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Let q ∈ (1,2); it is known that each x ∈ [0,1/(q − 1)] has an
expansion of the form x = ∑∞

n=1 anq−n with an ∈ {0,1}. It was
shown in [P. Erdős, I. Joó, V. Komornik, Characterization of the
unique expansions 1 = ∑∞

i=1 q−ni and related problems, Bull. Soc.
Math. France 118 (1990) 377–390] that if q < (

√
5 + 1)/2, then

each x ∈ (0,1/(q − 1)) has a continuum of such expansions;
however, if q > (

√
5 + 1)/2, then there exist infinitely many x

having a unique expansion [P. Glendinning, N. Sidorov, Unique
representations of real numbers in non-integer bases, Math. Res.
Lett. 8 (2001) 535–543]. In the present paper we begin the study
of parameters q for which there exists x having a fixed finite
number m > 1 of expansions in base q. In particular, we show that
if q < q2 = 1.71 . . . , then each x has either 1 or infinitely many
expansions, i.e., there are no such q in ((

√
5 + 1)/2,q2). On the

other hand, for each m > 1 there exists γm > 0 such that for any
q ∈ (2 − γm,2), there exists x which has exactly m expansions in
base q.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and summary

Expansions of reals in non-integer bases have been studied since the late 1950s, namely, since the
pioneering works by Rényi [14] and Parry [13]. The model is as follows: fix q ∈ (1,2) and call any 0–1
sequence (an)n�1 an expansion in base q for some x � 0 if

x =
∞∑

n=1

anq−n. (1.1)
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Note that x must belong to Iq := [0,1/(q − 1)] and that for each x ∈ Iq there is always at least one
way of obtaining the an , namely, via the greedy algorithm (“choose 1 whenever possible”) – which
until recently has been considered virtually the only option.

In 1990 Erdős et al. [4] showed (among other things) that if q < G := (
√

5 + 1)/2 ≈ 1.61803, then
each x ∈ (0,1/(q − 1)) has in fact 2ℵ0 expansions of the form (1.1). If q = G , then each x ∈ Iq has 2ℵ0

expansions, apart from x = nG (mod 1) for n ∈ Z, each of which has ℵ0 expansions in base q (see [17]
for a detailed study of the space of expansions for this case). However, if q > G , then although a.e.
x ∈ Iq has 2ℵ0 expansions in base q [15], there always exist (at least countably many) reals having a
unique expansion – see [5].

Let Uq denote the set of x ∈ Iq which have a unique expansion in base q. The structure of the set
Uq is reasonably well understood; its main property is that Uq is countable if q is “not too far” from
the golden ratio, and uncountable of Hausdorff dimension strictly between 0 and 1 otherwise. More
precisely, let qKL denote the Komornik–Loreti constant introduced in [7], which is defined as the unique
solution of the equation

∞∑
1

mnx−n = 1,

where m = (mn)∞0 is the Thue–Morse sequence m = 0110 1001 1001 0110 . . . , i.e., a fixed point of the
morphism 0 → 01, 1 → 10. The Komornik–Loreti constant is known to be the smallest q for which
x = 1 has a unique expansions in base q (see [7]), and its numerical value is approximately 1.78723.1

It has been shown by Glendinning and the author in [5] that

(1) Uq is countable if q ∈ (G,qKL), and each unique expansion is eventually periodic;
(2) Uq is a continuum of positive Hausdorff dimension if q > qKL.

Let now m ∈ N ∪ {ℵ0} and put

Bm = {
q ∈ (G,2): ∃x ∈ Iq which has exactly m expansions in base q of the form (1.1)

}
.

It follows from the quoted theorem from [5] that B1 = (G,2), but very little has been known about
Bm for m � 2. The purpose of this paper is to begin a systematic study of these sets.

Remark 1.1. It is worth noting that in [3] it has been shown that for each m ∈ N there exists an
uncountable set Em of q such that the number x = 1 has m + 1 expansions in base q. The set Em ⊂
(2 − εm,2), where εm is small. A similar result holds for m = ℵ0.

Note also that a rather general way to construct numbers q ∈ (1.9,2) such that x = 1 has two
expansions in base q, has been suggested in [8].

2. Lower order: q close to the golden ratio

We will write x ∼ (a1,a2, . . .)q if (an)n�1 is an expansion of x in base q of the form (1.1).

Theorem 2.1. For any transcendental q ∈ (G,qKL) we have the following dichotomy: each x ∈ Iq has either a
unique expansion or a continuum of expansions in base q.

Proof. We are going to exploit the idea of branching introduced in [16]. Let x ∈ Iq have at least two
expansions of the form (1.1); then there exists the smallest n � 0 such that x ∼ (a1, . . . ,an,an+1, . . .)q

and x ∼ (a1, . . . ,an,bn+1, . . .)q with an+1 �= bn+1. We may depict this bifurcation as shown in Fig. 1.

1 For the list of all constants used in the present paper, see Table 5.1 before the bibliography.
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Fig. 1. Branching and bifurcations.

If (an+1,an+2, . . .)q is not a unique expansion, then there exists n2 > n with the same property,
etc. As a result, we obtain a subtree of the binary tree which corresponds to the set of all expansions
of x in base q, which we call the branching tree of x. It has been shown in [16, Theorem 3.6] that if
q ∈ (G,qKL) that for all x, except, possibly, a countable set, the branching tree is in fact the full binary
tree and hence x has 2ℵ0 expansions in base q; the issue is thus about these exceptional x’s.

Note that for x to have at most countably many expansions in base q, its branching tree must
have at least two branches which do not bifurcate. In other words, there exist two expansions of x in
base q, (an)n�1 and (bn)n�1 such that (ak,ak+1, . . .) is a unique expansion and so is (b j,b j+1, . . .) for
some k, j ∈ N.

Without loss of generality, we may assume j = k, because the shift of a unique expansion is known
to be a unique expansion [5]. Hence

x =
k∑

i=1

aiq
−i + q−krk(q) =

k∑
i=1

biq
−i + q−kr′

k(q),

where rk(q), r′
k(q) ∈ Uq and rk(q) �= r′

k(q). (If they are equal, then q is obviously algebraic.) Since
each unique expansion for q ∈ (G,qKL) is eventually periodic [5, Proposition 13], we have Uq ⊂ Q(q),
whence the equation

k∑
i=1

(ai − bi)q
−i = q−k(rk(q) − r′

k(q)
)

(2.1)

implies that q is algebraic, unless (2.1) is an identity. Assume it is an identity for some q; then it is
an identity for all q > 1, because rk(q) = π(q) + ρ(q)/(1 − q−r) and r′

k(q) = π ′(q) + ρ ′(q)/(1 − q−r′
),

where π , π ′ , ρ , ρ ′ are polynomials.
Let j = min{i � 1: ai �= bi} < k. We multiply (2.1) by q j and get

a j − b j +
k∑

i= j+1

(ai − bi)q
j−i ≡ q j−k(rk(q) − r′

k(q)
)
,

which is impossible, since q → +∞ implies a j − b j = 0, a contradiction. �
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The next question we are going to address in this section is finding the smallest element of B2.
Let q ∈ Bm and denote by U (m)

q the set of x ∈ Iq which have m expansions in base q. Firstly, we give a
simple characterization of the set B2:

Lemma 2.2. A number q ∈ (G,2) belongs to B2 if and only if 1 ∈ Uq − Uq.

Proof. 1. Let q ∈ B2; then there exists x having exactly two expansions in base q. Without loss of gen-
erality we may assume that there exist two expansions of x, with a1 = 0 and with a1 = 1. (Otherwise
we shift the expansion of x until we obtain x′ having this property.) Note that x ∈ [ 1

q , 1
q(q−1)

] =: Jq –
the interval which is called the switch region in [2].

Conversely, if x ∈ Jq , then it has a branching at n = 1. Since x has only two different expansions in
base q, both shifts of x, namely, qx (for a1 = 0) and qx − 1 (for a1 = 1), must belong to Uq , whence
1 ∈ Uq − Uq .

2. Let y ∈ Uq and y + 1 ∈ Uq . We claim that x := (y + 1)/q belongs to U (2)
q . Note that y ∈ Uq

implies y /∈ Jq , whence y < 1/q, because if y were greater than 1/(q(q − 1)), we would have y + 1 >
q2−q+1

q−1 > 1
q−1 .

Thus, y < 1/q, whence x ∈ Jq , because y + 1 < 1/(q − 1). Since x ∈ Jq , it has at least two differ-
ent expansions in base q, with a1 = 0 and a1 = 1, and shifting each of them yields qx = y + 1 and
qx − 1 = y, both having unique expansions. Hence there are only two possible expansions of x, i.e.,
x ∈ U (2)

q . �
This criterion, simple as it is, indicates the difficulties one faces when dealing with B2 as opposed

to the unique expansions; at first glance, it may seem rather straightforward to verify whether if a
number x has a unique expansion, then so does x + 1 – but this is not the case.

The reason why this is actually hard is the fact that “typically” adding 1 to a number alters the
tail of its greedy expansion (which, of course, coincides with its unique expansion if x ∈ Uq) in a
completely unpredictable manner – so there is no way of telling whether x + 1 belongs to Uq as well.

Fortunately, if q is sufficiently small, the set of unique expansions is very simple, and if q is close
to 2, then Uq is large enough to satisfy Uq − Uq = [−1/(q − 1),1/(q − 1)] – see Section 4.

Lemma 2.3. Let G < q � q f ; then any unique expansion belongs to the set {0k(10)∞,1k(01)∞,0∞,1∞} with
k � 0.

Proof. If x ∈ Δq := ((2 −q)/(q − 1),1), then, by [5, Section 4], each unique expansion for this range of
q is either (10)∞ or (01)∞ . If x ∈ Iq \Δq , then any unique expansion is of the form 1kε or 0kε, where
ε is a unique expansion of some y ∈ Δq [5, Corollary 15]. �
Proposition 2.4. The smallest element of B2 is q2 , the appropriate root of

x4 = 2x2 + x + 1, (2.2)

with a numerical value 1.71064. Furthermore, B2 ∩ (G,q f ) = {q2}, where q f is the cubic unit which satisfies

x3 = 2x2 − x + 1, q f ≈ 1.75488 . . . . (2.3)

Proof. We first show that q f ∈ B2. By Lemma 2.2, it suffices to produce y ∈ Uq such that y + 1 ∈ Uq

as well. Note that q f satisfies x4 = x3 + x2 + 1 (together with −1); put y ∼ (0000010101 . . .)q f . Then
y + 1 ∼ (11010101 . . .)q f , both unique expansions by Lemma 2.3.
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Hence inf B2 � q f . This makes our search easier, because by Lemma 2.3, each unique expansion
for q ∈ (G,q f ) belongs to the set {0k(10)∞,1k(01)∞,0∞,1∞} with k � 0.

Let us show first that the two latter cases are impossible for q ∈ (G,q f ). Indeed, if x ∼ (10∞)q

had exactly two expansions in base q, then the other expansion would be of the form (01k(01)∞)q ,
which would imply 1 = 1/q + 1/q2 + · · · + 1/qk + 1/qk+2 + 1/qk+4 + · · · with k � 1. If k � 2, then 1 <

1/q + 1/q2 + 1/q4, i.e., q > q f ; k = 1 implies q = G . The case of the tail 1∞ is completely analogous.
To simplify our notation, put λ = q−1 ∈ (1/q f ,1/G). So let x ∼ (0�−1(10)∞)q and x + 1 ∼

(1k−1(01)∞)q , both in Uq , with � � 1, k � 1. Then we have

1 + λ�

1 − λ2
= λ − λk−1

1 − λ
+ λk−1

1 − λ2
.

Simplifying this equation yields

λ� + λk = 2λ2 + λ − 1. (2.4)

In view of symmetry, we may assume k � �.

Case 1. � = 1. This implies λk = 2λ2 − 1, whence 2λ2 − 1 > 0, i.e., λ > 1/
√

2 > 1/G . Thus, there are no
solutions of (2.4) lying in (1/q f ,1/G) for this case.

Case 2. � = 2. Here λk = λ2 + λ − 1 > 0, whence λ > 1/G . Thus, there are no solutions here either.

Case 3. � = 3. We have

λk = −λ3 + 2λ2 + λ − 1. (2.5)

Note that the root of (2.5) as a function of k is decreasing. For k = 3 the root is above 1/G , for k = 4
it is exactly 1/G . For k = 5 the root of (2.5) satisfies x5 = −x3 + 2x2 + x − 1, which can be factorized
into x4 + x3 + 2x2 = 1, i.e., the root is exactly 1/q2.

Finally, for k = 6 the root satisfies x6 = −x3 +2x2 + x−1, which factorizes into x3 − x2 +2x−1 = 0,
i.e., λ = 1/q f . For k > 6 the root of (2.5) lies outside the required range.

Case 4. � = 4, k ∈ {4,5}. For k = 4 the root of 2x4 = 2x2 + x−1 is 0.565 . . . < 1/q f = 0.569 . . . . If k = 5,
then the root is 0.543 . . . , i.e., even smaller. Hence there are no appropriate solutions of (2.4) here.

Case 5. If � � 5 and k � 5, then the LHS of (2.4) is less than 2G−5 < 0.2, whereas the RHS is greater
than 2q−2

f + q−1
f − 1 > 0.21, whence there are no solutions of (2.4) in this case. If � = 4, k � 6, then,

similarly, λk + λ� � λ4 + λ6 < G−4 + G−6 < 0.202.

Thus, the only case which produces a root in the required range is Case 3, which yields 1/q2.
Hence

(G,q f ) ∩ B2 = {q2}. � (2.6)

Remark 2.5. Let q = q2 and let y ∼ (0000(10)∞)q2 ∈ Uq and y + 1 ∼ (11(01)∞)q2 ∈ Uq . We thus see
that in this case the tail of the expansion does change, from (10)∞ to (01)∞ . (Not the period, though!)
Also, the proof of Lemma 2.2 allows us to construct x ∈ U (2)

q2 explicitly, namely, x ∼ (011(01)∞)q2 ∼
(10000(10)∞)q2 , i.e., x ≈ 0.64520.
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A slightly more detailed study of Eq. (2.4) shows that it has only a finite number of solutions
λ ∈ (1/qKL,1/G). In order to construct an infinite number of q ∈ B2 ∩ (q f ,qKL), one thus needs to
consider unique expansions with tails different from (01)∞:

Proposition 2.6. The set B2 ∩ (q f ,qKL) is infinite countable.

Proof. We are going to develop the idea we used to show that q f ∈ B2. Namely, let (q(n)

f )n�1 be the
sequence of algebraic numbers specified by their greedy expansions of 1:

q(1)

f : 1 ∼ (
11 0∞)

q(1)
f

= G,

q(2)

f : 1 ∼ (
1101 0∞)

q(2)
f

= q f ,

q(3)

f : 1 ∼ (
1101 0011 0∞)

q(3)
f

,

.

.

.

q(n)

f : 1 ∼ (
m1, . . . ,m2n 0∞)

q(n)

f
,

where (mn) is the Thue–Morse sequence – see introduction. It is obvious that q(n)

f ↗ qKL. We now
define the sequence zn as follows:

zn ∼ (
02n

(m2n−1+1 . . .m2n )∞
)

q(n)

f
,

whence

zn + 1 ∼ (
m1, . . . ,m2n−1 (m2n−1+1 . . .m2n )∞

)
q(n)

f
.

Ref. [5, Proposition 9] implies that zn ∈ U
q(n)

f
and zn + 1 ∈ U

q(n)
f

, whence by Lemma 2.2, q(n)

f ∈ B2 for

all n � 2. �
Lemma 2.7. We have Bm ⊂ B2 for any natural m � 3.

Proof. If q ∈ Bm for some natural m � 3, then the branching argument immediately implies that there

exists x ∈ U (m′)
q , with 1 < m′ < m. Hence, by induction, there exists x′ ∈ U (2)

q . Therefore, Bm ⊂ B2 for
all m ∈ N \ {1}. �

Our next result shows that a weaker analogue of Theorem 2.1 holds without assuming q being
transcendental, provided q < q f .

Theorem 2.8. For any q ∈ (G,q2) ∪ (q2,q f ), each x ∈ Iq has either a unique expansion or infinitely many

expansions of the form (1.1) in base q. Here G = 1+√
5

2 and q2 and q f are given by (2.2) and (2.3) respectively.

Proof. It follows immediately from Proposition 2.4, Lemma 2.7 and relation (2.6) that Bm ∩ (G,q f ) ⊂
{q2} for all m ∈ N \ {1}. �
Corollary 2.9. For q ∈ (G,q2) ∪ (q2,q f ) each x ∈ Jq has infinitely many expansions in base q.
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Fig. 2. A branching for countably many expansions.

Proof. It suffices to recall that each x ∈ Jq has at least two expansions in base q and apply Theo-
rem 2.8. �

It is natural to ask whether the claim of Theorem 2.8 can be strengthened in the direction of
getting rid of q ∈ Bℵ0 so we could claim that a stronger version of Theorem 2.1 holds for q < q f . It
turns out that the answer to this question is negative.

Notice first that Bℵ0 �⊂ B2, since G ∈ Bℵ0 \ B2. Our goal is to show that in fact, Bℵ0 \ B2 is infinite
– see Proposition 2.11 below.

We begin with a useful definition. Let x ∼ (a1,a2, . . .)q; we say that am is forced if there is no
expansion of x in base q of the form x ∼ (a1, . . . ,am−1,bm, . . .)q with bm �= am .

Lemma 2.10. Let q > G and x ∼ (a1, . . . ,am, (01)∞)q ∼ (b1, . . . ,bk,a1, . . . ,am, (01)∞)q, where a1 �= b1 ,
and assume that a2, . . . ,am are forced in the first expansion and b2, . . . ,bk are forced in the second expansion.
Then q ∈ Bℵ0 .

Proof. Since all the symbols in the first expansion except a1, are forced, the set of expansions for x
in base q is as follows:

a1, . . . ,am, (01)∞,

b1, . . . ,bk,a1, . . . ,am, (01)∞,

b1, . . . ,bk,b1, . . . ,bk,a1, . . . ,am, (01)∞,

.

.

.

i.e., clearly infinite countable. The “ladder” branching pattern for x is depicted in Fig. 2. �

Proposition 2.11. The set Bℵ0 ∩ (q2,q f ) is infinite countable.



748 N. Sidorov / Journal of Number Theory 129 (2009) 741–754
Proof. Define q(n) as the unique positive solution of

(
10000(10)∞

)
q(n) ∼ (

0 11(01)n−1 1 0000(10)∞
)

q(n)

(never mind the boxes for the moment) and put λn = 1/q(n) . A direct computation shows that

λ2n+1
n = 1 − λn − 2λ2

n + λ3
n + λ5

n

1 − λn − 2λ2
n + λ5

n
,

whence λn ↗ 1/q2 (as 1/q2 is a root of 1 − x − 2x2 + x3 + x5), and consequently, q(n) ↘ q2.
By Lemma 2.10, if we show is that each symbol between the boxed 0 and the boxed 1 is forced,

then q(n) ∈ Bℵ0 . Let us prove it.
Notice that if x ∼ (a1,a2, . . .)q , then a1 = 0 is forced if and only if

∑∞
1 akq−k < 1/q; similarly,

a1 = 1 is forced if
∑∞

1 akq−k > 1/q(q − 1). We need the following

Lemma 2.12.

(1) If q > G,m � 0 and x ∼ (1(01)m1∗)q, then the first 1 is forced (where ∗ stands for an arbitrary tail).
(2) If q > q2,m � 1 and x ∼ ((01)m10000(10)∞)q, then the first 0 is forced.

Proof. (1) By the above remark, we need to show that

1

q
+ 1

q3
+ · · · + 1

q2m+1
+ 1

q2m+2
>

1

q(q − 1)
,

which is equivalent to (with λ = 1/q < 1/G)

1 − λ2m+2

1 − λ2
+ λ2m+1 >

λ

1 − λ

or 1 − λ − λ2 > λ2m+1 − λ2m+2 − λ2m+3, which is true, in view of 1 − λ − λ2 > 0 and λ2m+1 < 1.
(2) Putting λ = 1/q, we need to show that

λ2 + λ4 + · · · + λ2m + λ2m+1 + λ2m+6

1 − λ2
< λ.

This is equivalent to

λ2m <
1 − λ − λ2

1 − λ − λ2 + λ5
.

The LHS in this inequality is a decreasing function of m, and for m = 1 we have that it holds for
λ < 0.59, whence q > q2 suffices. �

The proof of Proposition 2.11 now follows from the definition of the sequence (q(n))n�1 and from
Lemma 2.12. �
Remark 2.13. The set Bℵ0 ∩ (G,q2) is nonempty either: take qω to be the appropriate root of x5 =
x4 + x3 + x − 1, with the numerical value ≈ 1.68042. Then

x ∼ (
100(10)∞

) ∼ (
0 111 1 00(10)∞

)
,
qω qω
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and similarly to the above, one can easily show that the three 1s between the boxed symbols are
forced. Hence, by Lemma 2.10, qω ∈ Bℵ0 . The question whether inf Bℵ0 = G , remains open.

Remark 2.14. The condition of q being transcendental in Theorem 2.1 is probably not necessary even
for q > q f . It would be interesting to construct an example of a family of algebraic q ∈ (q f ,qKL) for
which the dichotomy in question holds.

3. Middle order: q just above qKL

This case looks rather difficult for a hands-on approach, because, as we know, the set Uq for
q > qKL contains lots of transcendental numbers x, for which the tails of expansions in base q for
x and x + 1 are completely different. However, a very simple argument allows us to link B2 to the
well-developed theory of unique expansions for x = 1.

Following [7], we introduce

U := {
q ∈ (1,2): x = 1 has a unique expansion in base q

}
.

Recall that in [7] it was shown that min U = qKL.

Lemma 3.1. We have U ⊂ B2 . Consequently, the set B2 ∩ (qKL,qKL + δ) has the cardinality of the continuum
for any δ > 0.

Proof. Since x = 0 has a unique expansion in any base q, the first claim is a straightforward corollary
of Lemma 2.2.

The second claim follows from the fact that U ∩ (qKL,qKL + δ) has the cardinality of the continuum
for any δ > 0, which in turn is a consequence of the fact that the closure of U is a Cantor set – see
[9, Theorem 1.1]. �
4. Top order: q close to 2

4.1. m = 2

We are going to need the notion of thickness of a Cantor set. Our exposition will be adapted to
our set-up; for a general case see, e.g., [1].

A Cantor set C ⊂ R is usually constructed as follows: first we take a closed interval I and remove
a finite number of gaps, i.e., open subintervals of I . As a result we obtain a finite union of closed
intervals; then we continue the process for each of these intervals ad infinitum. Consider the nth level,
Ln; we have a set of newly created gaps and a set of bridges, i.e., closed intervals connecting gaps.
Each gap G at this level has two adjacent bridges, P and P ′ .

The thickness of C is defined as follows:

τ (C) = inf
n

min
G∈Ln

min

{ |P |
|G| ,

|P ′|
|G|

}
,

where |I| denotes the length of an interval I . For example, if C is the standard middle-thirds Cantor
set, then τ (C) = 1, because each gap is surrounded by two bridges of the same length.

The reason why we need this notion is the theorem due to Newhouse [11] asserting that if C1 and
C2 are Cantor sets, I1 = conv(C1), I2 = conv(C2), and τ (C1)τ (C2) > 1 (where conv stands for convex
hull), then C1 + C2 = I1 + I2, provided the length of I1 is greater than the length of the maximal gap
in C2 and vice versa. In particular, if τ (C) > 1, then C + C = I + I .

Notice that Uq is symmetric about the centre of Iq – because whenever x ∼ (a1,a2, . . .)q , one has
1

q−1 − x ∼ (1 −a1,1 −a2, . . .)q . Recall that Lemma 2.2 yields the criterion 1 ∈ Uq − Uq for q ∈ B2. Thus,
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we have Uq = 1/(q − 1) − Uq , whence Uq − Uq = Uq + Uq − 1/(q − 1). Hence our criterion can be
rewritten as follows:

q ∈ B2 ⇐⇒ q

q − 1
∈ Uq + Uq. (4.1)

It has been shown in [5] that the Hausdorff dimension of Uq tends to 1 as q ↗ 2. Thus, one might
speculate that for q large enough, the thickness of Uq is greater than 1, whence by the Newhouse
theorem, Uq + Uq = 2Iq , which implies the RHS of (4.1).

However, there are certain issues to be dealt with on this way. First of all, in [10] it has been shown
that Uq is not necessarily a Cantor set for q > qKL. In fact, it may contain isolated points and/or be
non-closed. This issue however is not really that serious because Uq is known to differ from a Cantor
set by a countable or empty set [10], which is negligible in our set-up.

A more serious issue is the fact that even if the Hausdorff dimension of a Cantor set is close to 1,
its thickness can be very small. For example, if one splits one gap by adding a very small bridge, the
thickness of a resulting Cantor set will become very small as well! In other words, τ is not at all an
increasing function with respect to inclusion.

Nonetheless, the following result holds:

Lemma 4.1. Let T denote the real root of x3 = x2 + x + 1, T ≈ 1.83929. Then

Uq + Uq =
[

0,
2

q − 1

]
, q � T . (4.2)

Proof. Let Σq denote the set of all sequences which provide unique expansions in base q. It has been
proved in [5] that Σq ⊆ Σq′ if q < q′; hence ΣT ⊆ Σq . Note that by [5, Lemma 4], ΣT can be described
as follows: it is the set of all 0–1 sequences which do not contain words 0111 and 1000 and also do
not end with (110)∞ or (001)∞ . Let Σ̃T ⊃ ΣT denote the set of 0–1 sequences which do not contain
words 0111 and 1000. Note that by the cited lemma, Σ̃T ⊂ Σq whenever q > T .

Denote by πq the projection map from {0,1}N onto Iq defined by the formula

πq(a1,a2, . . .) =
∞∑

n=1

anq−n,

and put Vq = πq(Σ̃T ). Since Σ̃T is a perfect set in the topology of coordinate-wise convergence, and
since π−1

q |Uq is a continuous bijection, πq : Σ̃T → Vq is a homeomorphism, whence Vq is a Cantor
set which is a subset of Uq for q > T . If q = T , then πq(ΣT ) = πq(Σ̃T ), hence the same conclusion
about VT .

In view of Newhouse’s theorem, to establish (4.2), it suffices to show that τ (Vq) > 1, because
conv(Vq) = conv(Uq) = Iq . To prove this, we need to look at the process of creation of gaps in Iq . Note
that any gap is the result of the words 000 and 111 in the symbolic space being forbidden. The first
gap thus arises between πq([0110]) = [λ2 +λ3, λ2 +λ3 + λ5

1−λ
] and πq([1001]) = [λ+λ4, λ+λ4 + λ5

1−λ
].

(Here, as above, λ = q−1 ∈ (1/2,1/T ) and [i1 . . . ir] denotes the corresponding cylinder in {0,1}N .) The

length of the gap is λ + λ4 − (λ2 + λ3 + λ5

1−λ
), which is significantly less than the length of either of

its adjacent bridges.
Furthermore, it is easy to see that any new gap on level n � 5 always lies between πq([a0110])

and πq([a1001]), where a is an arbitrary 0–1 word of the length n − 4 which contains neither 0111

nor 1000. The length of the gap is thus independent of a and equals λn−3 + λn − λn−2 − λn−1 − λn+1

1−λ
.

As for the bridges, to the right of this gap we have at least the union of the images of the cylinders
[a1001], [a1010] and [a1011], which yields the length λn−3 + λn−1

1−λ
− λn−3 − λn = λn−1

1−λ
− λn .
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Hence

|gap|
|bridge1|

�
1 − λ − λ2 + λ3 − λ4

1−λ

λ2

1−λ
− λ3

= 1 − 2λ + 2λ3 − 2λ4

λ2 − λ3 + λ4
.

This fraction is indeed less than 1, since this is equivalent to the inequality

3λ4 − 3λ3 + λ2 + 2λ − 1 > 0, (4.3)

which holds for λ > 0.48.
The bridge on the left of the gap is [πq(a010∞),πq(a01101∞)], and its length is |bridge2| =

λn−2 +λn−1 + λn+1

1−λ
−λn−2 = λn−1 + λn+1

1−λ
= λn−1

1−λ
−λn = |bridge1|, whence |bridge2| < |gap|, and we are

done. �
As an immediate corollary of Lemma 4.1 and (4.1), we obtain

Theorem 4.2. For any q ∈ [T ,2) there exists x ∈ Iq which has exactly two expansions in base q.

Remark 4.3. The constant T in the previous theorem is clearly not sharp – inequality (4.3), which is
the core of our proof, is essentially the argument for which we need a constant close to T . Considering
Uq directly (instead of Vq) should help decrease the lower bound in the theorem (although probably
not by much).

4.2. m � 3

Theorem 4.4. For each m ∈ N there exists γm > 0 such that

(2 − γm,2) ⊂ B j, 2 � j � m.

Furthermore, for any fixed m ∈ N,

lim
q↗2

dimH U (m)
q = 1, (4.4)

where, as above, U (m)
q denotes the set of x ∈ Iq which have precisely m expansions in base q.

Proof. Note first that if q ∈ Bm and 1 ∈ U (m)
q − Uq , then q ∈ Bm+1. Indeed, analogously to the proof

of Lemma 2.2, if y ∈ Uq and y + 1 ∈ U (m)
q , then (y + 1)/q lies in the interval Jq , and the shift of its

expansion beginning with 1, belongs to Uq , and the shift of its expansion beginning with 0, has m
expansions in base q.

Similarly to Lemma 4.1, we want to show that for a fixed m � 2,

U (m)
q − Uq =

[
− 1

q − 1
,

1

q − 1

]

if q is sufficiently close to 2. We need the following result which is an immediate corollary of
[6, Theorem 1]:
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Proposition. For each E > 0 there exists Δ > 0 such that for any two Cantor sets C1, C2 ⊂ R such that
conv(C1) = conv(C2) and τ (C1) > Δ,τ (C2) > Δ, their intersection C1 ∩ C2 contains a Cantor set C with
τ (C) > E.

Let Tk be the appropriate root of xk = xk−1 + xk−2 + · · · + x + 1. Then Tk ↗ 2 as k → +∞, and it
follows from [5, Lemma 4] that ΣTk is a Cantor set of 0–1 sequences which do not contain 10k nor
01k and do not end with (1k−10)∞ or (0k−11)∞ . Similarly to the proof of Lemma 4.1, we introduce
the sets Σ̃Tk and define V (k)

q = πq(Σ̃Tk ) for q > Tk . For the same reason as above, V (k)
q is always a

Cantor set for q � Tk .
Using the same arguments as in the aforementioned proof, one can show that for any M > 1 there

exists k ∈ N such that τ (V (k)
q ) > M for all q > Tk . More precisely, any gap which is created on the nth

level is of the form [πq(a01k−10) + λn+1/(1 − λ),πq(10k−11)], while the bridge on the right of this
gap is at least [πq(10k−11),πq(101k−1) + λn+1/(1 − λ)]; a simple computation yields

|bridge|
|gap| � λ2 + λk − λk+1

2λk − λk+1 + 1 − 2λ
∼ λ2

1 − 2λ
→ +∞, k → +∞, (4.5)

since λ � T −1
k → 1/2 as k → +∞. The same argument works for the bridge on the left of the gap.

We know that 1
q (U (m)

q ∩ (Uq − 1)) is a subset of U (m+1)
q ∩ Jq; we can also extend it to Iq \ Jq by

adding any number 0s or any number of 1s as a prefix to the expansion of any x ∈ 1
q (U (m)

q ∩ (Uq − 1)).

Thus, conv(U (m+1)
q ) = Iq , provided this set is nonempty.

Let us show via an inductive method that U (m+1)
q is nonempty for m � 2. Consider U (3)

q ; by the
above, there exists k3 such that for q > Tk3 , the intersection Uq ∩ (Uq − 1) contains a Cantor set of
thickness greater than 1. Extending it to the whole of Iq , we obtain a Cantor set of thickness greater

than 1 whose support is Iq . This set is contained in U (2)
q , whence U (2)

q − Uq = [− 1
q−1 , 1

q−1 ], yielding

that U (3)
q �= ∅ for q > Tk3 .

Finally, by increasing q, we make sure U (3)
q contains a Cantor set of thickness greater than 1,

which implies U (4)
q �= ∅, etc. Thus, for any m � 3 there exists km such that U (m)

q �= ∅ if q > Tkm . Putting
γm = 2 − Tkm completes the proof of the first claim of the theorem.

To prove (4.4), notice that from (4.5) it follows that τ (V (k)
q ) → +∞ as k → +∞. Since for any

Cantor set C ,

dimH (C) � log 2

log(2 + 1/τ (C))

(see [12, p. 77]), we have dimH (V (k)
q ) → 1 as k → +∞, whence dimH (U (m)

q ) → 1 as q → 2, in view of
Tk ↗ 2 as k → +∞. �
Remark 4.5. From the proof it is clear that the constructed sequence γm → 0 as m → +∞. It would
be interesting to obtain some bounds for γm; this could be possible, since we roughly know how Δ

depends on E in the proposition quoted in the proof. Namely, from [6, Theorem 1] and the remark in
p. 888 of the same paper, it follows that for large E we have Δ ∼ √

E .

Finally, in view of γm → 0, one may ask whether actually
⋂

m∈N∪ℵ0
Bm �= ∅. It turns out that the

answer to this question is affirmative.

Proposition 4.6. For q = T and any m ∈ N ∪ ℵ0 there exists xm ∈ Iq which has m expansions in base q.

Proof. Let first m ∈ N. We claim that
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xm ∼ (
1(000)m(10)∞

)
q ∈ U (m+1)

q .

Note first that if some x ∼ (10001 . . .)q has an expansion (0,b2,b3,b4, . . .) in base q, then b2 = b3 =
b4 = 1 – because (01101∞)q < (100010∞)q , a straightforward check.

Therefore, if xm ∼ (0,b2,b3, . . .)q for m = 1, then b2 = b3 = b4 = 1, and since 1 = 1/q + 1/q2 +
1/q3, we have (b5,b6, . . .)q = ((10)∞)q , the latter being a unique expansion. Hence x1 has only two
expansions in base q.

For m � 2, we still have b2 = b3 = 1, but b4 can be equal to 0. This, however, prompts b5 = b6 = 1,
and we can continue with b3i−1 = b3i = 1,b3i+1 = 0 until b3 j−1 = b3 j = b3 j+1 = 1 for some j � m,
since (10∞)q ∼ ((011) j10∞)q , whence (1(000) j(10)∞)q > ((011) j01∞)q for any j � 1.

Thus, any expansion of xm in base q is of the form

xm ∼ (
(011) j1(000)m− j(10)∞

)
q, 0 � j � m,

i.e., xm ∈ U (m+1)
q .

For m = ℵ0, we have x∞ = limm→∞ xm ∼ (10∞)q . Notice that x∞ ∼ (011 10∞)q with the first two

1s clearly forced so we can apply Lemma 2.10 to conclude that x∞ ∈ U (ℵ0)
q , whence q = T ∈ Bℵ0 as

well. �
Remark 4.7. The choice of the tail (10)∞ in the proof is unimportant; we could take any other tail, as
long as it is a unique expansion which begins with 1. Thus, for q = T ,

dimH U (m)
q = dimH Uq, m ∈ N.

This seems to be a very special case, because typically one might expect a drop in dimension with m.
Note that in [5] it has been shown that dimH UT = log G/ log T ≈ 0.78968.

5. Summary and open questions

Summing up, here is the list of basic properties of the set B2:

• The set B2 ∩ (G,qKL) is infinite countable and contains only algebraic numbers (the “lower or-
der”2). The latter claim is valid for Bm with m � 3, although it is not clear whether Bm ∩ (G,qKL)

is nonempty.
• B2 ∩ (qKL,qKL + δ) has the cardinality of the continuum for any δ > 0 (the “middle order”).
• [T ,2) ⊂ B2 (the “top order”), with a similar claim about Bm with m � 3.

Here are a few open questions:

• Is B2 closed?
• Is B2 ∩ (G,qKL) a discrete set?
• Is it true that dimH (B2 ∩ (qKL,qKL + δ)) > 0 for any δ > 0?
• Is it true that dimH (B2 ∩ (qKL,qKL + δ)) < 1 for some δ > 0?
• What is the value of inf Bm for m � 3?
• What is the smallest value q0 such that Uq + Uq = 2Iq for q � q0?
• Is inf Bℵ0 = G?
• Does Bℵ0 contain an interval as well?

2 Our terminology is borrowed from cricket.
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Table 5.1
The table of constants used in the text.

q Equation Numerical value

G x2 = x + 1 1.61803
qω x5 = x4 + x3 + x − 1 1.68042
q2 x4 = 2x2 + x + 1 1.71064
q f x3 = 2x2 − x + 1 1.75488
qKL

∑∞
1 mnx−n+1 = 1 1.78723

T x3 = x2 + x + 1 1.83929
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