Call Light
i
� ACall Light

i
WServicing

i
� 
S�	��

n�

i��

AG�Send Light
i
� ASend Light

i
WServicing

i
� 
S�	
�

Then� lights are turned o� when the request is ful�lled�

n�

i��

AG�Servicing
i
� 
�Call Light

i
� �Send Light

i
�� 
S�	��

There only remains to state that the lights are only turned on when necessary	

For this� we can write that� whenever a light is on� then a corresponding

request has been made before	 However� something like AG
Call Light
i
�

F
��Calli� does not work because it allows one early call to account for all

future turnings on of the indicator light	 Rather� we mean
n�

i��

AG�Call Light
i
� 
Call Light

i
SCalli�� 
S�	��

n�

i��

AG�Send Light
i
� 
Send Light

i
SSendi�� 
S�	��

An alternative possibility would have been to use N combinator� suited to

this kind of situation� and state�
n�

i��

AG��Call Light
i
� NAG
Call Light

i
� F

��Calli�� 
S�	���

n�

i��

AG��Send Light
i
� NAG
Send Light

i
� F

��Sendi�� 
S�	���


Observe that 
S�	���� and 
S�	������ are not equivalent when considered

in isolation	�

We could choose to summarize all this stating �an indicator light is on i�

there exists a �corresponding� pending request�	

�
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n�

i��

AG

� �
Call Light

i

 �Servicing

i
S 
Calli � �Servicingi�

�
�

�
Send Light

i

 �Servicing

i
S 
Sendi � �Servicingi�

�
�


S���


���� P�� Service

We choose the more logical approach and express this in terms of pressed
buttons� rather than indicator lights	

n�
i��

AG�Request
i
� AFServicing

i
� 
S��

where Request
i

def
� Calli � Sendi 
i � �� � � � � n� 
D��


���
 P
� Smart service

This is better stated in terms of indicator lights	 We introduce the abbrevia�
tions

Pending Request
i

def
� Call Light

i
� Send Light

i

i � �� � � � � n� 
D��

Some Pending Request
def
�

n�
i��

Pending Request
i


D
�

and can now write that a �oor is only serviced if there is a pending request
for it

n�
i��

AG
�
Servicing

i
� 
Servicing

i
SPending Request

i
�
�


S
	��

and that the cabin is motionless unless there is some request
n�

i��

AG

	
Ati �

�
AAtiWSome Pending Request

�


S
	��

Observe that the cabin needs not always be at some �oor	 We complete 
S
	��
with

AG

	
Between Floors �

�
ABetween FloorsWSome Pending Request

�


S
	��

where Between Floors
def
�

n�
i��

�Ati 
D��


���� P�� Diligent service

We formalize �diligent service� as forbidding situations where


i� the cabin was servicing some �oor i�

ii� then it moved and went to service some other �oor j�

iii� therefore passing by some intermediary �oor k�

iv� but this ignored a pending request for k	

This is a complex behavioral notion	 We need to express a notion of �passing
by a given �oor� while we have no observable parameter telling us whether

��
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the cabin is moving or not� whether it is moving up or down� � � � Furthermore�

we have to choose between two possible interpretations of �ignoring a pending

request for k�� 
i� the request already exists when the cabin starts moving� or


ii� the request exists when the cabin actually is at �oor k	

The second interpretation is easy to specify with

Not Servicing
def
�

n�

i��

�Servicing
i


D��

n�

k��

AG

h�
Atk � Pending Request

k

�
� A Not ServicingW Servicing

k

i

S���

but we prefer the �rst interpretation which we see as more realistic	 It

requires to refer to the moment where we leave the previously serviced �oor	

We shall use the following abbreviations�

AtjFromi

def
� Servicing

j
� 
Servicing

j
� Not Servicing� S Servicing

i


i� j � �� � � � � n�

D��

and write 
i� j�
def
� fk j i � k � j or j � k � ig for the set of intermediary

�oors between i and j	 Now �diligent servicing� can be stated

n�
i��

n�
j��

j ��i

AG AtjFromi �

��
Servicing

j
� Not Servicing

�
S
�
Servicing

i
�
V

k��i�j	
�Request

k

�
�


S��


���� P�� Direct movements

We understand this property in terms of positions �Ati� rather than in terms

of services �Servicing
i
�	 Basically� we require that whenever the cabin is at

some time at �oor i� later at �oor j� and �nally at �oor k� then 
�� j lies

between i and k� or 
�� this is because the lift went to service a �oor not

between i and k	

This is easily stated if we use the N combinator to mark the moment where

the cabin is �initially� at i	

n�
i�k��

�
j ���i�k	

AG

�
NAti � AG

	
Atk � F

��
Atj � F

��
�

l ���i�k	

Servicing
l


�

S��


���� P�� Priorities

We need to express when the cabin is going upward 
resp	 downward�	 In�

tuitively� the cabin is going up 
resp	 down� at all times between a 
strictly�

earlier moment when it is at �oor i� � 
resp	 i��� and a later moment when

��
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it is at �oor i	

Up
def
�

n�
i�


�	�
Ati � Between Floors

�
SAti��



� ABetween Floors UAti

�

D
�

Down
def
�

n���
i��

�	�
Ati � Between Floors

�
SAti��



� ABetween Floors UAti

�

D��

Now� we can state that if the cabin services some �oor i� and is coming

from a higher �oor 
i	e	 is going down�� and there exists a request for a lower

�oor j� then the next serviced �oor will not be a higher �oor k	 We also

require a similar property when the cabin is going up	

AG

n�
i��

�	
Servicing

i
� Down �

�W
j�i

Pending Request
j

�

� � E

�
Servicing

i
� Not Servicing

�
U
�W

k�i
Servicing

k

�
�


S
���

AG

n�
i��

�	
Servicing

i
� Up �

�W
j�i

Pending Request
j

�

� � E

�
Servicing

i
� Not Servicing

�
U
�W

k�i
Servicing

k

�
�


S
���


�
 Some lessons to be drawn

We do not claim our informal speci�cation from Fig	 � re�ects the reality

of lift�designing	 We just wanted to have a collection of easy�to�understand

behavioral properties and see how we could express them in CTL�Past	 Ob�

serve that roughly one half of the speci�cation uses the past�time constructs	

Thus our example is one more proof of the usefulness of these constructs	

Many other properties could have been considered� many variant formal�

izations could have been o�ered	 Still we think the following conclusions have

some general truth in them�

� It is indeed quite possible to express interesting temporal properties in a

propositional temporal logic like CTL� Past�

� Without accompanying explanations� the resulting formulas are hard to

read and can probably not be used as a documentation aid	 But they can

be used for veri�cation purposes when model�checking is possible	

� They are not so hard to write� when one just sees them as a rather direct

encoding of sentences spelled out in English	

� Allowing past�time constructs is convenient	 It makes the speci�cation eas�

ier to write� and easier to read	

	 Veri�cation with past constructs

We just saw how extending CTL with some well�chosen past�time constructs

equipped with the right semantics allows writing simpler and much more nat�

��
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ural speci�cations	

Now� CTL is paradigmatic in the �eld because it allowed the development

of very e�cient model�checking tools that can successfully handle very large

systems ���	 Thus a very important question is to know how our proposal

for an extended CTL allows e�cient model�checking	 Indeed� other proposed

extensions to CTL 
typically CTL�
and the full branching�time mu�calculus�

were not so successful because they lacked e�cient model�checking algorithms	

We advocate a translation�based approach for extensions of CTL �������	

That is� we argue that� when possible� the most convenient way to handle

extensions of CTL is to translate them back into equivalent CTL formulas� so

that the �nely�tuned technology of CTLmodel�checkers can be reused without

modi�cation	 An other advantage is that the translation can be implemented

once� independently of the actual model�checking tool that is used afterward	

Now the problem is to �nd interesting extensions for which translations

exist	 In ���� we showed how CTL � F
��

� N could be translated into CTL	

Other extensions of CTL for enhanced practical expressivity have been pro�

posed 
e	g	 CTL� in ��� or CTL
 in ����� but these works did not argue for a

translation�approach to model�cheking	

In the next section� we demonstrate a translation for a fragment of PCTL

in which our lift example can be written	 We �rst need to de�ne what we

mean by a correct translation	 Recall that we are interested in speci�cation

for reactive systems starting from an initial state	 Given a speci�cation �

using past�time constructs� we need to translate it into some ��
with only

future�time constructs with the following correctness criterion�

for any FKS S� S j� � i� S j� ��


CC�

This naturally leads us to distinguish two notions of equivalence between for�

mulas�

De�nition 	�� 
i� Two formulas f and g are equivalent� written f � g�

when for all histories � in all fair Kripke structures� � j� f 
 � j� g	


ii� Two formulas f and g are initially equivalent� written f �i g� when for

all states q in all fair Kripke structures� q j� f 
 q j� g	

Initial equivalence� �i� is the equivalence we need for our translation	 We

have 
CC� i� � �i ��
	 The main di�culty is that �i is not substitutive�

� �i �
�

does not entail ���� �i ���
�

� if ���� is a context involving past�time

constructs	 That is why we also use �� the classical equivalence for formulas�

which is fully substitutive	 It is stronger than initial equivalence� f � g

entails f �i g but the converse is not true� e	g	 X
��� �i � 
because X

���
doesn�t hold for a starting point� but of course X

��� �� �	 Note that N helps

understand the links between the two notions of equivalences�

� �i � i� N� � N�

��



Laroussinie and Schnoebelen

Now� we can de�ne the translation of a logic L� into a logic L
�

De�nition 	�� L� can be 
initially� translated into L
� if for any f� � L�

there is a f
 � L
 s	t	 f� �i f
	


Of course� this is only interesting in practice if there exists an e�ective

method for the translation	�

Section � studies the possibilities of translating speci�cations with past

combinators into �pure future� speci�cation 
written in CTL�	


 A translation�based approach to model�checking CTL�

Past

We would like to translate PCTL into CTL	 Unfortunately this is impossible�

Theorem 
�� 
�
�


i� CTL� S cannot be translated into CTL�


ii� CTL� X
��

cannot be translated into CTL�

These two results are based on the following observations� 
�� the formula

EG
a � X��a � �X���� cannot be expressed in CTL� and 
�� it is possible� by

using embedded S combinators� to build a CTL�S formula equivalent to the

CTL� formula E
c � aUb�Ud which cannot be expressed in CTL	

In view of these impossibility results� one has to look for a fragment of

PCTL that can be translated into CTL	 Indeed� we know that

Theorem 
�� 
�
� CTL� F
�� � N can be translated into CTL�

This result only partly helps us because our LIFT speci�cation from sec�

tion 
 was not written in the CTL�F
���N fragment	 
Additionally� ���� did

not take fairness into account	�

The main theoretical result of this paper is the observation that� even if the

introduction of S into CTL can push it far beyond CTL expressivity� there

exists a precisely delineated fragment of PCTL that 
�� support the LIFT

speci�cation� and 
�� can be translated into CTL	 For example� notwith�

standing its occurrences of S� formula 
S�	�� is initially equivalent to a CTL

formula�

n�

i��

AG�
�Call Light
i
� �Calli� � �E
�Calli�U
Call Light

i
� �Calli��

Informally instead of specifying �when a light is on� the corresponding button

has been pressed�� we say �when a light is o�� it will not turn on unless the

�
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button is pressed�	

We now de�ne NCTL� the aforementioned fragment of PCTL�

De�nition 
�� The logic NCTL

NCTL � �� � ��� 	 j � � � j �� j EX� j E	U� j 	S
 j X
���

	� 
 ��� a j 	 � 
 j �	 j EX	 j E	U
 j A	U
 j F
��	 j N�

Thus NCTL forbids occurrences of S and X
�� in the scope of S or A U


except if a N is in between� and in the left�hand side of E U	 In such contexts�

only limited formulas 	 and 
 are allowed	 Note that F�� can be used without

restriction	

Remark 
�� Every formula used in the LIFT speci�cation of section 
 be�

longs to NCTL	

Now we have the following result�

Theorem 
�	 NCTL can be �e�ectively� translated into CTL

This is the main theorem	 In the rest of this section� we only give the plan

of its proof� relegating details into the appendix	

We say that a PCTL formula is separated when no past combinator oc�

curs in the scope of a future combinator	 This de�nition� more general than

Gabbay�s stricter notion ���� is what we really need	 Theorem �	� is based on

the following separation lemma�

Lemma 
�
 �Separation lemma� Any NCTL formula is equivalent to a

separated NCTL formula�

Proof� See the appendix	 �

Now the �nal step only requires transforming a separated formula into an

initially equivalent CTL formula 
this can be done easily� see the appendix�	

��
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For example� we have�

E aU 
b � cSd� a NCTL formula

�

cSd � E 
a � c�U 
b � c�

� E aU



a � d � EXE
a � c�U
b � c�

�

� E aU 
b � d�

������
�����

a separated NCTL formula

�i

E aU



a � d � EXE
a � c�U
b � c�

�

� E aU 
b � d�

���
�� a CTL formula

A consequence of Theorem �	� is that all formulas used in the LIFT spec�

i�cation can be automatically translated into 
initially� equivalent CTL for�

mulas for the veri�cation step� the speci�cation is easier to write 
and to

rectify� and a model of a lift system 
given as some FKS� can be veri�ed

with a standard model�checker by confronting it to the CTL translation of

the speci�cation	

Remark 
�� Theorem �	� can be extended to a largerNCTL
� where boolean

combinations of path�formulas are allowed under a path quanti�er� and to an

even larger NECTL
�� this time translating it into ECTL�	

Conclusion

In this paper� we explained and motivated what is� in our opinion� the best

semantical framework for temporal logics with past�time when it comes to

specifying and verifying reactive systems	 Today� this so�called Ockhamist

framework with �nite and cumulative past is not the most commonly used

for branching�time logics� in part because the question of which semantical

framework is best has not yet been much discussed	

We demonstrated the advantages of this approach by writing a speci��

cation for the classical lift system example in PCTL	 Following our earlier

translation�based approach� we showed that this PCTL speci�cation can be

used e�ectively for model�checking purposes if one translates it into an equiva�

lent CTL speci�cation	 This can be done thanks to a new translation theorem�

extending to NCTL our earlier work on CTL� F
��	

An important question is the complexity of the translation � From a theo�

retical viewpoint� our translation algorithm may induce combinatorial explo�

sions� even with limited temporal height ����	 As far as we know� informative

lower bounds on the problem 
rather than about a given translation algorithm�

��
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are not known� even in the linear�time fragment of ���	 From a practical view�

point� what remains to be done is to implement Theorem �	� and see whether

actual NCTL speci�cations can be translated in practice	

Directions for future work should be motivated by actual applications	

Thus our plans for the near�future are to implement the translation algorithm

we propose and to plug it on top of SMV and other model�checkers accepting

CTL 
with or without fairness�	 We expect this will naturally suggest ideas

for improved rewriting strategy 
and rules� and for enlarged logics	
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A Appendix� Proof of the Separation Lemma for NCTL

Recall that a separated formula is a formula in which no past�time construct

occurs in the scope of future combinators	

We follow the steps of our earlier proof for the separation CTL� F
�� � N

in ����� we o�er a collection of rewriting rules to extract occurrences of the

past combinators S� F�� and X
�� from the scope of future combinators	 The

crucial point is to �nd a strategy for the application of the rules that ensures

termination	

��
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Our set of rules is split into two parts� those needed to extract the S�s and

X
���s are given in Figure A	� and those needed to extract the F���s are given

in Figure A	�	


R�� E
	
�U
� � X��x�



� � � X��x � E

	
�U
� � x � EX��





R�� E
	
�U
� � �X��x�



� � � �X��x � E

	
�U
� � �x � EX��





R�� EX
� � X��x� � x � EX�


R
� EX
� � �X��x� � �x � EX�


R�� E
	
�U
� � xSy�




� E�U
� � y� � E�U
	
� � y � EXE
� � x�U
� � x�




�xSy �
	
� � E
� � x�U
� � x�





R�� E
	
�U
� � �
xSy��




� E�U
� � �x � �y� � E�U
	
� � �x � �y � E
� � �y�U
� � �y�




��
xSy� �
	
� � E
� � �y�U
� � �y�





R�� EX
� � xSy� � EX
� � y� � xSy � EX
� � x�


R�� EX
� � �
xSy�� � EX
� � �x � �y� � �
xSy� � EX
� � �y�

Fig� A��� Rules to extract S and X�� from the scope of future combinators�

A�� Soundness of the rules

Lemma A�� �Soundness� All rules in �gures A�� and A�� are correct for

FKS�s� i�e� the equivalences hold for any PCTL formulas �� x� y� �� �� 
� ���

� � and 
��

The complete proof of Lemma A	� is a tedious veri�cation left to the reader	

The general approach is always the same and it can be illustrated with the


R�� rule� assume � j� E�U
� � xSy�	 Then � can be extended into some

� s	t	 in particular � j� � � xSy	 Now we distinguish three cases depending

on when y is satis�ed� 
�� at the last moment� together with �� or 
�� after �

but strictly before � holds� or 
�� in the past of �	 Each case yields one term

in the disjunction	

The conditions over fairness constraints 
Def	 �	�� are required for LemmaA	�	

They let us decompose any execution into several parts and concatenate an

arbitrary pre�x with a fair su�x	

��
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R�� E

	

F��x � �� � 
�F��x � �� � 




U

	

F��x � ��� � 
�F��x � � �� � 
�




� F
��x � E
� � 
�U
��

� 
��

� �F
��x � E

	
�x � 
� � 
�



U

	
x � E
� � 
�U
��

� 
��



��F
��x � E

	
�x � 
� � 
�



U

	
�x � 
� �

� 
��




R��� EG
	

F��x � �� � 
�F��x � �� � 





� F
��x � EG
� � 
�

� �F
��x � E

	
�x � 
� � 
�



U

	
x � EG
� � 
�




� �F
��x � EG

	
�x � 
� � 
�





R��� EX
� � F��x� � EX
� � x� � F
��x � EX�


R��� EX
� � �F��x� � �F
��x � EX
� � �x�

Fig� A��� Rules to extract F�� from the scope of future combinators�

A�� Stability for NCTL

Lemma A�� Rewriting any NCTL formula � �resp� limited formula 	� by

applying one of our �� rules to a subformula always yields �� in NCTL �resp�
a limited formula 	���

This is because� when given NCTL formulas� the rules never move a S or
X
�� in the left�hand part of some E U or inside an A U or S context	

Note that� in addition� all the usual boolean manipulation rules one uses

distributivity� disjunctive normalization� � � � � are stable for NCTL	

A�� Separation strategy for NCTL

The �� rewrite rules we gave allows to extract any single occurrence of a past�
time combinator from the scope of one future�time combinator	 However� it
is not clear that a blind application of them will always eventually separate
past from future	 E	g	 consider 
R���� using it extracts F��x from the scope
of EG� but at the same time this 
�� duplicates 
� and 
�� one buries one
occurrence of 
 under two embedded future�time combinators	 Clearly� if 

contains past�time constructs� eventual separation is not guaranteed	

We now show how a precise strategy ensures eventual separation	 Our
strategy clearly shows how the rules are used and why termination is ensured	
We present it in a hierachical way� handling larger and larger fragments of
NCTL	 We heavily use contexts� i	e	 formulas with variables in them	 The x
in f �x� can be replaced by any formula� we write f �g� for f with g in place of

��
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x	 Note that x in f �x� may stand for several occurrences of x� This

is a key point in our method� used to collect copies of duplicated

subformulas�

Lemma A�� Let f �x� be a CTL context� If f �x�Sx
� �resp� f �X
��

x��� f �F
��

x���

is a NCTL context� then f �x�Sx
� �resp� f �X
��

x��� f �F
��

x��� is equivalent to

a separated NCTL context f �
�x�� x
� x�Sx
� �resp� f

�
�x��X

��

x��� f
�
�x�� F

��

x���

where f �
�x�� x
� x�� �resp� f

�
�x�� x
�� is a CTL context�

The proof is by structural induction on f �x�	 
Here we only consider the

x�Sx
 and F
��

x� cases	 The X
��

x� case is quite similar to the F
��

x� case� and

may occur in fewer contexts	� By assumption� there is no past construct in

f �x�	 We have four basic situations�

�� f �x� is some E��x�U��x�� Assume f �x�Sx
� is a NCTL context	 Then x

does not occur in �� which is then a CTL formula	

By ind	 hyp	� ��x�Sx
� is equivalent to some separated �
�
�x�� x
� x�Sx
�

and f �x�Sx
� � E�U�
�
�x�� x
� x�Sx
�	 In �

�
� x�Sx
 can only appear under

boolean combinators because of the separation property	 We group all the

occurrences of x�Sx
 using boolean manipulations and obtain�

f �x�Sx
� � E�U

	

� � x�Sx
� � 
� � �
x�Sx
�� � 





A	��

where �� �� 
 and � are pure�future 
CTL�	 Then we use distributivity�

EgU
h � h
�
� � 
EgUh� � 
EgUh

�
�

Then we may use the rules from Figure A	� and extract all occurrences of

x�Sx
 from the scope of E U	

Now consider the F
��

case	 f �F
��

x�� is always aNCTL context and then x

may occur in both � and �	 By ind	 hyp	� ��F
��

x�� and ��F
��

x�� are equiv�

alent to some separated �
�
�x�� F

��

x�� and �
�
�x�� F

��

x��	 Then f �F
��

x�� �

E��
�x�� F

��

x��U�
�
�x�� F

��

x��	 In �
�
and �

�
� F

��

x� can only appear under

boolean combinators because of the separation property	 We use boolean

manipulations to obtain�

f �F
��

x�� �E

	

F
��

x� � �� � 
�F
��

x� � �� � 





U

	

F
��

x� � �
�
� � 
�F

��

x� � �
�
� � 


�


 
A	��

where �� �� 
� �
�
� �

�
and 


�
are pure�future	 Then we may use the rules from

Figure A	� and extract all occurrences of F
��

x� from the scope of E U	

�� f �x� is some EX��x�� We proceed similarly� using the ind	 hyp	 and dis�

tributivity�

EX
h � h
�
� � EXh � EXh

�

��
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�� f �x� is some EG��x�� Then f �F��x�� � EG
�
���x�� F

��x��
�
	 Because of the

separation assumption� w	l	o	g	 we can write EG
�
���x�� F

��x��
�
under the

general form

f �F��x�� � EG

	

� � F��x�� � 
� � �F��x�� � 





A	��

Then we only need rule 
R��� since no S or X�� combinator can occur in
this context	

�� Remaining cases� Finally� the other cases are obvious� or can be re�
duced to what we saw thanks to AXh � �EX�h and AgUh � �EG�h �

�

	
E�hU�g � �h



	

Lemma A�� Let f �x�� � � � � xn� be a CTL context and assume that for i �
�� ��� n� gi is yiSzi� or F

��yi� or X
��yi� If f �g�� � � � � gn� is a NCTL context� then

it is equivalent to a separated f ��y�� z�� g�� � � � � yn� zn� gn� with f ��y�� z�� u�� � � � �
yn� zn� un� a CTL context�

Proof� By induction on n� using Lemma A	�	 �

Lemma A�	 Let f �x�� � � � � xn� be a CTL context and ��

� � � � � � �
�

n
be pure�

past NCTL formulas without N� If f ���

� � � � � � �
�

n
� is a NCTL formula� then

it is equivalent to a separated NCTL formula�

Proof� By induction on the maximum number of nested past combinator�s
in the ��

i
�s and using Lemma A	
	 �

Lemma A�
 Let f �x�� � � � � xn� be a CTL context and ��� � � � � �n be separated

NCTL formulas without N� If f ���� � � � � �n� is a NCTL formula� then it is

equivalent to a separated NCTL formula�

Proof� Because it is separated� a �i has the form g�
i
���

i��� � � � � �
�

i�mi
� with pure�

future ��
i�j
�s and a pure�past g�

i
�x�� � � � � xki �	 Lemma A	� says that f �g�� �x����

� � � � x��m�
�� � � � � g�

n
�xn��� � � � � xn�mn

�� is equivalent to a separated f ��x���� � � � �
xn�mn

�	 Then f �������� � � � � �
�
n�mn

� is separated and equivalent to f ���� � � � � �n�	�

Lemma A�� Any NCTL formula is equivalent to a separated NCTL for�

mula�

Proof� First� Lemma A	� and structural induction allow us to separate any
NCTL formula without N	

Now consider a formula N� with � a NCTL formula without N	 Then
� is equivalent to a separated formula g����� � � � � � �

�
n
� where g��x�� � � � � xn�

is a pure�past context and all ��
i
�s are CTL formulas	 Given this separated

formula� we obtain a CTL formula equivalent to N� by applying the following

��
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equivalences�

N
�S�� � N� NX
��� � � NF

��� � N�

N�� � �N� N
� � �� � N� � N�

N�� � �� for any pure future formula ��

We conclude the proof by using induction over the number of nested N	 �

Finally the proof for Theorem �	� is obtained by the previous elimination

of N� a given NCTL formula � is equivalent to a separated NCTL formula

��
� and N��

is equivalent to a CTL formula ���
	 Finally � �i N�

�
� ���

	

�



