
Theoretical
Computer Science

Theoretical Computer Science 207 (1998) 329-342 EI

Randomized Boolean decision trees:
Several remarks

Nikolai K. Vereshchagin*.’

Lkpurtment of‘ Muthemuticd Logic, Fuculty c!f’ Mwhunics and Muthrmutic.~. .44osco~~~ Stutc C’ni~w.vit~~.

Moscow 119899. Russia

Abstract

Assume we want to show that (a) the cost of any randomized decision tree computing a given
Boolean function is at least c. To this end, it suffices to prove that (b) there is a probability
distribution over the set of all assignments to variables of that function with respect to which

the average cost of any deterministic decision tree computing that function is at least C. Yao
(1977) showed that this method is universal for proving lower bounds for randomized errorless
decision trees, that is, that (a) is equivalent to (b). In the present paper we prove that this is
the case also for randomized decision trees which are allowed to make errors. This gives the

positive answer to the question posed in Yao (1977).
In the second part of the paper we exhibit an example when randomized directional decision

trees (defined in Yao (1977)) to evaluate read once formulae are not optimal. We construct a
formula F, of n Boolean variables such that the cost of the optimal directional decision tree
computing F, is n(n’) and there is an undirectional randomized decision tree computing F,, of
cost O(na) for some p<r. @ 1998-Elsevier Science B.V. All rights reserved

Ktytwds; Boolean decision trees; Randomized algorithm; Directional algorithms;
Undirectional algorithms

1. Introduction

Boolean decision trees model is the most simple model to compute Boolean func-

tions. In this model, the primitive operation made by an algorithm is evaluating an

input Boolean variable. So the cost of a (deterministic) algorithm is the number of

variables it evaluates on a worst case input. It is easy to find the deterministic com-

plexity of all explicit Boolean functions (for most functions it is equal to the number

of variables).

* E-mail: ver@mech.math.msu.su.
’ ‘This research was in part supported by the grant MQT300 from the International Science Foundation

and by INTAS project N 93-0893.

0304-3975/98/$19.00 @ 1998-Elsevier Science B.V. All rights reserved

PII SO304-3975(98)00071-l

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82572287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

330 N.K. Vereshchagin / Theoretical Computer Science 207 (1998) 329-342

A randomized Boolean decision tree algorithm is allowed to flip coins (without any

charge for flipping). We consider two different notions of whether a randomized algo-

rithm R computes a function f: (1) the algorithm R computes the function f if on

any input a it outputs f(a) with probability 1 (in this case we say that R computes

f) and (2) the algorithm R is allowed to output a wrong answer with some proba-

bility E< i, that is, for any input a, Prob[R(a)#f(a)] ds (in this case we say that R

&-computes f). The minimal cost of randomized algorithm computing f according to

the first (second) definition is called Las Vegas (Monte Carlo) complexity of f. The

Monte Carlo complexity depends on E, therefore we will call it .z-complexity. Thus,

the Las Vegas complexity is the O-complexity.

Due to simplicity of the computational model the analogs of many question being

open for Turing machine complexity can be solved for Boolean decision trees and many

of them are nontrivial. 2 For example, we have Pdt #NPd’ # Co-NPdt, Pdt = NPd’ n

Co-NPdt = BPPd’ = AMd’ n Co-AMd’ for decision trees analogs Pdt, NPd’, Co-NPdt,

BPPd’, AMd’, Co-AMd’ of the classes P, NP, Co-NP, BPP, AM, Co-AM [l-3,5, lo].

An interesting unresolved question is whether NP” = AMdt.

The known inequalities between the defined complexities are the following: the

c-complexity does not exceed the deterministic complexity; the deterministic complex-

ity does not exceed squared Las Vegas complexity [1,2, lo] and cubed s-complexity

[5] (within to a multiplicative constant depending on E). It was shown by Snir [9] that

the Las Vegas complexity can be less than deterministic complexity: he presented a

function of n variables having deterministic complexity IZ and Las Vegas complexity

n”.753.... There is unknown at present whether the Monte Carlo complexity can be es-

sentially less than Las Vegas complexity. That is it is unknown whether their ratio is

bounded by a constant.

In the present paper, we are interested in how to prove lower bounds for both

randomized complexities. The following way to do this was presented by Yao [ll].

Suppose there is a probability distribution ,U on the set of all inputs to f with respect

to which the average cost of any deterministic algorithm computing f is at least c.

Then one can show that the Las Vegas complexity of f is at least c. This method was

used in [7] to prove exact lower bounds for certain Boolean function.

A similar method can be used to obtain lower bounds for the Monte Carlo com-

plexity. Namely, assume there is a probability distribution p with respect to which the

average cost of any deterministic algorithm having the agreement probability with f
at least 1 - 2s is c or more. Then one can show that the s-complexity of f is at least

c/2 [ll].

Yao [1 l] showed that the described method to obtain lower bounds for Las Vegas

complexity is universal. That is, for any f there exists a probability distribution p with

respect to which the average cost of any deterministic algorithm computing f is at least

as large as the Las Vegas complexity of f. He asked whether this is the case for the

Monte Carlo complexity. In the present paper we answer this question in affirmative:

’ The analog of polynomial time polylogarithmic number of probed variables

N.K. Vereshchagin I Theoretid Computer Science 207 (199&j 329-342 331

we show that if the &-complexity off is c then there is a probability distribution p with

respect to which the average cost of any deterministic algorithm having the agreement

probability with f at least 1 - &/2 is c/2 or more (Theorem 3.3). This shows that the

described method to obtain lower bounds for Monte Carlo complexity is universal if

we identify bounds differing by a multiplicative constant.

We present also the method by which the exact lower bounds for the Monte Carlo

complexity can be proved (Theorem 3.4). Examples of the exact lower bounds for the

Monte Carlo complexity were established in [8].

In the second part of the paper we compare different types of randomized algorithms

to evaluate the so-called read once formulae.

A read once formula is a formula having connectivities A, V of any fanin and having

exactly one occurrence of each its variable. The problem of evaluating read once

formulae is closely related to the problem of evaluating game trees. (A read once

formula with Boolean values assigned to its variables itself can be regarded as a tree

of a game.) It is easy to see that deterministic complexity of any read once formula

is equal to the number of its variables.

In the paper [7], Saks and Wigderson defined the so-called directional algorithms
to evaluate read once formulae. The definition is given by induction on the number of

connectivities in a read once formula F. If F is a single variable then there exists the

unique directional algorithm to evaluate F: evaluate the variable and return its value.

If F = r\f,, fi or F = v,“_, F; a directional algorithm R to evaluate F is specified

by a sequence of directional algorithms RI,. . . , Rh to evaluate respectively F,, . . , Fk

and a probability distribution on the set of permutations of 1,. . . , k. The algorithm R
is performed by selecting a permutation 0 of 1,. . . , k according to this distribution and

evaluating FI , . . . , Fk in 0 order using RI,. . . , Rk until the value of F is known. It is

easy to see that any directional algorithm to evaluate F computes F.
Saks and Wigderson pointed out that not all read once formulae have an optimal

algorithm which is directional. They gave no example of such formula, though. In

the present paper we construct for all n a read once formula F, of 17 variables with

n’, gap between Las Vegas complexity and the cost of optimal directional algorithm

(Theorem 4. I).

2. Notation and preliminaries

Let us fix a set {xl,. . . ,x,} of Boolean variables. The symbol f will denote a

Boolean function of these variables.

A Boolean decision tree is is a finite binary rooted tree whose leaves are labeled by

zeros and ones, whose internal vertices are labeled by variables from the set {x1,. . . , xn},

and for every internal vertex, one of the two outgoing edges is labeled by 0 and the

other is labeled by 1. A Boolean decision tree computes the Boolean function ,f’ of

variabIes xl,. . .,x,~ defined as foHows. Let bi,. . . , b,l are Boolean vaIues. Evidently,

there exists a single path in the tree starting at the root and going to a leaf such that

332 N. K. Vereshchagin I Theoretical Computer Science 207 (1998) 329-342

for every pair (u, U) of consequent vertices in this path if u is labeled by xi, then the

edge (u, v) is labeled by bi. The value f(bi,. . . , b,,) is defined as the label of the end

leaf in this path.

Later we will call Boolean decision trees simply algorithms.

Let A be an algorithm and let a be an assignment of Boolean values to the variables

Xl,..., x,. Denote by A(a) the output value of A on a. By C(A, a) we denote the number

of variables probed by A on the assignment a. This value is called the cost of A for

a. The cost C(A) of an algorithm A is defined as the number of probed variables for

the worst assignment:

The cost of an algorithm is equal to its height provided any path in it has at most one

occurrence of any variable.

The set of all assignments will be denoted by d.

We denote by 9 the family of all Boolean decision trees. Denote by 9(f) the

family of deterministic algorithms computing f. The deterministic complexity D(f)

of the Boolean function f, D(f), is defined as the minimal cost of an algorithm

computing f:

A randomized algorithm is a probability distribution over the family of deterministic

algorithms. The probability of an algorithm A with respect to the distribution R is

denoted by R,J. We interpret R as an algorithm that has probability RA to proceed

exactly as A. For a randomized algorithm R and an assignment a the cost of R for a,

C(R,a), is defined as the expected number of probed variables for a:

C(R,a) = C R,K(A,a).
AE%

We measure the cost of a randomized ulgorithm as the expected number of probed

variables for the worst assignment: C(R) = maxUE.d C(R, a).

Denote by supp(R) the set of all deterministic algorithms having positive measure

with respect to probability distribution defining randomized algorithm R. We say that

R computes Boolean function f if any deterministic algorithm in supp(R) computes f.

Let us define ef(A, a) to be equal to 1 if A(a) #f(a) and to 0 else. In the sequel

we denote by ef(R,a) the value

Prob[R(a) # f(a)1 = CRAe#, a>.
A

Let ef(R) = rnaxaE.d ef(R, a).

We say that R &-computes f if ef(R) < E. It is easy to see that a randomized algorithm

computes f iff it O-computes f.

N. K. Vereshchagin I Theoreticul Computer Science 207 11998) 329-342 333

The randomized complexity R(f) of Boolean function f is defined as the minimal

cost of randomized algorithm computing f. The existence of an optimal randomized

algorithm to compute any Boolean function is shown in [l 11.

Denote by R”(f) the infimum of costs of randomized algorithms a-computing f’. Ac-

tually, Theorem 3.4 states that there is an optimal randomized algorithm c-computing ,f‘.

The following inequalities between the above-defined complexities are known:

(1) Wf’)bR(f)dD(f) for any aE[O,ll,
(2) o(,f)<(R(f))2 (proven independently in [l, 2, lo]),

(3) D(f)<(1 - 2a)-3(R”(f))3 for any EE [0, +) (proven in [5]).

The randomized complexity can be less than deterministic complexity. The best-

known example is due to Snir [9]: there exists a sequence of Boolean functions ,f;,

such that D(f,)=n and R(fn)= 0(n’), w h ere c(= log,(1 + J%)/4 = 0.753.. (see

[7] for details). Snir’s example yields also the largest known gap between D(J‘) and

R”(f) (for cc;).

3. Converting Yao’s inequality

Suppose we want to prove that R(f) >c. This can be done as follows. Let p be a

probability distribution in the set of all assignments of values to the variables of ,f. Let

A be a deterministic algorithm. Denote by C(A,p) the average cost of A with respect

to P: C(A, cl) = C&.cy’ paC(A, a). Assume that there exists p such that C(A, p) 3 c for

any deterministic algorithm A computing f. Then we can prove that R(f‘) 3 c. Indeed,

let R be randomized algorithm that computes f. Let t be the average value of C(A, PC)

when A is taken at random with respect to R. Then t>c. On the other hand, t is equal

to the mean value of C(R,a) when a is taken at random with respect to the distribution

1-1. Hence, there is a E JZZ such that C(R,a) ac, that is C(R) >c.

Yao observed that the well-known Minimax theorem by von Neumann [4] implies

that this method to prove lower bounds on R(f) is universal.

Theorem 3.1 (Yao [l 11). For any Booleun jmction f’,

R(J‘) = max min C(A, p).
I’ AEC,(f)

Another Yao’s theorem provides a method to obtain lower bounds for Monte Carlo

complexity. Let ej (A, p) stand for the non-agreement probability of A with f with re-

spect to ,u: ef(A, p) = C aE,d ,uaef(A, a). Let Z@;(f) denote the set of deterministic al-

gorithms which have non-agreement probability with f at most E with respect to 1. i.e.,

“rj’;(J’)={A 1 e,Q,p))d~},

Theorem 3.2 (Yao [ll]).

R”(,f)>,(~)sup min
/I AEQ:‘(f)

W,FL)

for any O<s< f.

334 N. K. Vereshchagin 1 Theoretical Computer Science 207 (1998) 329-342

Note that the inequality in Theorems 3.2 is proper. Indeed, let f(x) =x. It is easy to

see that R’(f) = 1 - 2.5 for any E E [0, i]. However, maxP rninAEB:(f) C(A, ,u) = 0 for

any F E [a, i]. So for E = $ the inequality in Theorem 3.2 specializes to $ >O.

Yao asked if one can show a similar inequality in the

this question we prove the following:

other direction. To answer

Theorem 3.3.

RE(f)<2 sup min
P .M$‘?f)

C(A,y)

for any 06~6 1.

This theorem is a corollary of other theorem, giving an equivalent definition of the

value R&(f) in the style of Theorem 3.1. In its formulation, cr and r denote probability

distribution in the set of all assignments and S denotes a non-negative real. Let B&(f)

be the set of all randomized algorithms s-computing f.

Theorem 3.4. For any f and any 0 d E < 1 the following values exist and are equal:
rninREaZ(f) C(R) and max r,a,~ min4E9 (C&r) + S(ef(A 0) - 6)).

To prove Theorem 3.4 we need the duality principle in the theory of linear program-

ming (see, for example, [6]).

Theorem 3.5 (Duality principle). Let X denote the set of non-negative real solutions
to the system of linear inequalities

,zaijxi>bj, j= 1,2 ,..., S. (1)

Let Y denote the set of non-negative real solutions to the system of linear inequalities

5 aij_Vj d Ci, i= 1,2 ,..., t.
j=l

If both X and Y are non-empty, then the
on X, the linear function cJ=, bjyi has
equal.

(2)

linear function CL!=, cixi has minimum value
maximum value on Y and these values are

Proof of Theorem 3.4. The existence of the randomized algorithm of the cost at most

t .a-computing f means that the system

-C x,4C(A,a)+t30 for all aEd,
AC8

- c xAef(& a) 3 - & for all a E d?
AE%,

c .xA=l.

AE%
(3)

N. K. Vereshchaginl Theoreticul Computer Science 207 (1998) 329-342 335

has a non-negative solution XA, A E 9. It is easy to see that the last equation may be

rewritten as inequality CAE9 XA 3 1.

By applying the duality principle we obtain that there exists the minimal t,,, for

which the system (3) is consistent and that t,,, is equal to the maximum value of the

function --c CuE d w, + z, on the set of non-negative real w,, yu, a E &‘, z satisfying

the system of linear inequalities

c YOGI.
clE.4

(4)

We can apply the duality principle as both systems (3) and (4) are consistent.

It is easy to see that the maximum value of -a CaE,d w, + z is achieved if

therefore the maximum value is equal to the maximum value of

--F c wa + $; c y&‘(Aa) + c w,e#, a) ,
at.d (aEd l2E.d 1

where w,, y,, a E d, are non-negative numbers such that CaE,J ya d 1. It is easy to

see that the maximum value is achieved when Ca,_ y, = 1.

Let r, = ya, S = CaE,& w,, ca = w,/S. 3

Example 3.1. Let us remind that R’(f) = 1 - 2.5 for f’(x) =x and for any I: E [0, $1.

So by Theorem 3.4 the maximum value of minAEY (C(A, z) + S(ef(A, a) - 8)) is equal

to 1 - 2~. The maximum is achieved on the uniform distributions r and (T and S = 2.

Indeed, if an algorithm A does not ask the value of x and outputs a constant then

C(A, p) = 0 and S(ef(A, G) - E) = 1 - 2~. If A evaluates x and outputs its value then

C(A, T) = 1 and S(ef(A, o) - F) = -2~.

This example can be extended to (r, a,S) needed to obtain the lower bound by

Santha (see [Xl) for Monte Carlo complexity of read once formulae.

Proof of Theorem 3.3. It suffices, by Theorem 3.4, to show that for any Odr-: 6 1

m;;Am;l; (C(A, r) + S . [e,f(A, o) - s]) <2 sup min C(A, ,B>,
. 1 ti .Itf/:,*(f)

Let us take arbitrary 0 <E < 1. We will prove that for all z, 0, S there is p such that

min (C(A, r) + S. [e&4, a) - a]) <2 min
A E Y ACL$‘(.f)

C(A, p).

336 N. K. Vereshchayin I Theoretical Computer Science 207 (1998) 329-342

Let us take arbitrary z, o, S. Let p be equal to the arithmetic mean of the distributions

r, CT: p = r/2 + a/2. We will show that

C(4 T> + S . (ef(A, a) - E) 62C(A, p)

for all A E 9$2(f).

Let US choose arbitrary A E 9f2(f). We have by definition ef(A, p) <@. Since

e&4, cl) = e&4, a)/2 + e&4,2)/2, we have ef(A, a) <E, hence,

4. Examples of read once formulae for which undirectional algorithms
are better than directional ones

We need first to recall some notions and results from [7].

Let R be a randomized algorithm computing the value of read once formula F. De-

note by CO(R) [CI(R)I the max,:t++=o C(R,a) [max,:F(+l W,a>l. Let do(F) [d~(F)l
denote the minimum of Co(R) [Cl(R)] over all directional algorithm R evaluating F.

Let d(F) = max(do(F),dl(F)).

Saks and Wigderson proved that there is a directional algorithm R for which Co(R) =

do(F) and Cl(R) = d,(F) and found the following recurrences for do(F) and dl(F):

d,(G /J ff) = d,(G) + d,(W,

do(G A H) =max C do(G), do(H),
do(G)d,(G) + do(W4W + 4(GMW)

d](G) + dl(H)

do(G v W = do(G) + doW>

dl(G v H) =max di(G),dl(H),
do(GM(G) + do(H)di(H) + do(G

do(G) + do(H)

In the sequel, we will use the following easy observation:

do(G) >
do(Wl(G) + do(fOAW + d,(GMW)

d,(G) + 4W

iff do(G)>dl(G) + do(H) (in this case do(G AH)=do(G)).

Our goal is to construct for all n a read once formula F,, of n variables with n” gap

between R(F,,) and d(F,,).

4.1. The jirst example

A list of variables like VI, 02,. . . , ok will be denoted by ij.

Consider the following example. Let F(Z) = i/i:, xi, G = (F(Z) A z) A (F(y’) A u).

It is easy to see that the optimal way to evaluate F(2) is to evaluate variables in a

random order until 1 is found. So we get do(F) = 11 and d,(F) = 6.

N. K. Vereshchugin I Theoretid Computer Science 207 IIYOX) 329-342 337

As do(F) >di(F) + do(z), by applying the above recurrences we obtain &(F(Z) A

z)=ll, dr(F(Z)Az)=7, and hence da(G)= 14.5, d,(G)= 14.

Let us construct an algorithm R to evaluate G such that Co(R) = Cr (R) = 14. The

randomized algorithm R is performed as follows: evaluate first F(I) and F(s) in a

random order (using the optimal algorithm to evaluate F) and then evaluate z and u

in a random order (the evaluating stops if 0 is found).

Obviously, C,(R)= 14. Let us find Co(R).

If F(I) = 0 or F(y’) = 0 for an assignment, then the cost of R for that assignment

is at most i(l I + 6) + i . 11 = 14 achieving 14 when F(Z)=0 and F(y’)= I. If

F(g)= F(j) = 1 and z=O or tf =0 then the cost of R is at most 6 + 6 + $(I +

I) + ; = 13.5. So Co(R) = 14.

So directional algorithms are not optimal to evaluate the formula G. However, this

example has the following minor point. We used the fact that the family of directional

algorithm to evaluate the formula x AZ A y A u (using an AND of fanin 4) is wider than

the family of directional algorithm to evaluate the formula (X A JJ) A (z A u). Namely,

a directional algorithm to evaluate x A z i/ y A u is allowed to probe variables in the

order, say, z, U,X, y but no directional algorithm to evaluate (X A y) A (z A U) is allowed

to do so.

We shall construct now an example without this minor point, that is, we shall con-

struct a formula in which ANDs and ORs alternate. Let us use the same idea as in the

above example.

4.2. The second example

Let

F(I) = ?,? x;,
i-l

H(i) = [(zl v z2) fi (z3 v z4)1 v [(z5 v z6) A (27 v 2X>],

1(x’,?) = F(Z) A H(Z),

J(l,z’, t) = Z(Z,Z) v t,

It is easy to see that do(F) = 39 and di (F) = 20. By applying the above recurrences

we obtain do(H)=5.5, dl(H)=4:, do(l) =39, dl(l)=24;, do(J)=40, d,(J)= j,

d,,(G)= F ~52.38 d,(G)=$$=49.53... .

Let us construct a randomized undirectional algorithm R to evaluate G having smaller

cost, The algorithm R is performed as follows. Evaluate first t and s. Then evaluate

F(Z) and F(_$) in a random order (using the optimal algorithm to evaluate F) and then

evaluate H(Z) and H(G) in a random order (the evaluating stops if the value of G is

found). It is easy to see that the both values Co(R, (I?,?, t, y’, 2,s)), Cl (R, (Ii!,?, t, $, ii, s))

are achieved for assignments in which t = s = 0.

338 N.K. Vereshchagin I Theoretical Computer Science 207 (1998) 329-342

If F(I) =F(y’) = H(Z) = H(G) = 1, then the cost of R is at most da(t) + d&s) +

2dt(F) + 2&(H) = 1 + 1 + 2 x 20 + 2 x 45 = SO:, and the value 50: is achieved. So

Cl(R) = 50;.

Let us find Co(R). If F(i) = 0 or F(y’) = 0, then C(R, ($2, t, y’, 2,s)) = do(s)+do(t)+

i(do(F) + dl(F)) + ido(1 + 1 + i(39 + 20) + ; x 39= 51. If F(Z)=F(y’)= 1

and H(Z) = 0 or H(G) = 0 C(R, (x, y,z,u)) d oes not exceed do(s) + do(t) + 2dt(F) +

@o(H) + dt(H)) + $&j(H) = 1 + 1 + 2 x 20 + i(5.5 + 4;) + ; x 5.5 =49+&

So Co(R)=51.

Thus C(R) = 5 1 <do(G) = 52.38.. . . Therefore, any optimal randomized algorithm

to evaluate G is not directional.

4.3. The example of read once formula with nE gap between the cost

of optimal directional and undirectional algorithms

Theorem 4.1. There are 0 <B < M and c, d > 0 such that the following holds. For all n

there exists a read once formula G, of n variables having alternate ANDs and ORs

such that d(G,,)>cn” and R(G,,)<dnP.

Proof. Let us make use of the formula G from the last example. Let us define the se-

quence of read once formulae {Gi} by letting Go = v (a variable) and Gi+t = G(Gi(a’),

Gi(a2), . . . , Gi(Ij96)). Here vi stands for the list of variables vi, vi,. . . , vi,, where ki = 96’

is the number of variables in the formula Gi.

The values do(Gi) and dl(Gi) can be found inductively using Saks and Wigderson’s

recurrences. This routine task is done in the Addendum. Here is the result:

do(Gi+t) = F&(Gi) + $&dt(Gi),

(5)

dl(Gi+l) = $$do(Gi) + gdt(Gi).

Let us define an undirectional algorithm Ri to evaluate Gi by induction on i. To

perform Ro evaluate the variable and output its value.

The algorithm Ri+l is performed as follows: run the above algorithm R evaluating

G but instead evaluating variables of G run Ri.

Let us denote by so(i) [al(i)] the value Co(Ri) [Cl(Ri)].
The following recurrences are proved in the Addendum:

ao(i + 1) = 50.5ao(i) + 0.5al(i),

al(i + 1) = 44bao(i) + 6ial(i).

It is well known that the solution to the system (5) has the form

(6)

do(i) = pl& + p&, dl(i) = qlA\ + qzjl;,

N. K. Vereshchagin I Theoreticul Computer Science 207 (1998) 329-342 339

where i., , A2 are the characteristic values of the matrix

The computation yields J-1 = 4.88.. . , 12 = 52.28.. .

The solution to system (6) has the from

so(i) = Yl Pi + y2d2, a,(i)=s,pL; + s2pL;,

where ~1 = 6.00.. . , p2 = 50.99.. . are the characteristic values of the matrix

All we need is the inequality jb2 < ~2. This inequality can be proved without com-

plicated computation as follows. Let us prove that i2 < 51 < ~2. To this end, let us

substitute the number 51 in the characteristic polynomial of both matrices. This substi-

tution can be done by subtracting 51 from diagonal elements of matrices and computing

the determinants of the resulting matrices:

1191
320

<o

4323
160

-4449
80

and

We shall write f(i) = @(g(i)) if there are constants cl, c2 such that cl g(i) <.f(i) <

c2cAi).

Thus, we have

do(Gi) = @(Iv;), dl(Gi)=O($),

ao(i> = @(I&), a,(i) = O(pL;).

Recall that the number of variables ni in Gi is 96’. So we have

d(Gi) = @(@s9, “2) and R(Gi) = ~(&‘s9~ 1:). 0

If n is not of the form 96’ then the formula F, can be constructed by adding fictitious

variables.

More precise computation shows that our example yields the difference 0.0058..

between (x and /I in the formulation of Theorem 4.1. A refinement of that example gives

the difference 0.0077.. . . It is interesting whether the difference between two exponents

340 N.K. Vereshchagin I Theoretical Computer Science 207 (1998) 329-342

can be significantly greater, say, greater than 0.05. If this is not the case then we can

restrict ourselves with directional algorithms for evaluation read once formulae being

sure that our loss is very small. This would be nice because the optimal directional

algorithm can be found in polynomial time given a formula. In the case of binary gates

(or, when the fanin of gates is bounded by a constant) this was shown in [7]. In the

case of unbounded fanin a polynomial algorithm was constructed by A. Evfimjevsky

(unpublished).

Addendum

Let us prove the equalities (5). To prove them we need the inequality do(

di(Gi). For n=O we have do(Ga)=dl(G~)= 1. It is easy to verify that if &(Gi)>

di(Gi) and do(Gi+i), di(Gi+l) satisfy (5) then da(Gi+i)>di(Gi+l). SO we can prove

the equalities (5) assuming that dc(Gi) > dt (Gi).

Let us define Fi+l, Hi+, , Zi+l ,_&+I as formulae obtained in the same way from F, H, I, J

as Gi+i is obtained from G. For example, Fi+l(x” , . . .,X-39) = V:l, G&i!‘). By applying

three times the Saks and Wigderson’s recurrences, we obtain

d~(Hi+l) = 4.5do(Gi) + dl (Gi),

dl(Hi+l) = 2.125do(Gi) + 2.25dl(Gi).

We have

&(Fi+t) = 4 (,J Gi(ii)) =394(Gi),

dl(Fi+l) = dl = 19d0(Gi) + dl(Gi),

The last equality is true since

~o(F~+I > 3 dl (Fi+l I+ do(fi+~ >t

which follows from the assumption do(Gi) 3 di (Gi). Further,

= 21.125do(Gi) + 3.25dl(Gi).

N.K. Vereshchnyinl Theoreiicd Computer Science 207 (199X) 329-342 341

Thus, we have

do(czj+l) = do(zi+l v Gi)=do(L+, > + do(G)=4Odo(Gi),

~I(J,+I) = do(L+~ v G>

= do(Zi+,)~,(Z;+I > + do(GiM(Gi) + dotA+,)do(Gi)
doUii I > + do(G, >

= ?$fd~(G~) + $!$dl(Gi)

The last equality to be true we need the inequalities

~I(Z~+I)G&(Zi+l) + dl(Gi+l), dl(Gi+l)bdo(G~+l)+dl(zj+l),

which are true under assumption do(Gi) >,dr(Gi). Finally,

do(Gi+,) = do(-/i+l) + O.Sdl(Ji+l)= edo(Gi) + $$dl(Gi),

dl(G,+]) = ~~I(J~+I)=G~o(G~> + gdl(Gi).

It is easy to see that the inductive assumption do(Gi)>,dl(G,) implies do(G,,I)>

dr(G,+t). So we have

do(G;+,) = edo(Gi) + &Wi),

d,(G;+l) = $f~'o(Gl) + $#dl(Gi).

Let us prove Eq. (6).

Let us remind that both values Co(R) and Cl(R) are achieved for assignments in

which t = s = 0.

Obviously, al(i + 1) =2ao(i) + 2 x 19ae(i) + 2ar(i) + 2 x 2$ao(i) + 2 x 2ia,(i) =

44;ao(i) +6;a,(i).

Let us find ao(i+ 1). If at least one of two copies of F, is zero, then the cost of R for

that assignment is at most 2ao(i)+~(39ae(i)+19ao(i)+at(i))+~ x 39ao(i) = 50.5ao(i)+

0.5al(i). If both copies of Fi are one and at least one copy of H, is zero then the

cost of R is at most 2aa(i) + 2(19aa(i) + a,(i)) + ;(4.5ao(i) + al(i) + 2iao(i) +

2ial(i)) + i(4.5uo(i) + ul(i))=45~uo(i) + 4$al(i). Assume that ao(i)2a1(i) (this

is proved by induction). Then 50.5ao(i) + 0.5ar(i)345$uo(i) + 4$ul(i) and we get

u(j(i + 1) = 50.5uo(i) + 0.5Ul(i).

It is easy to see that the assumption uo(i)>ul(i) implies that uo(i + I)~ur(i + 1).

Thus,

na(i + 1) = 50.5Uo(i) + 0.5Ur (i),

ul(i + 1) = 44&,(i) +6$21(i).

342 N. K. Vereshchagin I Theoretical Computer Science 207 (I 998) 329-342

References

[I] M. Blum, R. Impagliazzo, General oracle and oracle classes, Proc. 28th Annual IEEE Symp. on

Foundation of Computer Science, New York, May 1987, pp. 1188126.

[2] J. Hartmanis, L. Hemachandra, Complexity classes without machines: on complete languages for UP,

Theoret. Comput. Sci. 58 (1988) 1299142 (Preliminary version appeared in: Intemat. Colloq. on

Automata, Languages and Programming, 1986, Lecture Notes in Computer Science, vol. 226, 1986,

pp. 123-135.).

[3] R. Impagliazzo, M. Naor, Decision trees and downward closures, 3rd Annual Conf. on Structure in

Complexity Theory, 1988, pp. 29938.

[4] V. Neumann, Zur teorie der gesellschaftspiele, Math. Ann. 100 (1928) 2955320.

[5] N. Nisan, Probabilistic versus deterministic decision trees and CREW PRAM complexity, Proc. 21th

Ann. ACM Symp. on Theory of Computing, 1989, pp. 327-335.

[6] C. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall,

Englewood Cliffs, NJ, 1982.

[7] M. Saks, A. Wigderson, Probabilistic Boolean decision trees and the complexity of evaluating game

trees, Proc. 27th Ann. IEEE Symp. on Foundation of Computer Science, 1986, pp. 29-38.

[X] M. Santha, On the Monte Carlo boolean decision tree complexity of read-once formulae, Proc. 6th Ann.

Conf. on Structure in Complexity Theory. 1991, pp. 180-187.

[9] M. Snir, Lower bounds for probabilistic linear decision trees, Theoret. Comput. Sci. 38 (1985) 69982.

[lo] G. Tardos, Query complexity or why is it difficult to separate NPA n Co-NPA from PA by a random

oracle, Combinatorics 9 (1990) 385-392.

[l l] A.C.-C. Yao, Probabilistic computations: toward a unified measure of complexity, Proc. 18th Ann. IEEE

Symp. on Foundation of Computer Science, 1977, pp. 222-227.

