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The enteric nervous system (ENS) arises from the coordinated migration, expansion and differentiation of
vagal and sacral neural crest progenitor cells. During development, vagal neural crest cells enter the foregut
and migrate in a rostro-to-caudal direction, colonizing the entire gastrointestinal tract and generating the
majority of the ENS. Sacral neural crest contributes to a subset of enteric ganglia in the hindgut, colonizing
the colon in a caudal-to-rostral wave. During this process, enteric neural crest-derived progenitors (ENPs)
self-renew and begin expressing markers of neural and glial lineages as they populate the intestine. Our ear-
lier work demonstrated that the transcription factor Foxd3 is required early in neural crest-derived progen-
itors for self-renewal, multipotency and establishment of multiple neural crest-derived cells and structures
including the ENS. Here, we describe Foxd3 expression within the fetal and postnatal intestine: Foxd3 was
strongly expressed in ENPs as they colonize the gastrointestinal tract and was progressively restricted to en-
teric glial cells. Using a novel Ednrb-iCre transgene to delete Foxd3 after vagal neural crest cells migrate into
the midgut, we demonstrated a late temporal requirement for Foxd3 during ENS development. Lineage label-
ing of Ednrb-iCre expressing cells in Foxd3 mutant embryos revealed a reduction of ENPs throughout the gut
and loss of Ednrb-iCre lineage cells in the distal colon. Although mutant mice were viable, defects in pattern-
ing and distribution of ENPs were associated with reduced proliferation and severe reduction of glial cells de-
rived from the Ednrb-iCre lineage. Analyses of ENS-lineage and differentiation in mutant embryos suggested
activation of a compensatory population of Foxd3-positive ENPs that did not express the Ednrb-iCre trans-
gene. Our findings highlight the crucial roles played by Foxd3 during ENS development including progenitor
proliferation, neural patterning, and glial differentiation and may help delineate distinct molecular programs
controlling vagal versus sacral neural crest development.

© 2012 Elsevier Inc. All rights reserved.
Introduction

The enteric nervous system (ENS) is a large and complex network
of cells that regulates motility, secretion and blood flow in the gastro-
intestinal (GI) tract. Within the gut muscle wall, interconnected
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ganglia, consisting of a diverse array of neurons and glia, are orga-
nized into the myenteric and submucosal plexi (Gershon, 2010;
Gershon et al., 1993). Cells that form the ENS are derived from neural
crest (NC) progenitors that arise from the dorsal neural tube at vagal
and sacral levels during early embryonic development (Le Douarin
and Kalcheim, 1999). The vast majority of the ENS is generated
from vagal NC cells, which emigrate from the level of somites 1–7
(Le Douarin and Teillet, 1973; Yntema and Hammond, 1954). In
mice, vagal NC cells enter the foregut at ~9.0 days post coitum
(dpc) and migrate in a rostrocaudal wave along the entire length of
the GI tract to generate both neural and glial lineages (Natarajan et
al., 1999; Young et al., 1998). During this process, enteric NC-
derived progenitors (ENPs) undergo extensive proliferation
(Simpson et al., 2007). In the hindgut, sacral NC, originating posterior
to somite 24, contributes a smaller population of ENPs that migrate in
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a caudorostral direction (Burns et al., 2000; Burns and Le Douarin,
1998). Sacral NC cells are also responsible for innervation of the uro-
genital system. During development, sacral NC halts migration after
formation of the pelvic ganglia outside the hindgut and does not col-
onize the distal colon until vagal NC-derived cells are present (~13.5–
14.5 dpc) (Druckenbrod and Epstein, 2005; Kapur, 2000).

Several signaling pathways converge to control cellular functions
of multipotent ENPs during ENS development. Members of the
GDNF family of ligands signal through Ret and its co-receptor
GFRα1 to regulate the migration, proliferation, survival and neural
differentiation of ENPs. The effects of GDNF/Ret signaling in ENPs
are modulated, in part, by Endothelin 3 signaling mediated by
Endothelin Receptor B (Ednrb). Specifically, Ednrb signaling main-
tains GDNF-driven proliferation (Barlow et al., 2003), and along
with the transcription factor Sox10, inhibits differentiation of enteric
neurons (Bondurand et al., 2006; Hearn et al., 1998; Wu et al., 1999),
thus maintaining multipotent enteric neural crest stem cells (NCSCs)
in an uncommitted, self-renewing state. Hirschsprung's disease, a
congenital disorder characterized by failure of ENPs to completely
colonize the gut resulting in absence of enteric ganglia in the colon,
is directly linked to defects in NCSC function (Iwashita et al., 2003).
Both humans and rodents deficient for several proteins including
Sox10, and members of the GDNF and Endothelin 3 signaling path-
ways, suffer from aganglionosis of the distal colon and the resulting
megacolon phenotype (Barlow et al., 2003; Baynash et al., 1994;
Enomoto et al., 1998; Hosoda et al., 1994; Schuchardt et al., 1994;
Southard-Smith et al., 1998). Because of the total loss of enteric gang-
lia in distal intestine of Hirschsprung's disease patients, many ENS
studies have focused on this disease, however, other abnormalities
of the GI tract, including chronic constipation and functional bowel
disorders are likely to be caused by defects that arise during develop-
ment of the ENS. NCSCs can be isolated from the ENS throughout em-
bryogenesis and into postnatal life, and it is possible that ENS-derived
NCSCs may be a source of neurons and glia for regeneration or repair
of ENS disorders (Kruger et al., 2002, 2003; Metzger et al., 2009).

During ENS development, multipotent NCSCs co-exist with fate-
restricted progenitors, but mechanisms coordinating proliferation and
lineage specific differentiation of these separate ENP pools are not
understood. Markers of neuronal differentiation are readily observed
soon after ENPs invade the gut (Baetge and Gershon, 1989). In contrast,
glial lineage markers are first detectable well behind the initial wave-
front of migrating ENPs in the fetal mouse gut, indicating that differenti-
ation of glia lags significantly behind differentiation of neurons (Heanue
and Pachnis, 2007; Young et al., 2005). While much is known about
molecules required for differentiation of enteric neurons, relatively little
is understood about how enteric gliogenesis occurs. An emerging
concept is that genes that initially function to maintain multipotency
in NCSCs also play additional context-dependent roles in later cell fate
decisions. For example, ENPs entering the foregut can be identified by
Sox10 or Phox2b expression (Britsch et al., 2001; Corpening et al.,
2008; Corpening et al., 2011; Kuhlbrodt et al., 1998; Natarajan et al.,
1999; Young et al., 1999), both of which are individually required for
formation and establishment of the ENS (Pattyn et al., 1999; Southard-
Smith et al., 1998). Sox10maintainsmultipotency of NCSCs by inhibiting
neural cell fates (Kim et al., 2003) and its expression is downregulated in
differentiating neurons but maintained in glia (Deal et al., 2006; Kim et
al., 2003). Together with Notch signaling, Sox10 is required for enteric
gliogenesis (Okamura and Saga, 2008; Taylor et al., 2007). Conversely,
Phox2b expression levels are decreased in enteric glia (Corpening et
al., 2008; Young et al., 1998) and maintained expression of Phox2b is
required for developing neurons (Pattyn et al., 1999).

The forkhead transcription factor Foxd3 is one of the earliest genes
expressed in NC progenitors and this expression is maintained as NC
cells begin populating the GI tract (Labosky and Kaestner, 1998;
Perera et al., 2006; Teng et al., 2008). Our earlier work demonstrated
that a NC-specific deletion of Foxd3 in mice resulted in perinatal
lethality and severe defects in most NC derivatives, including com-
plete loss of the ENS (Mundell and Labosky, 2011; Plank et al.,
2011; Teng et al., 2008). Additionally, Foxd3 is required to preserve
multipotency of NCSCs and does so by repressing ectomesenchymal
differentiation thereby maintaining their ability to generate neurons
(Mundell and Labosky, 2011). Although Foxd3 is required for early
NC development, including self-renewal and maintenance of NC mul-
tipotency, its expression and cellular functions at later stages of ENS
development have not been examined.

Here, we comprehensively mapped Foxd3 expression during mu-
rine ENS development and demonstrated that Foxd3 was initially
expressed in ENPs and subsequently maintained in differentiated
glia. Using a novel Ednrb-iCre transgene, we specifically deleted
Foxd3 in a subset of vagal NC-derived ENPs to determine the functions
of Foxd3 during late ENS development, after vagal NC cells colonize
the proximal GI tract. Our in vivo lineage-mapping experiments dem-
onstrated that Foxd3 functions cell-autonomously to maintain both
proliferation and glial differentiation of ENPs. In addition, we discov-
ered a sub-population of Foxd3-expressing ENPs that became activated
in response to ENS defects, underwent regulative proliferation and dif-
ferentiation, and compensated for initial disruption of ENS development
due to loss of Foxd3 in vagal NC-derived cells.

Materials and methods

Mouse lines

Foxd3 alleles were described previously (Hanna et al., 2002; Teng et
al., 2008). The Foxd3 null allele Foxd3tm2.Lby harboring a GFP reporter
(called Foxd3GFP)was used for some expression analyses, while an alter-
native null allele, Foxd3tm1.Lby, (called Foxd3− throughout) was used in
combination with Foxd3tm3.Lby, the Foxd3 conditional allele (called
Foxd3flox), for tissue-specific deletion. The Ednrb-iCre transgenic line
was generated by standard microinjection techniques (Nagy et al.,
2003). Mouse lines were interbred to generate Foxd3flox/−; Ednrb-iCre
(mutant) and Foxd3flox/+; Ednrb-iCre (littermate control) embryos or
mice. For lineage analyses, mice carrying Cre reporter alleles Gt(ROSA)
26Sortm1Sor (called R26RlacZ) or Gt(ROSA)26Sortm1(EYFP)Cos (called
R26RYFP) were incorporated into the crosses (Soriano, 1999; Srinivas
et al., 2001). In some experiments, the Wnt1-Cre transgenic line
(Danielian et al., 1998) was used to lineage-map NC. All lines were
on a mixed genetic background (CD-1, 129S6, and C57BL/6) and
maintained in accordance with protocols approved by the Vanderbilt
University Institutional Animal Care and Use Committee (IACUC).
DNA for genotypingwas extracted from embryonic yolk sac or tail biop-
sies, and the presence of the Ednrb-iCre transgene was detected by gen-
otyping for iCre with primers (5′-GACAGGCAGGCCTTCTCTGAA-3′) and
(5′-CTTCTCCACACCAGCTGTGGA-3′) that amplify a 522 bp fragment.
The PCR conditions were 30 cycles of 94 °C, 58 °C, and 72 °C, each for
45 s, followed by 72 °C for 10 min. Genotyping for Foxd3 alleles was as
described (Hanna et al., 2002; Teng et al., 2008).

Embryonic dissections and enteric muscle strip preparations

For timed pregnancies, females were checked daily for the pres-
ence of a vaginal plug, and noon on the day of plug designated
0.5 days post coitum (dpc). GI tracts (esophagus to anus) were dis-
sected from 10.5 to 16.5 dpc embryos in ice cold PBS, mesentery
and other associated organs were removed, and tissue fixed in 4%
paraformaldehyde (PFA) in phosphate buffered saline (PBS) for 4 h
or overnight and washed in PBS. For muscle strips, the GI tract was
dissected from postnatal (P11–P14) or adult mice (2–3 months old)
and fixed for 6–8 min in ice-cold neutral buffered formalin. After ini-
tial fixation, the intestine was further dissected into three segments
corresponding to the duodenum and the proximal and distal halves
of the colon. The inner and outer muscle layers, containing the
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myenteric plexus, were separated from the submucosa of the gut and
fixed in 4% PFA for 4 h on ice.

Histology and immunohistochemistry

For wholemount immunohistochemistry, samples were processed
as described previously (Corpening et al., 2011). Briefly, tissues were
fixed as described above, permeabilized in 0.5% Triton X-100 at room
temperature for 30 min and blocked for 4 h or overnight at 4 °C in
10% normal donkey serum, 0.1% Triton X-100 with or without 1%
BSA in PBS. After blocking, tissue was incubated in primary antibodies
at dilutions given below, washed in PBS with 0.1% Triton X-100, incu-
bated with secondary antibodies and washed, with each step per-
formed overnight at 4 °C. For imaging, GI tracts and muscle strips
were positioned flat on glass slides and cover-slipped with Aqua Poly-
Mount (PolySciences). For immunohistochemistry on paraffin sec-
tions, 10.5 dpc embryos were fixed in 4% PFA in PBS overnight, and
processing and histology performed using standard procedures
(Presnell and Schreibman, 1997). The following primary antibodies
were used: chicken anti-GFP to detect green fluorescent protein
(GFP) from the Foxd3GFP allele and also for yellow fluorescent protein
(YFP) expression from the Cre-recombined and activated R26RYFP al-
lele (used at 1:500, Abcam), rabbit anti-phospho-histone H3 (pH3)
(1:200, Upstate Biotechnology), mouse anti-β-III tubulin (TUJ1)
(1:500, Covance), mouse anti-glial fibrillary acidic protein (GFAP)
(1:500, Sigma), rabbit anti-Foxd3 (1:500, (Tompers et al., 2005), rab-
bit anti-fatty acid binding protein 7 (FABP7) (1:500, gift from Dr.
Thomas Muller (Young et al., 2003)), rabbit anti-p75 (1:200, Pro-
mega), rabbit anti-protein gene product 9.5 (PGP9.5) (1:1000, AbD
Serotec), rabbit anti-S100b (1:500, Dako), and goat anti-Sox10
(1:15 or 1:20, Santa Cruz). Secondary antisera were purchased from
Jackson ImmunoResearch: Cy2 donkey anti-chicken (1:500), DyLightTM

488 donkey anti-chicken (1:500), Cy3 donkey anti-mouse (1:700), Cy3
donkey anti-rabbit (1:700), Cy3 donkey anti-goat (1:700), Cy5 donkey
anti-mouse (1:500), Cy5 donkey anti-rabbit (1:500), Cy5 donkey anti-
goat (1:500). 4,6-diamidino-2-phenylindole, dihydrochloride (DAPI,
1:5000,Molecular Probes)was used to detect nuclei. Immunohistochem-
ical experiments were imaged using either an Olympus FV1000 laser
scanning confocal microscope or a Zeiss Axio Observer A1 fluorescence
microscope and AxioCam MRc5 camera. 5-bromo-4-chloro-3-indolyl-β-
D-galactoside (X-gal) reactions (Nagy et al., 2003) and wholemount ace-
tylcholinesterase (AChE) enzyme histochemistry (Cantrell et al., 2004;
Enomoto et al., 1998) were performed as described and imaged with a
Nikon SMZ-U stereomicroscope and Q-Imaging Micropublisher camera.
Wholemount preparationswere imaged on a LeicaMZ16 FA stereoscope
with a QImaging RETIGA 4000R camera.

Quantification of enteric cell types

To quantify enteric cell type specific markers and proliferation in
cells with Ednrb-iCre activity, GI tracts from 12.5 dpc–16.5 dpc
Ednrb-iCre; R26RYFP fate-mapped embryos were isolated, subjected
to immunofluorescence for YFP, p75, PGP9.5, Foxd3, Sox10 and/or
pH3 as indicated, and stained with DAPI as described above. Confocal
images of non-overlapping fields were captured with a 40× objective,
corresponding to ~0.1 mm2 per field (x, y) with optical thicknesses
(z) ranging from 0.8 to 1.6 μm, with the thickness consistent within
each experiment. The z-dimension image from each field that con-
tained the highest number of YFP-expressing cells, and was therefore
presumably focused on the myenteric plexus, was digitally analyzed
using MetaMorphTM software to determine the total number of YFP,
p75, PGP9.5, Foxd3, Sox10, DAPI and/or pH3-positive cells as indicat-
ed in individual experiments. Three random fields were quantified in
the duodenum and in embryos 14.5 dpc or older, six semi-contiguous
fields were also scored in the distal colon from each sample. To deter-
mine densities of PGP9.5-expressing cells in colons from control and
mutant embryos single confocal z-dimension images from six distinct
regions of the colon were thresholded equally and digitally analyzed
for area of PGP9.5 and DAPI-positive pixels using ImageJ software
(Abramoff et al., 2004). To quantify enteric glia in adult gut muscle
strips, the total number of S100b-positive cells and S100b and YFP-
expressing glia were counted in four-five random 20× fields of the
duodenum from three control and five mutant animals and the distal
half of the colon from three control and four mutant mice. Images
were quantified blindly by two observers using Photoshop software
to compare YFP and S100b signals in individual and merged channels
and are presented as the average percent of S100b-positive cells that
co-expressed YFP. Statistics were calculated as mean±standard error
of the mean (SEM) and significance determined with a two-tailed
Student's t-test.

Results

Foxd3 is expressed in ENPs and progressively restricted to glia during ENS
development

During early NC development (8.0–10.5 dpc), Foxd3 is initially
expressed in all NC cells, but expression is extinguished in cranial
and cardiac NC prior to their differentiation into mesenchymal line-
ages (Labosky and Kaestner, 1998; Mundell and Labosky, 2011;
Perera et al., 2006). Although Foxd3 expression has been reported
in the ENS at 10.5–13.5 dpc (Labosky and Kaestner, 1998; Perera et
al., 2006; Teng et al., 2008), expression during ENS development
had not been investigated in detail or characterized with cell-type
specific markers. Therefore, we examined Foxd3 expression in
Wnt1-Cre; R26RYFP lineage-traced ENPs after their initial colonization
of the foregut. At 10.5 dpc, Foxd3 protein expression is detected in the
nucleus of YFP-positive cells in the proximal GI tract (Fig. 1A–A″),
consistent with its expression in nearly all ENPs at early stages of
ENS development. To circumvent difficulties inherent with antibodies
generated from the same species and to label Foxd3-expressing cells
throughout the cytoplasm, we examined immunohistochemical co-
localization of Foxd3 with GFP from the Foxd3GFP allele using cell-
type specific markers, an approach used previously (Perera et al.,
2006). To confirm that GFP from the Foxd3GFP allele accurately repre-
sented endogenous Foxd3 expression, we examined GFP and Foxd3
protein expression during late ENS development in 16.5 dpc Foxd3GFP

embryos and in gut muscle strips from postnatal day 14 (P14)
Foxd3GFP mice. At both stages, Foxd3 protein was co-expressed in
the nuclei of GFP-positive cells throughout the ENS in the majority
of cells (Fig. 1B–C″), indicating that Foxd3 was expressed in ENPs dur-
ing and after enteric neuron and glial lineage segregation. We
detected very few GFP-positive cells that lacked staining for Foxd3
protein (Fig. 1B–B″, green arrows), which may result from the per-
durance of GFP or examination of focal planes lacking a nucleus.

To establish the identity of Foxd3-expressing cells within enteric
ganglia we performed immunohistochemical co-localization of GFP
with markers for undifferentiated NC cells, neurons and glia. Consis-
tent with a role for Foxd3 in enteric neural/glial progenitors, at
16.5 dpc, GFP expression largely overlapped with expression of the
low-affinity nerve growth factor receptor (p75), a NC progenitor
and ENP marker (Fig. 2A–A″). In addition to GFP/p75 double-
positive cells, we detected a small population of GFP-positive cells
that did not express p75 (green arrows), suggesting that these cells
may have initiated differentiation (Fig. 2A). To assess the differentia-
tion status of Foxd3-expressing cells, we examined GFP expression
together with expression of the neural marker PGP9.5. At 16.5 dpc,
most Foxd3-expressing cells were located adjacent to neurons and
very few GFP-positive cells co-expressed PGP9.5 (yellow arrow in
Fig. 2B), indicating that Foxd3 was not expressed in differentiating
neurons. Further analysis of postnatal enteric ganglia confirmed ab-
sence of Foxd3 expression in neurons but showed Foxd3 expression



Fig. 1. Foxd3 is expressed throughout ENS development.(A) Transverse sections through the proximal foregut of aWnt1-Cre; R26RYFP (NC fate-mapped) embryo showed co-labeling
of YFP (green) and Foxd3 (red) expression at 10.5 dpc (A–A″, yellow arrows). (B–C) Confocal images of wholemount 16.5 dpc GI tract (B–B″) and postnatal day 14 gut muscle strips
from the duodenum (C–C″) of Foxd3GFP embryos and mice showed expression of GFP from the Foxd3GFP allele (green) filling the cytoplasm and nuclei of cells with Foxd3 protein
(red) in the nuclei. At both stages, Foxd3 protein expression overlapped with GFP expression (yellow arrows), with only a few cells that expressed only GFP (green arrow, B) or
Foxd3 protein (red arrows). Images in B–C″ were captured with a 40× oil objective. Scale bars=100 μm.
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in cells closely associated with PGP9.5-positive cells (Fig. 2C). Images
of individual channels for Fig. 2A–C are in Fig. S1.

The smaller stellate morphology and location of Foxd3-expressing
cells closely juxtaposed to enteric neurons strongly suggested that
these cells were enteric glia. To address this possibility, we per-
formed co-immunodetection of the glial cell markers Sox10 and
S100b with GFP from the Foxd3GFP allele at embryonic and postna-
tal stages. At 16.5 dpc, nearly all NCSCs and glia, marked by Sox10,
were co-labeled with GFP (Fig. 2D), demonstrating that Foxd3 is
maintained in ENPs and glia. By P14, co-localization of GFP and
Sox10 indicated that Foxd3 expression is maintained in mature
enteric glial cells (Fig. 2E). Further immunofluorescent co-labeling
of GFP and the mature glial marker S100b also showed almost
complete overlap with GFP expression from the Foxd3GFP allele
at 16.5 dpc and P14 (Fig. 2F, G). Individual channel images for
Fig. 2D–G are in Fig. S2. Immunodetection with FABP7, a marker
of immature and mature glia, and TUJ1, a neuronal marker,
revealed a similar pattern of co-expression with Foxd3 in glia but
not neurons (Fig. S3 A–B‴). Together, these expression patterns
demonstrated that Foxd3 was broadly expressed in ENPs, progres-
sively downregulated as cells underwent neuronal differentiation,
and maintained in differentiated glia.
Spatiotemporal characterization of Ednrb-iCre activity

Previous tissue-specific deletion of Foxd3 within early, and pre-
sumably uncommitted, NC progenitors with Wnt1-Cre or Pax3Cre

resulted in a complete loss of the ENS (Mundell and Labosky, 2011;
Nelms et al., 2011; Plank et al., 2011; Teng et al., 2008). However, it
is not known whether Foxd3 is required later in the sublineage of
NC cells that generate enteric neurons and/or glia. To conditionally
delete Foxd3 after specification of ENPs and initial migration of vagal
NC cells into the GI tract, we generated a transgenic mouse line,
Ednrb-iCre, in which expression of Cre-recombinase is directed by
an ENS-specific enhancer of Ednrb (Fig. 3A). This Ednrb enhancer
was characterized previously and consists of a genomic fragment
(−1.2 kb to −160 bp) upstream of the Ednrb start site (Zhu et al.,
2004). This ~1 kb enhancer in combination with a minimal promoter
is sufficient to direct expression to ENPs after they colonize the fore-
gut and small intestine. To generate these transgenic mice, the en-
hancer element was linked to an Hspa1b (Hsp68) minimal promoter
to direct expression of a codon-improved Cre recombinase (iCre)
(Shimshek et al., 2002). The tissue specificity of Cre activity from
this transgene was verified by breeding Ednrb-iCre mice with
R26RlacZ or R26RYFP reporter mice in which Cre expression results in



Fig. 2. Foxd3 is expressed in ENPs and glia during ENS development, but downregulated in the majority of enteric neurons. (A) Immunofluorescent detection of GFP from the Foxd3GFP

allele (green) together with p75 (red) revealed expression of Foxd3 in ENPs in the duodenum from 16.5 dpc embryos (A, yellow arrows) and in a smaller subset of cells that did not ex-
press p75 (green arrow). (B–C) GFP expression in combination with PGP9.5 (red) demonstrated that Foxd3 protein was largely absent frommost PGP9.5-expressing enteric neurons in
the duodenum at 16.5 dpc (B). Yellow arrows identify a small population of cells that co-expressed GFP and PGP9.5 and red arrows indicate cells that expressed only PGP9.5. In postnatal
gut muscle strips Foxd3 was expressed in cells adjacent to neurons, but was not detected in the majority of PGP9.5-expressing neurons (C, red arrows). (D–G) GFP was extensively co-
localized with Sox10 (red) in glial cells in 16.5 dpc GI tracts (D) and in postnatal gut muscle strips (E). Yellow arrows indicate cells that co-expressed GFP and Sox10. 16.5 dpc GI tracts
from Foxd3GFP embryos (F) and gutmuscle strips from Foxd3GFP postnatal day 14mice (G) processedwith antibodies against GFP (green) and S100b (red) confirmed Foxd3 expression in
glial cells during specification of enteric lineages. Examples of cells that co-expressedGFP and S100b are indicatedwith yellowarrows. Red arrows indicate S100b-positive cells that lacked
GFP expression and green arrows indicate cells that expressed GFP but not S100b. Images were captured with a 40× oil objective. Scale bars=100 μm.
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excision of a stop codon and expression of lacZ or YFP. In wholemount
analysis of Ednrb-iCre; R26RlacZ embryos, X-gal staining was faintly
detected in the developing GI tract when ENPs are approaching the
cecum at 11.0 dpc (40–42 somite stages), but was not detected in em-
bryos 10.5 dpc or younger (Fig. 3B–C′). Later, at 11.5 dpc, Cre activity
was detected in ENPs populating the GI tract from the esophagus to
the cecum (Fig. 3D–E′). Cre activity was also detected within the neu-
ral tube (Fig. 3F–G) as expected (Lee et al., 2003; Zhu et al., 2004);
however, activity within the NC was limited to ENPs within the GI
tract and was not detected in other NC derivatives including NC in
the outflow tract of the heart, skin, cranial ganglia or dorsal root gang-
lia (DRG) (Fig. 3C–G and data not shown).

Ednrb-iCre activity is specific to vagal NC-derived cells

To determine if Foxd3 is expressed in cells with Ednrb-iCremediated
Cre activity, we evaluated Foxd3 protein expression in the duodenum
versus colon from Ednrb-iCre; R26RYFP lineage-traced embryos. At
15.5 dpc, the vast majority of Foxd3-expressing cells in the duodenum
showed Ednrb-iCre-activated YFP expression (Fig. 4A) indicating Cre ac-
tivity in ENPs and differentiating glia. This pattern was identical to pre-
viously reported co-expression of this enhancerwith Sox10 in vagalNC-
derived progenitor cells (Zhu et al., 2004). Examination of Foxd3 and
YFP expression at higher magnification revealed that a small fraction
of Foxd3-expressing cells did not exhibit Cre activity (red arrow,
Fig. 4A′), suggesting that a small sub-population of Foxd3-expressing
ENPs did not activate the Ednrb enhancer. At this stage, sacral NC-
derived ENPs are present in the distal colon and in the adjacent pelvic
ganglia. Ednrb is expressed in sacral NC (Delalande et al., 2008), howev-
er, it was unknownwhether the 1 kb enhancer region drives expression
in both vagal and sacral ENPs. Analysis of YFP and Foxd3 expression in
lineage mapped embryonic colons revealed two distinct populations
of Foxd3-expressing cells: a population co-expressing both Foxd3 and
YFP (yellow arrows, Fig. 4B–B′), and a smaller population of Foxd3-
positive cells lacking Cre activity (red arrows, Fig. 4B–B′). To address
the question of whether the transgene was expressed in all p75-
expressing ENPs, we again used wholemount immunofluorescence in
lineage mapped embryos and showed that the Cre-activated YFP from
the R26RYFP allele was co-localized with p75 in the majority of ENPs at
12.5 dpc and at 15.5 dpc (yellow arrows in Fig. 4C, D). Quantification
of these data revealed that in 12.5 dpc embryos, the majority of p75-
expressing cells also expressed YFP (~95%, red arrow, Fig. 4C, quantifi-
cation in Fig. 4E) and this population decreased to approximately 80–
82% at 15.5 dpc (Fig. 4D, E). We used the same approach to determine
whether the Ednrb-iCre lineage included enteric neurons using immu-
nohistochemistry for YFP together with PGP9.5 at 12.5 dpc and
15.5 dpc (Fig. 4F, G). These data showed that the lineage-mapped neu-
ral population does not overlap as completely compared to the p75
population; approximately 53–62% of PGP9.5-positive enteric neurons
are labeled by this transgene at both stages. These data are quantified
in Fig. 4H.

The decreased overlap of Foxd3 and YFP expression observed in the
colon versus the duodenum (Fig. 4) suggests two non-exclusive possi-
bilities: 1) that Ednrb-iCre activity is specific to vagal ENPs and is not
present in sacral ENPs, or 2), that a significant number of Foxd3-
expressing cells do not express Cre and/or have delayed activation of
the transgene. To determine if Cre activity was present in sacral NC de-
rivatives, we examined expression of p75 in the sacral NC-derived pel-
vic plexus and compared this to activation of the R26RYFP reporter with
the NC-specific Wnt1-Cre transgene versus Ednrb-iCre. At 14.5 dpc,
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Fig. 3. Temporal activity of Cre-recombinase in Ednrb-iCre; R26RlacZ embryos duringENSdevelopment. (A) Diagramof the construct used to generate Ednrb-iCre transgenicmice. (B–E′) All
sampleswere stained for beta-galactosidase activity from the recombined R26RlacZ allele (blue). At 10.5 dpc, X-gal-positive cellswere not detected in the GI tract from Ednrb-iCre; R26RLacZ

embryos (B). Beginning at 11.0 dpc (40–42 somite stages), X-gal-positive cellswere detected in the neural tube and faint beta galactosidase activitywas observed in ENPs (C, C′, arrow). At
11.5 dpc, Ednrb-iCrewas strongly activated and Cre activity detected in ENPs throughout the GI tract to the level of the cecum (D, E, E′). In B and D the dissected GI tracts are shownwith
the rostral end at the top of the panel. Boxes in C and E show fields for C′ and E′ turned 90° counterclockwise. (F, G) Sub-dissection of neural tube and DRG from an 11.5 dpc embryo
showed X-gal-positive cells detected in distinct domains in the neural tube. X-gal-positive cells were not detected in DRG (F, G). G is a transverse view of the neural tube shown in F.
Abbreviations: Ce, cecum; DRG, dorsal root ganglion; Hsp68, heat shock protein 68 minimal promoter; NT, neural tube; pA, polyadenylation tail; SN, spinal nerves; St, stomach.
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Wnt1-Cre fate-mapped YFP-expressing sacral NC-derived cells were
present within pelvic ganglia as marked by p75 (pelvic ganglion indi-
cated by arrows, Fig. 5A–A′). In stark contrast, Ednrb-iCremediated ex-
pression of YFP was not detected in pelvic ganglia at 14.5 dpc or
16.5 dpc (Fig. 5B–E′), although YFP-expressing cells are detectedwithin
the colon in the same samples. These data suggest that Ednrb-iCre ex-
pression is limited to vagal NC-derived ENPs, and highlight the utility
of this Cre transgene to label and distinguish vagal ENPs versus those
derived from the sacral NC.

Effect of deleting Foxd3 in ENPs using Ednrb-iCre

Foxd3 is required for NC colonization of the GI tract and establish-
ment of all ENPs (Teng et al., 2008), but its role in later ENS develop-
ment had not been explored. To selectively delete Foxd3 within the
vagal NC-derived ENS, we mated Foxd3flox/flox and Foxd3+/−; Ednrb-
iCre mice to obtain Foxd3flox/+; Ednrb-iCre (control) and Foxd3flox/−;
Ednrb-iCre (mutant) mice (matings diagrammed in Fig. 6). Embryos
andmice were found in expected ratios for each genotype at all stages
during development and as adults, suggesting that no lethality was
caused by loss of Foxd3 in the Ednrb-iCre lineage. Litters were moni-
tored for general health and appearance and GI tracts dissected to de-
termine whether these mice suffered from megacolon phenotypes.
However, Foxd3 mutant mice survived well into adulthood with
overtly normal morphology of the entire GI tract. There were no dif-
ferences in weight of control and mutant littermates (data not
shown) suggesting little or no defects in nutrition, overall growth
and general health of mutant mice.

To determine if enteric neuronswere disrupted in postnatal (P11) or
adult (6 week old) mice we performed wholemount analysis of enteric
neurons labeled by acetylcholinesterase (AChE) activity. As expected
from the health of the animals, neurons were present in enteric ganglia
throughout the GI tracts from control and mutant mice although the
patterning of duodenal ganglia appeared slightly irregular with greater
spaces between ganglia (Fig. 7A, B). To better understand this result and
verify that Foxd3 was absent in Cre-expressing cells, we used whole-
mount immunodetection of Foxd3 and YFP in isolated GI tracts from
16.5 dpc embryos carrying the R26RYFP reporter allele. In control embry-
os, the majority of Foxd3-expressing cells in both the duodenum and
colon showed co-labeling with Foxd3 and YFP (yellow arrows, Fig. 7C,
D), though a population of Foxd3-expressing cells did not show Cre ac-
tivity (red arrows, Fig. 7C, D). In contrast, in Foxd3mutant embryos, we
detected a large number of Foxd3-positive ENS cells that did not express
Cre (red arrows in Fig. 7C–D). Despite the reduced number of YFP-
expressing cells in GI tracts from mutant embryos, the overall number
of Foxd3-expressing cells was similar between control and mutants in
both the duodenum and colon (Fig. 7C, D; individual channels shown
in Fig. S4; data quantified in Fig. 7E–F). The large number of Foxd3-
expressing cells in mutants was not due to a failure of Cre to delete
Foxd3 in the Ednrb-iCre lineage; Foxd3 expression was not detected in
YFP-expressing cells in the duodenum and only a few cells showed
co-labeling in the colon (yellow arrow, Fig. 7D), indicating efficient
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Fig. 4. Ednrb-iCre activity labels the vast majority of ENS progenitors during development. (A–B) Wholemount immunofluorescence at 15.5 dpc revealed that Foxd3 expression
(red) in the duodenum overlapped extensively with Ednrb-iCremediated YFP expression (green) from the R26RYFP allele (yellow arrows in A, A′). Overlap of Foxd3 and YFP expres-
sion was reduced in the colon (B, B′) compared to the duodenum (A, A′) indicating increased numbers of Foxd3-expressing cells lacking Ednrb-iCre activity (red arrows A′, B′).
Boxes in A and B indicate the fields shown in A′ and B′, reoriented as shown. (C–E) Wholemount immunodetection revealed that YFP was extensively co-localized with p75
(red) in ENPs at 12.5 dpc (C) and at 15.5 dpc (D). Yellow arrows in C and D indicate the majority population of ENPs that co-expressed YFP and p75. A small population (~5%)
of p75+ cells did not show Ednrb-iCre activity in GI tracts from 12.5 dpc embryos (red arrows, C, D) and this population increased in number to ~18–20% at 15.5 dpc (quantified
in E). (F–H) Immunohistochemistry for YFP and the neural marker PGP9.5 (red) at 12.5 dpc (F) and 15.5 dpc indicated that Ednrb-iCre activity labels enteric neurons at both early
and late stages of ENS development. Quantification of PGP9.5-expressing cells is shown in H. Data in E and H represent p75 or PGP9.5-positive cells imaged with a 40× oil objective
and counted in random fields of duodena from 12.5 dpc embryos or duodena and colons from 15.5 dpc embryos (n=3 for each). All statistics are mean±SEM, *(pb0.05).
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deletion of the Foxd3flox allele by Ednrb-iCre. These curious results sug-
gested a cell-autonomous role for Foxd3 during ENS development (as
indicated by reduced numbers of YFP-positive cells) but also implied
that a sub-population of Foxd3-expresssing ENPs that does not express
Ednrb-iCre may expand and compensate for the apparent reduction in
Ednrb-iCre lineage cells.

Foxd3 is required to maintain ENPs during development

Although our initial analysis of Foxd3 mutant mice suggested that
they had an overtly functional ENS, slight patterning irregularities ob-
served in enteric ganglia (Fig. 7A–B) and the prominent role of Foxd3
in early NC development prompted us to focus our analysis on earlier
developmental stages. To determine if Foxd3 is required for proper
migration, distribution, and patterning of vagal NC-derived ENPs,
we evaluated GI tracts from control and mutant embryos with
Ednrb-iCre activated R26RlacZ and X-gal staining from 11.5 dpc to
15.5 dpc. After initial expression of Cre at 11.5 dpc in Foxd3flox/+;
Ednrb-iCre (control) embryos, many X-gal-positive cells were
detected on the surface of the proximal GI tract up to the level of
the cecum-hindgut boundary, consistent with their identity as ENPs
(Fig. 8A, inset). In Foxd3flox/−; Ednrb-iCre (mutant) embryos at
11.5 dpc, X-gal staining was initially modestly reduced and X-gal-
positive cells were detected at caudal levels in the cecum similar to
controls (Fig. 8B). In contrast, direct comparison of X-gal labeling in
Foxd3mutant and littermate controls at 13.5 dpc demonstrated a pro-
nounced decrease in the density of ENPs in the GI tract from mutant
embryos compared to controls (Fig. 8C, D). Control vagal NC-
derived ENPs had migrated through the proximal half of the hindgut
at 13.5 dpc (Fig. 8C). Despite their decreased numbers, Foxd3 mutant
cells migrated to a comparable level in the colon (Fig. 8C, D). By
15.5 dpc, when control vagal NC cells had completed colonization of
the GI tract to the distal end of the colon (Fig. 8E, E′), the number of
mutant X-gal labeled cells was severely reduced throughout the gut
(Fig. 8F) and no Xgal-positive cells were detected in the distal colon
from 15.5 to 16.5 dpc embryos (arrow in Fig. 8F′ and data not
shown). Using the R26RYFP reporter allele to facilitate visualization
of sparse Cre-expressing cells, we again detected decreased numbers
of mutant YFP-positive cells in the distal tip of the colon at 16.5 dpc
(Fig. 8G–H). These data demonstrated a progressive reduction of

image of Fig.�4


Fig. 5. Ednrb-iCre is active in vagal NC but not sacral NC during ENS development. (A-A′) Wholemount immunohistochemistry of a 14.5 dpc colon and lower urogenital tract for p75
(A) andWnt1-Cre mediated YFP expression from R26RYFP (A′) identified NC-derived cells in both the proximal colon and pelvic ganglion (arrow). (B–B′) In Ednrb-iCre; R26RYFP em-
bryos, p75 expression labeled sacral NC cells within the pelvic ganglion (arrow in B). Ednrb-iCre mediated YFP expression was not detected in p75-positive sacral NC cells in the
pelvic ganglion (arrow in B′) but was present in vagal NC-derived cells in the colon (B′). (C). Drawing illustrates orientation of the GI and urogenital tracts shown in A–B′; this
is a lateral view of the organs as viewed from the left side. Red oval indicates location of sacral NC-derived cells in the pelvic ganglion and gray shading indicates vagal NC present
in the colon. This pattern is maintained at 16.5 dpc (D–E′). Wholemount immunohistochemistry of a urogenital tract from a Ednrb-iCre fate-mapped 16.5 dpc embryo (D–D′) shows
p75 expressing sacral NC cells within the pelvic ganglion (D) that do not have Ednrb-iCre mediated YFP expression from R26RYFP (D′). Cartoon in D″ illustrates lateral orientation of
the urogenital tract shown in D–D′; red oval indicates location of sacral NC-derived cells in the pelvic ganglion. Images in E–E′ show p75 expression but not YFP expression in a
dorsal view of the pelvic ganglia from the urogenital tract shown in D–D′. Abbreviations: b, bladder; dc, distal colon; PG, pelvic ganglion; pu, pelvic urethra; pc, proximal colon.
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ENPs in mutant embryos that was more severe at caudal levels of the
GI tract, and suggested a role for Foxd3 in maintaining vagal NC-
derived ENPs during ENS development.

Patterning and distribution, but not differentiation, of enteric neurons is
disrupted in Foxd3 mutant ENS

Our previous work demonstrated that Foxd3 preserves neural po-
tency of early NC cells (Mundell and Labosky, 2011). However, it was
unknown whether Foxd3 maintains neural potency after cells are spec-
ified as ENPs. The decrease in the number of Foxd3 mutant cells within
the GI tract of Foxd3flox/−; Ednrb-iCre embryos may indicate a similar
role for Foxd3 in maintenance of neural fate of ENPs. Wholemount im-
munohistochemistry with subsequent confocal analysis of GI tracts
from control embryos revealed a dense meshwork of tightly packed
PGP9.5-positive neurons present in the duodenum (Fig. 9A). PGP9.5-
expressing cells showed extensive but not complete overlap with YFP
expression, suggesting that the majority of vagal NC-derived enteric
neurons arise from Ednrb-iCre-expressing cells (Fig. 9A). In stark con-
trast, reduced numbers of YFP-expressing cells in duodena from Foxd3
mutant embryos was associated with alterations in the density and dis-
tribution of enteric neurons (Fig. 9A). Similar resultswere seen in colons
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Fig. 6. Breeding strategy to generate mice with an ENS-specific deletion of Foxd3. Fate
mapping was performed using either the R26RYFP allele or R26RlacZ allele to label Ednrb-
iCre lineage cells in control and mutant embryos and mice.
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from control andmutant embryos (Fig. 9A). Interestingly, despite a 48%
reduction of YFP-positive cells in the duodenum and a 72% reduction in
the colon (Fig. 9B), themajority ofmutant YFP-positive cells showed co-
labeling with PGP9.5, suggesting that neuronal differentiation was not
overtly impaired by loss of Foxd3. This is perhaps not surprising, consid-
ering the restriction of Foxd3 expression from differentiating neurons in
control GI tracts described above (Fig. 2), although these results support
a different role for Foxd3 in ENPs versus early multipotent NC. To
Fig. 7. Effect of deleting Foxd3 in ENPs using Ednrb-iCre. (A–B)Wholemount acetylcholineste
in the duodenum (A) and colon (B) from both Foxd3flox/+; Ednrb-iCre (control, left panels) a
odenum and colon at 16.5 dpc, Foxd3 was detected in both YFP-positive Ednrb-iCre express
YFP-negative cells (red nuclei, indicated with red arrows) (C–D, left panels). In mutant em
D, right panels). However, Foxd3 expression (red) was not reduced in the duodenum (C)
(YFP+) cells (C, D), suggesting that a subpopulation of Foxd3-expressing ENPs that does n
(E–F) Quantification of Foxd3-expressing cells in the duodenum (graphs in E) and colon (gr
of 3 (duodenum) or 6 (colon) non-overlapping adjacent fields from 3 mutant and 3 litterma
cells /DAPI+ nuclei. All statistics are mean±SEM, *(pb0.05) comparing control to mutant.
examine the density of neurons along the length of the colon we used
immunodetection of PGP9.5 in sequential non-overlapping fields of co-
lons from control andmutant embryos at 15.5 dpc (Fig. 9C). Quantifica-
tion of these data clearly showed that the density of neuronswas slightly
decreased thewhole length of the colon, but this differencewas statisti-
cally significant only at the most distal end (Fig. 9D). Therefore, while
Foxd3 was not absolutely required for neural differentiation, the num-
ber of ENS-neurons was greatly reduced in Foxd3 mutant ENS.

ENPs require Foxd3 for proper glial cell differentiation and/or
maintenance

Our data demonstrated that Foxd3 was initially expressed in ENPs
and that expression was selectively maintained in differentiated glia
during late ENS development, suggesting lineage-specific roles for
Foxd3. As shown above, differentiation of neurons was not overtly
impaired in mutant GI tracts. To investigate differentiation of glial lin-
eages, we examined expression of glial markers (S100b and Sox10) in
Foxd3 mutant embryos and mice. At 16.5 dpc, analysis of S100b ex-
pression in the duodena of lineage-traced embryos revealed that, in
contrast to control embryos (Fig. 10A–A″), there were reduced num-
bers of enteric glia from the Ednrb-iCre lineage in mutant guts
(Fig. 10B–B″). At this stage, glial differentiation is not complete in
the distal GI tract, therefore further analysis of glial differentiation
rase (AChE) histochemical staining of postnatal day 11 GI tracts revealed enteric ganglia
nd Foxd3flox/−; Ednrb-iCre (mutant, right panels) mice. (C–D) In control embryonic du-
ing cells (yellow nuclei, indicated with yellow arrows) and in a smaller population of
bryos, Foxd3 expression was not detected in the majority of YFP-expressing cells (C–
or distal colon (D), despite severe reduction in the number of Ednrb-iCre-expressing
ot activate Ednrb-iCre expression compensated for the loss of ENPs in the distal colon.
aphs in F) from 16.5 dpc control and mutant embryos. Data represent confocal analysis
te control embryos. Data are portrayed as either %Foxd3+ cells or Foxd3, YFP double+
Scale bars=50 μm.
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Fig. 8. Numbers of Ednrb-iCre-expressing ENPs were severely reduced in GI tracts from Foxd3 mutant embryos. (A–F′) All samples shown were stained for beta-galactosidase ac-
tivity from the recombined R26RlacZ allele (blue). Lineage labeling in control Foxd3flox/+; Ednrb-iCre; R26RlacZ (A, C, E) and Foxd3flox/−; Ednrb-iCre; R26RlacZ mutant embryos (B, D,
F) demonstrated that the density of Foxd3 mutant Cre-expressing cells was progressively reduced along the proximal-distal extent of the GI tract from 11.5 to 15.5 dpc. At
11.5 dpc, control ENPs populated the GI tract to the level of the cecum (A, inset arrow), and were located in the proximal colon at 13.5 dpc (C, arrow indicates caudal-most
cells). At both 11.5 and 13.5 dpc, fewer Foxd3 mutant Ednrb-iCre lineage cells migrated to a similar caudal level in the GI tract compared to control embryos (arrows in inset for
A, B, arrows in C, D). In control embryos, X-gal-positive cells colonized the distal colon at 15.5 dpc (E, E′). Foxd3 mutant ENPs were reduced in number throughout the GI tract
and were not detected in the distal colon (F, F′). Arrows in E′ and F′ indicate caudal extent of X-gal-positive cell colonization in the distal colon. (G) Immunodetection of YFP
from the recombined R26RYFP allele in control (G–G′) and mutant (H–H′) embryos showed that Ednrb-iCre expressing cells were reduced in number throughout colons from
16.5 dpc mutant embryos, but were present at the distal colon. Abbreviations: duo, duodenum; eso, esophagus.
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in the colon was completed in adult ENS. Co-labeling of Sox10 with
YFP in gut muscle preparations from the duodena and distal colons
of adult (2–3 months old) control and mutant mice showed that,
the number of Sox10/YFP double-positive cells was reduced in both
duodena (Fig. 10C, D) and colons (data not shown) from mutant
mice compared to controls. Quantification of enteric glia (labeled by
S100b expression) and YFP-expressing cells in the duodenum and
colon confirmed severely reduced numbers of differentiated glia in
mutant Ednrb-iCre lineage cells compared to controls (Fig. 10E–H):
S100b/YFP double-positive cells were reduced by 78% in duodenum
(Fig. 10G) and 84% in the colon (Fig. 10H). Despite these greatly reduced
numbers of glia from the Ednrb-iCre lineage in mutants, the overall
numbers of Sox10 or S100b-positive glia were similar to controls
(Fig. 10C–F), and Sox10-positive glia were present in the distal end of
the colon (Fig. 9C), consistent with our hypothesis that an independent
population of ENPs compensated for the loss of the Ednrb-iCre-
expressing cells.

Foxd3 is required cell autonomously for proliferation of ENPs

During colonization of the GI tract, vagal ENPs proliferate in order to
generate the progenitor pool needed to complete population of the en-
tire the gut (Simpson et al., 2007). The severe reduction of Ednrb-iCre
lineage cells we observed inmutant embryosmay reflect a requirement
for Foxd3 in proliferation and/or survival of ENPs. To investigate the
possibility that Foxd3 is required for proliferation and expansion of
the ENP pool, we monitored proliferation in the duodena and colons
from R26RYFP fate-mapped control andmutant embryos using immuno-
histochemistry for phospho-histoneH3 (pH3), to label cells undergoing
mitosis (Fig. 11A, D). In confocal images through the developing enteric
plexus, all YFP-positive cells were scored as either pH3-positive or
-negative and proliferation of ENPs was calculated as the percent of
Ednrb-iCre lineage cells (YFP+) that were also pH3-positive.
Additionally, to compare proliferation of the entire ENP pool with pro-
liferation of Ednrb-iCre lineage cells, we quantified the number of cells
positive for both pH3 and the ENP marker Sox10 (Fig. 11A, C, D, F) in
both duodena and colons (magenta arrows in Fig. 11A, D). At
14.5 dpc, proliferation of mutant YFP-positive cells in the duodena and
colon was significantly reduced compared to control embryos
(Fig. 11A, B, D, E). However, the overall proliferation of Sox10-
expressing ENPswas unchanged in both the duodena and colons (quan-
tified in Fig. 11C, F). This suggests that in mutants, ENPs outside the
Ednrb-iCre lineage compensate for the loss of Foxd3 in the Ednrb-iCre
lineage by increasing proliferation compared to control embryos.
These results support the hypothesis that a sub-population of the ENS
undergoes expansion to compensate for the loss of Cre-expressing
Foxd3 mutant cells. Further analysis was done to examine apoptosis in
GI tracts from fate-mapped control and mutant embryos, and these ex-
periments showed no difference between controls and mutants (data
not shown), suggesting that loss of Foxd3 did not affect survival of
ENPs. Together, our data demonstrate that Foxd3 is required to main-
tain proliferation of vagal NC-derived ENPs throughout the GI tract
and suggests that deletion of Foxd3 in a subset of the ENS resulted in
the compensatory proliferation of non-Ednrb-iCre ENS cells.

Discussion

Foxd3 is required at multiple stages of ENS development

During migration, ENPs undergo self-renewing divisions to main-
tain both neural and glial potency and generate a progenitor pool suf-
ficient to form the entire ENS (Natarajan et al., 1999). Our previous
work demonstrated that Foxd3 is essential in early NC progenitors
for multipotency, self-renewal and generation of NC cells competent
to enter the GI tract (Mundell and Labosky, 2011; Teng et al., 2008).
However, the role of Foxd3 in later ENS development had not been
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Fig. 9. Foxd3 is required for patterning and distribution but not differentiation of enteric neurons. (A–B) Characterization of neuronal differentiation in Endrb-iCre; R26RYFP fate mapped
control and Foxd3 mutant GI tracts. Confocal images of wholemount immunohistochemistry for YFP (green) and PGP9.5 (red) identified two populations of enteric neurons in control
embryos: Ednrb-iCre derived neurons (yellow arrows in A) and a relatively smaller population of neurons that did not show Cre activity (red arrows). Both Ednrb-iCre derived and
YFP-negative neurons organized into a regular meshwork pattern of developing ganglia in the duodena from 14.5 dpc control embryos (A). In Foxd3 mutant embryos, ENS patterning
was dramatically disrupted and included areas of thin projections from fewer enteric neurons. In GI tracts from mutant embryos, YFP-positive cells showed extensive overlap with
PGP9.5 (yellow arrows), but the majority of enteric neurons do not show Ednrb-iCre activity (red arrows). (B) Quantification of YFP-expressing cells in duodena and colons from
14.5 dpc control and mutant embryos. Data represent confocal analysis of 3 non-overlapping adjacent fields from the duodenum and 6 fields from the colon from 3 mutant and 3 litter-
mate control embryos. Data are portrayed as %YFP+ cells/DAPI+ nuclei. All statistics aremean±SEM, *(pb0.05) comparing control to mutant. (C) Expression of PGP9.5 (red, neurons),
Sox10 (green, ENPs and glia) andDAPI (Blue) in 6 sequential, non-overlapping fields of the colon from control (top) andmutant (bottom) embryos showednumbers of PGP9.5+neurons
and Sox10+cells progressively decreased in proximal-to-distal regions of the colon. (D) Quantification of the density of PGP9.5-expressing neurons (PGP9.5+pixel area/total pixel area)
in 6 sequential 40× fields from colons of 14.5 dpc control and mutant embryos. Data represent confocal analysis of fields that show the highest PGP9.5+ area in z stacks for 6 distinct
proximal-to-distal regions of the colon from 4 mutant and 4 littermate control embryos. All statistics are mean±SEM, *(pb0.05) comparing control to mutant. Scale bars=100 μm.
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examined. Here, we present data demonstrating that Foxd3 expres-
sion is maintained in both ENPs and glia and that Foxd3 plays a criti-
cal role in ENPs and glia throughout development of the ENS. Further,
we identify a subpopulation of Foxd3-expressing ENPs that undergo
regulative proliferation and differentiation to compensate for loss of
a large portion of the ENPs that express Ednrb-iCre.

Activity of Ednrb-iCre is specific for vagal NC cells

We generated and characterized an ENS-specific transgenic Cre line
that labels vagal, but not sacral-derived, ENPs. Ednrb-iCre activity is first
detected in vagal-derived NC cells at 11.0 dpc as ENPs migrate through
the midgut and cecum. Using molecular markers in combination with
fate mapping of the Ednrb-iCre lineage, we demonstrated that this
novel Ednrb-iCre transgene labels the majority of Foxd3-expressing
cells within vagal-derived ENPs and the Ednrb-iCre lineage cells gener-
ate both neurons and glia during ENS development. Our finding that
Ednrb-iCre expression specifically labels vagal, but not sacral NC, sug-
gests that this novel Cre transgene could be useful for identification of
molecular differences between vagal and sacral NC cells during devel-
opment. Previous studies suggested that vagal and sacral NC have in-
trinsic differences in their ability to generate the ENS (Burns et al.,
2002; Burns and LeDouarin, 1998). However, there is considerable con-
troversy about the relative role of sacral versus vagal NC, primarily due
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Fig. 10. Analysis of glial differentiation during ENS development in mutant and control embryos and mice. (A–B″) YFP (Ednrb-iCre activity, green) and S100b (glia, red) expression
in control (A–A″) and Foxd3 mutant (B-B″) duodena at 16.5 dpc. Co-localization of S100b and YFP (yellow arrows) was diminished in mutant ENS. Red arrows indicate glia that did
not express YFP. (C–D) Immunodetection of YFP (green) with Sox10 expression (glia, red) in the duodena from adult control (C) and Foxd3mutant (D) mice showed reduced num-
bers of glia derived from the Ednrb-iCre lineage. Yellow arrows indicate co-expression of Sox10 and YFP. (E–H) S100b/YFP double-positive enteric glia (yellow arrows) were
depleted in the mature ENS from mutant mice (E) compared to controls (F). Data in G and H represent 3 independent experiments in which S100b-positive glial cells were counted
in random fields from the duodenum (n=3 control and 5 mutant mice) and the colon (n=3 control and 4 mutant mice). Scale bars=50 μm. All statistics are mean±SEM,
*(pb0.05).
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to lack of specificmolecularmarkers for each population. Gene profiling
of vagal versus sacral NC from neural tube explant cultures failed to
identify genes specifically expressed in either NC population
(Delalande et al., 2008), suggesting that identification of migratory
vagal and sacral ENPs in situ may be required to definitively profile
their gene expression and in vivo characteristics. Although there are a
few molecular markers limited in their expression to the vagal NC, in-
cluding a Hoxb3 enhancer, which is expressed in a sub-population of
vagal NC-derived neurons but absent from enteric glial lineages (Chan
et al., 2005; Lui et al., 2008), a specific and all-encompassing marker
of vagal NC cells remains elusive. Currently, the relative extent of sacral
NC contribution to the distal GI tract in mammals as well as intrinsic
molecular differences between these two NC populations is unknown.
Our data suggest that lineage labeling of Ednrb-iCre expressing cells
would allow for prospective isolation and gene profiling of the over-
whelming majority of vagal NC-derived cells from the GI tract, poten-
tially resolving some of these unanswered questions.

Maintenance of proliferation and gliogenesis during ENS development

Foxd3 is broadly expressed as ENPs enter the gut and then down-
regulated as they undergo progressive differentiation to neuronal
fates. In contrast, Foxd3 was maintained in p75-expressing ENPs
and S100b-positive glia well after initial ENP colonization of the GI
tract. Our data demonstrating that Foxd3 is required to maintain pro-
liferation and glial differentiation, but not neuronal differentiation,
are consistent with the temporal expression of Foxd3. This is also
consistent with the possibility that downregulation of Foxd3 in
ENPs may be an important step in specification of enteric neurons.
This is in contrast to recent data showing that the transcription factor
Hand2 functions primarily in neurogenesis (Lei and Howard, 2011),
implying molecularly distinct programs of differentiation for these
two co-dependent lineages. At present, the transcription factors and
signaling pathways that regulate the dynamic expression of Foxd3
during ENS development are unknown and the molecular pathways
in which Foxd3 functions to maintain both ENPs and enteric glia
have not yet been identified.

Examination of the spatiotemporal expression pattern of Foxd3
revealed that it is comparable to Sox10 expression during ENS devel-
opment (Kuhlbrodt et al., 1998). Here we showed that Foxd3 is re-
quired to maintain Sox10-expressing glia within the Ednrb-iCre
lineage, consistent with our previous work in other regions of the
NC (Mundell and Labosky, 2011; Teng et al., 2008). Because Sox10
is essential for the maintenance of ENPs (Paratore et al., 2002;
Southard-Smith et al., 1998), and for differentiation and maturation
of peripheral nervous system glia (Britsch et al., 2001; Finzsch et al.,
2010), it is possible that the combined defects in maintenance of
ENPs and specification of enteric glia observed in Foxd3flox/−; Ednrb-
iCre embryos may be related to loss or reduction of Sox10. At present
there is no genetic evidence of a functional interaction between
Foxd3 and Sox10, although bioinformatic analysis identified putative
Foxd3 binding sites in the first intron of the zebrafish sox10 gene,
(Dutton et al., 2008) and more recent work described a different
Foxd3 binding site upstream of Sox10 and a synergistic mechanism
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Fig. 11. Foxd3 is required for proliferation of ENPs. (A–C) Immunofluorescence for pH3
(cells undergoing mitosis), Sox10 (ENPs and glia) and YFP (Endrb-iCre lineage) in du-
odena from 14.5 dpc control (A, left panel) and Foxd3 mutant (A, right panel) embryos
carrying the R26RYFP allele. Yellow arrows indicate YFP and pH3 double-positive cells.
Magenta arrows indicate pH3-positive, Sox10-expressing cells that did not co-
express YFP. Red arrows indicate cells that are pH3-positive but YFP- and Sox10-
negative, presumably mesenchymal cells. Quantification of the percent of proliferating
Ednrb-iCre-lineage cells in the duodena is shown in B and the percent of proliferating
Sox10+ cells is shown in C. Despite a clear reduction in the percent of proliferating
YFP-positive cells in mutant embryos compared to controls (A, B), the total level of
ENP cell proliferation in the duodena was unchanged in mutant embryos (C). (D–F)
Immunofluorescence for YFP, Sox10 and pH3 in colons from control and mutant em-
bryos showed decreased proliferation of Ednrb-iCre lineage cells in mutants (D). Quan-
tification of the proliferating Ednrb-iCre lineage cells (E) and the proliferation of Sox10-
positive cells (F) in colons from 14.5 dpc control and mutant embryos again showed a
decrease in proliferation in YFP-positive Foxd3 mutant ENPs and a subsequent increase
in Sox10-expressing cells that did not co-express YFP. Data represent confocal analysis
of GI tracts from 3 mutant and 3 littermate control embryos. 9 non-overlapping 40× con-
focal images (3 fields from duodena and 6 fields from colons) were analyzed from each
embryo. *(pb0.05). Scale bars=50 μm. All statistics are mean±SEM, *(pb0.05).
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between Foxd3 and Sox2 proteins in the control of Sox10 transcrip-
tion in murine NC-derived neuroblastoma cell lines (Wahlbuhl et
al., 2011). Further investigation of the precise pathways and
mechanisms through which Foxd3 maintains ENS proliferation and
gliogenesis will provide a more complete understanding of the tran-
scriptional regulation mediating ENS development.

Compensation in Foxd3 mutant ENS

A surprising finding from our work is that deletion of Foxd3 in the
Ednrb-iCre lineage does not disturb the overt function of the ENS; the
mutant mice appear healthy and we detected no changes in weight or
lifespan. Despite initial disruption of neural patterning at embryonic
stages, AChE histochemistry revealed only modest alterations in con-
nectivity of postnatal enteric ganglia, and lethality or obstructive
bowel disease was not evident in postnatal or adult mutant mice.
Our lineage-mapping data demonstrate that normally, ENPs within
the Ednrb-iCre lineage contribute the majority of neurons and glia
within the developing ENS. In fact, a deletion of the endogenous
Ednrb ENS-specific enhancer used to generate the Ednrb-iCre trans-
gene resulted in loss of ENPs in the cecum and hindgut and postnatal
death from megacolon (Zhu et al., 2004). This clearly demonstrates
that the ENPs activating this enhancer are critical for late stages of
ENS development. In contrast, in Foxd3 mutants, we describe a pro-
found shift in the relative contribution of enteric sub-lineages such
that the ENS was primarily formed from non-Ednrb-iCre lineage
cells. Our results are consistent with the possibility that an indepen-
dent population of ENPs expands in number following deletion of
Foxd3 within the Ednrb-iCre lineage. Concomitant with decreased
proliferation in mutant Ednrb-iCre-expressing cells, overall prolifera-
tion in the ENP pool was unchanged compared to controls. We inter-
pret these data to conclude that a unique sub-population of Foxd3
and Sox10-expressing ENPs that did not express the Ednrb-iCre trans-
gene underwent activation, regulative proliferation and differentia-
tion into both neuronal and glial lineages in response to the severe
depletion of Ednrb-iCre lineage cells.

Regulative lineage compensation, in which an independent cell
population functionally compensates for loss of another, may be a
common mechanism for overcoming developmental deficiencies.
However, few studies have defined mammalian cell populations
with this potential. During skeletal muscle development in mice, con-
ditional ablation of Myf5-expressing cells results in lineage compen-
sation by a Myf5-independent cell population that prevents
disruption of myogenesis (Haldar et al., 2008). In the zebrafish NC,
regulative lineage compensation has been suggested for genetically
distinct populations of NC-derived melanophore precursors; deple-
tion of erbb3b-dependent nerve-associated melanophore precursors
resulted in increased proliferation and differentiation of remaining
melanophore progenitors (Budi et al., 2011). This is not the first de-
scription of compensation within the ENS; a deletion of Hand2 in
the Nestin-expressing ENPs resulted in compensation from ENPs
that did not express the Nestin-Cre transgene used in that study (Lei
and Howard, 2011). In addition, the compensatory changes we ob-
serve here are similar to those observed in chimeric mice showing
that a lack of Ednrb in a sub population of ENPs could be overcome
by wild type ENPs in the duodenum but not in the distal colon
(Kapur et al., 1995). An alternative possibility is that the Ednrb-iCre
lineage may represent a more restricted transient-amplifying ENP
population able to generate some neural and glial cells, but distinct
from multipotent NCSCs present during initial colonization of the GI
tract. While our data suggest the ENS in Foxd3flox/−; Ednrb-iCre mice
contained neurons and glia that were quantitatively comparable to
control mice, we cannot rule out the possibility that some enteric
cell types were differently affected by the loss of Foxd3. Our data
demonstrating increased non-Ednrb-iCre lineage proliferation and
gliogenesis in both the duodenum and colon of Foxd3 mutant embry-
os suggests that sacral NC may not compensate for loss of Ednrb-iCre
lineage cells in all regions of the GI tract. However, given that Foxd3
was deleted after vagal NC colonization of the proximal GI tract,
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another possibility is that the sacral NC ENP pool was activated to
form an increased proportion of the distal ENS.
Implications for regenerative medicine

NCSC replacement has been suggested as a cell-based therapy for
Hirschsprung's disease and other GI neurodegenerative diseases
(Bondurand et al., 2003; Kruger et al., 2002; Micci and Pasricha,
2007). However, therapeutic use of NCSCs for regeneration of the
ENS will require a better understanding of the dynamic cellular prop-
erties of ENPs and the distinct sub-populations of ENPs that generate
the ENS during development. Recent data showed that adult gut-
derived NCSCs, while they have the capacity to generate both neurons
and glia in vitro, give rise predominantly to glia in physiological set-
tings, thereby suggesting that ENS neurogenesis from autologous
sources may be challenging (Joseph et al., 2011). The ability to acti-
vate intrinsic enteric NCSC populations to induce repair of congenital
bowel defects is an intriguing possibility. However, before that possibil-
ity can be realized, it will be important to identify genes and signaling
pathways controlling the self-renewal, migration and differentiation
of ENPs in vivo. Our findings demonstrate several crucial roles played
by Foxd3 during ENS development including maintenance of the ENP
pool, neural patterning and glial differentiation. In addition, our results
suggest that distinct sub-lineages of ENPs are intrinsically able to re-
spond to ENS injury or disease.

Supplementary materials related to this article can be found online
at doi:10.1016/j.ydbio.2012.01.003.
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