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SUMMARY

Immune responses can be enhanced or damp-
ened by differential manipulation of Foxp3-
expressing CD25+CD4+ natural regulatory
T (Treg) cells versus other naive or activated
T cells. By searching for a molecule capable of
distinguishing these populations, we here
found that natural Treg cells constitutively
expressed high amounts of folate receptor 4
(FR4). The expression of FR4 and CD25 also
separated antigen-stimulated CD4+ non-Treg
cells into the FR4hiCD25� and FR4loCD25+ pop-
ulations, which were different in proliferation
and cytokine secretion upon restimulation.
These distinctions showed that antigenic
stimulation activated and expanded antigen-
specific natural Treg cells as well as effector
and memory T cells. Accordingly, FR4hi

CD25+CD4+ T cells enriched from alloantigen-
stimulated T cells suppressed graft rejection.
Administration of FR4 monoclonal antibody
specifically reduced Treg cells, provoking
effective tumor immunity in tumor-bearing
animals, whereas similar treatment of normal
young mice elicited autoimmune disease.
Thus, specific manipulation of FR4hiCD25+

CD4+ Treg cells helps control ongoing immune
responses.

INTRODUCTION

The immune system endogenously produces a CD4+ T cell

subpopulation that is highly specialized to suppress aber-

rant or excessive immune responses (Sakaguchi, 2000). A

cardinal feature of such CD4+ naturally occurring regula-

tory T (Treg) cells is that the majority of them constitutively

express CD25 (the interleukin-2 receptor a chain) and the

transcription factor Foxp3 that specifically controls their

development and function (Fontenot and Rudensky,
2005; Malek and Bayer, 2004; Sakaguchi, 2004). The

Foxp3-expressing CD25+CD4+ Treg cells are apparently

reactive with a broad spectrum of self and nonself antigens

and able to expand upon in vivo and in vitro strong anti-

genic stimulation (Hsieh et al., 2004; Jordan et al., 2001,

Nishimura et al., 2004). They are engaged in suppressing

the development of immunological diseases such as auto-

immune disease and allergy. They can also be exploited to

establish transplantation tolerance through their antigen-

specific expansion and to provoke effective immunity

against autologous tumor cells or enhance immune

responses to invading microbes through their reduction

in number or attenuation of their suppressive activity.

An important feature of natural Treg cells is that they are

phenotypically in an activated or antigen-primed state

(Sakaguchi, 2004). This makes it difficult to phenotypically

distinguish natural Treg cells from other activated effector

or memory T cells. To further determine the role of natural

Treg cells in controlling immune responses, it is therefore

necessary to identify a cell-surface molecule that can

specifically distinguish them from other T cells, in particular

from activated effector or memory T cells. There are

several cell-surface molecules that are predominantly

expressed in natural Treg cells. CD25, for example, is

indispensable for the maintenance of natural Treg cells

as an essential component of the high-affinity interleukin-

2 (IL-2) receptor because they are highly dependent on

exogenous IL-2 for their peripheral survival (D’Cruz and

Klein, 2005; Fontenot et al., 2005; Setoguchi et al., 2005).

Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)

and glucocorticoid-induced tumor necrosis factor recep-

tor family-related gene or protein (GITR) are expressed

constitutively and at high amounts in natural Treg cells

and involved in Treg cell-mediated suppression (McHugh

et al., 2002; Read et al., 2000; Salomon et al., 2000; Shi-

mizu et al., 2002; Takahashi et al., 2000). Although these

molecules are useful for operationally differentiating natu-

ral Treg cells from other T cells in immunologically naive

animals, they are unable to fully distinguish natural Treg

cells from activated T cells because every T cell expresses

them upon activation (Ono et al., 2006).

We show in this report that natural Treg cells consti-

tutively express high amounts of the folate receptor
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Figure 1. High Expression of FR4 in Natural CD25+CD4+ Treg Cells

(A) CD25+CD4+, CD25�CD4+, and CD8+ T cells before and after stimulation for 3 and 6 days with 0.5 mg/ml of anti-CD3 (2C11), 50 U/ml IL-2, and

irradiated spleen cells were stained with TH6 (lines) or rat IgG2b (shaded).

(B) Immunoblotting of normal spleen T cells with 12A5 mAb after immunoprecipitation with TH6, 12A5, or normal rat IgG. An aliquot of the immuno-

precipitate with TH6 was treated with N-glycosidase before blotting (Shimizu et al., 2002). Molecular size is shown on the left side.

(C) Cos-7 cells transfected with the mouse FR4 gene (solid line) or nontransfected (shaded) were stained with TH6 and 12A5.

(D) Specific fragments of cDNA for the FR1, FR2, FR4, and HPRT genes were amplified by RT-PCR with cDNA of placenta, CD19+, CD8+, and CD4+

spleen cells.

(E) CD25�CD4+ cells were infected with the bi-cistronic retroviral vector MIGR1 coding for GFP and Foxp3 or GFP alone (Hori et al., 2003), were

stained with TH6. Shown are representative of three independent experiments.
4 (FR4), a subtype of the receptor for the vitamin folic acid,

and this high expression of FR4 can distinguish them from

other naive or activated T cells. In addition, combinations

of high or low expression of FR4 and CD25 can distinguish

four functionally different CD4+ T cell subpopulations; i.e.,

natural Treg cells, effector T cells, memory-like T cells, and

naive T cells. With FR4 as a specific marker for natural

Treg cells, we address the questions of whether natural

Treg cells become antigen activated and clonally expand

in physiological and pathological immune responses, how

immune responses are controlled by the dynamic balance

between Treg cells and effector or memory T cells, and

how ongoing immune responses can be altered for the

benefit of the host by differential manipulation of antigen-

activated Treg cells and effector or memory T cells.
146 Immunity 27, 145–159, July 2007 ª2007 Elsevier Inc.
RESULTS

High Expression of FR4 in CD25+CD4+ Treg Cells

By immunizing rats with activated CD25+CD4+ T cell

suspensions from normal mice, we obtained two rat

monoclonal antibodies (mAbs), designated TH6 and

12A5 of rat IgG2b and IgG1 isotype, respectively. Both

mAbs stained CD25+CD4+ T cells at a higher level than

other CD4+ or CD8+ T cells even after activation

(Figure 1A) and recognized a highly glycosylated protein

of 35 kDa in normal spleen cells by immunoprecipitation

(Figure 1B). Mass-Fingerprint analysis of the amino acid

composition of the precipitate revealed the molecule as

mouse FR4, also called folate receptor d and folate bind-

ing protein 3 (Elnakat and Ratnam, 2004; Spiegelstein
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et al., 2000). The identity of the protein was confirmed by

specific staining of monkey Cos-7 cells transfected with

the Folr4 gene that encodes mouse FR4 (Figure 1C).

FR4 is known to be expressed exclusively in lymphoid

tissue but has been little characterized in contrast to the

well-studied FR1 and FR2, which are mainly expressed

in epithelial cells and hematopoietic cells other than

lymphocytes, respectively (Elnakat and Ratnam, 2004;

Spiegelstein et al., 2000). Among three known subtypes

of mouse FRs, splenic lymphocytes, T cells (especially),

and mature thymocytes expressed mRNA and protein

for FR4 but not for FR1 or FR2 (Figure 1D; Figure S1 in

the Supplemental Data available online). Human Treg cells

also expressed a homolog of mouse FR4 (Figure S2). Ret-

roviral transduction of Foxp3, which can functionally and

phenotypically convert normal T cells to natural Treg-like

cells (Fontenot et al., 2003; Hori et al., 2003), revealed

that the FR4 expression was proportional to that of

Foxp3 in Foxp3-transduced CD25�CD4+ T cells, suggest-

ing that Foxp3 directly or indirectly controls the expression

of FR4 in natural Treg cells (Figure 1E).

Separation of Treg Cells from Activated T Cells

after In Vitro Stimulation

Staining of CD4+ T cells in normal naive mice for CD25 and

FR4 revealed two discrete populations (fractions a and

b in Figure 2A). Notably, stimulation of BALB/c CD4+ T

cells with allogeneic B6 spleen cells gave rise to three

populations well demarcated by high (hi), intermediate

(int), or low (lo) expression of FR4 and CD25; i.e., the

FR4hiCD25hi, FR4intCD25int-hi, and FR4loCD25� popula-

tions (fractions c, d, and e, respectively, in Figure 2A),

which constituted �5%, �35%, and �60%, respectively,

of CD4+ T cells. Allogeneic (B6) stimulation of BALB/c

CD8+ T cells generated FR4intCD25hi cells and

FR4loCD25� cells, which constituted �25% and �75%,

respectively, but not FR4hiCD25hi cells. When

CD25+CD4+ T cells prepared from normal Thy1.2-BALB/c

mice were mixed with CD25�CD4+ T cells from

Thy1.1-BALB/c congenic mice and similarly stimulated

with B6 spleen cells, the majority of stimulated

Thy1.2+CD25+CD4+ T cells differentiated to FR4hiCD25hi

cells as a phenotypically discrete population (Figure 2B).

Foxp3-expressing CD4+ T cells, including CD25+ and

CD25� cells, were FR4hi before and after allogeneic stim-

ulation (Figure 2C; Figure S3). The FR4hiCD25hiCD4+ T

cells indeed expressed Foxp3 mRNA at equivalent

amounts as naive CD25+CD4+ T cells, whereas other pop-

ulations did not (Figure 2D). In addition, Foxp3+CD4+ T

cells induced in vitro from naive T cells by allogeneic stim-

ulation in the presence of high-dose transforming growth

factor-b (TGF-b) were also FR4hiCD25hi (Figure S4; Chen

et al., 2003). Thus, Foxp3-expressing CD4+cells, whether

they are naturally arising or induced from naive T cells, are

persistently FR4hi before and after antigenic stimulation.

Functionally, the FR4hiCD25hi population in alloantigen-

stimulated CD4+ T cells (fraction c in Figure 2A) were

hypoproliferative to in vitro restimulation (Figure 2E) and

suppressed the proliferation of CD25�CD4+ T cells
(Figure 2F), being similar to the CD25+CD4+ Treg cell

population in naive mice (fraction a in Figure 2A; Takahashi

et al., 1998; Thornton and Shevach, 1998). Importantly,

these antigen-stimulated FR4hiCD25hi cells were more

potent in in vitro suppression than FR4hiCD25hi cells

from naive mice and showed antigen specificity: B6-

stimulated BALB/c FR4hiCD25hiCD4+ T cells were more

potent in suppressing anti-B6 response than

CD25+CD4+ naive or C3H-stimulated FR4hiCD25hiCD4+

T cells (Figure 2F). Likewise, C3H-stimulated FR4hiCD25hi

BALB/c T cells were more potent than B6-stimulated or

their nonstimulated counterpart in suppressing anti-C3H

response. The alloantigen-stimulated FR4hiCD25hi cells

also strongly suppressed rejection of allogeneic skin graft

(Figures 2G and 2H): although BALB/c athymic nude mice

rejected B6 skin grafts within 30 days after transfer of

BALB/c naive T cells, cotransfer of in vitro B6-stimulated

FR4hiCD25hi cells and BALB/c naive T cells significantly

prolonged the graft survival to average 45 days, whereas

cotransfer of naive CD25+ cells was much less effective

in prolongation. When nude mice with prior transplanta-

tion of both B6 and C3H skins were transferred with the

mixture of BALB/c naive T cells and B6-stimulated

BALB/c FR4hiCD25hi T cells, the cell transfer led to signif-

icantly longer survival of B6 grafts than C3H grafts, while

cotransfer with C3H-stimulated BALB/c FR4hiCD25hi

T cells significantly prolonged the survival of C3H grafts

compared with B6 grafts (Figure 2H).

In contrast with FR4hiCD25hi T cells, which were

suppressive, antigen-stimulated FR4intCD25int-hiCD4+ T

cells (fraction d in Figure 2A) appeared to be antigen-

primed effector T cells because they showed earlier and

more vigorous proliferation to allostimulation compared

with FR4loCD25lo (fraction e) or naive CD25�CD4+ T cells

(fraction b) (Figure 2E). In addition, transfer of these B6-

stimulated BALB/c FR4intCD25int-hiCD4+ T cells resulted

in significantly shorter survival of B6 skin grafts in BALB/

c nude mice compared with transfer of BALB/c naive T

cells (Figure 2G).

These results collectively indicate that antigen-stimu-

lated CD4+ T cells can be differentiated by the expression

of FR4 and CD25 into activated Treg cells, activated effec-

tor T cells, and naive T cells as FR4hiCD25hi, FR4intC-

D25int-hi, and FR4loCD25lo cells, respectively. In addition,

this demarcation reveals that antigen stimulation not

only activates and expands antigen-reactive effector

T cells but also confers antigen-specific suppressive

activity to the FR4hiCD25hi fraction. Thus, antigen-reactive

CD4+ T cells with opposite functions can be well sepa-

rated by expression levels of FR4.

In Vivo Distinction of Treg Cells from Effector

and Memory T Cells

We next examined whether Treg cells could be differen-

tiated from effector or memory T cells after in vivo anti-

gen stimulation. We immunized ovalbumin (OVA) in

complete Freund’s adjuvant (CFA) to DO11.10 transgenic

mice, which express a transgenic T cell receptor (TCR)

specific for an OVA peptide (Murphy et al., 1990), or to
Immunity 27, 145–159, July 2007 ª2007 Elsevier Inc. 147
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Figure 2. Antigen-Specific Suppression of Allogeneic Immune Responses by In Vitro Stimulated Treg Cells

(A) FR4 and CD25 expression of BALB/c CD4+ and CD8+ T cells before and after allogeneic stimulation with B6 irradiated splenocytes for 6 days.

Numbers indicate the percentages of gated cells.

(B) FR4 and CD25 expression by BALB/c Thy1.2+CD25+CD4+ T cells (black dots) and BALB/c Thy1.1+CD25�CD4+ T cells (gray dots) mixed at 1:5

ratio and stimulated as in (A).

(C) FR4 and intracellular Foxp3 expression of BALB/c CD4+ T cells before and after B6 stimulation as in (A).
148 Immunity 27, 145–159, July 2007 ª2007 Elsevier Inc.
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RAG2-deficient (Rag2�/�) DO11.10 transgenic mice,

which lack natural CD25+CD4+ Treg cells (Figure 3A;

Itoh et al., 1999). FR4hiCD25hiCD4+ T cells increased in

the regional lymph nodes of immunized DO11.10 mice,

in which the majority of Foxp3+ T cells were FR4hiCD25hi

as shown by intracellular staining of Foxp3, whereas

Rag2�/� DO11.10 mice failed to develop FR4hiCD25hi

or Foxp3+CD4+ T cells (Figure 3A). Intracellular staining

of Bcl-2, an antiapoptotic protein, showed that the

FR4hiCD25hi fraction in naive mice included apoptosis-

prone Bcl-2lo cells at a higher ratio than other T cell

fractions and that Bcl-2lo cells increased among

FR4hiCD25hiCD4+ T cells and Foxp3+ cells after antigen

stimulation (Figure 3B; Figure S5). Similarly, CTLA-4hi

cells increased among FR4hiCD25hi cells after antigen

stimulation (Figure S5). The results indicate that at least

some antigen-stimulated Treg cells, which express

CD44, CD69, CD103, IL-7Ra (CD127), and CTLA-4 at

higher amounts than unstimulated Treg cells (Figure S5),

become Bcl-2lo and may die by apoptosis.

Functionally, FR4hiCD25hi cells in OVA-CFA-immunized

BALB/c mice 1 week or 3 months after immunization

(Figures 3D and 3E, respectively) did not proliferate nor

produce IL-2 or interferon-g (IFN-g) upon in vitro OVA re-

stimulation. They suppressed the proliferation of Rag2�/�

DO11.10 T cells in a dose-dependent fashion and more

potently than FR4hiCD25hi cells from BALB/c mice treated

with CFA alone, whereas the suppressive activities of

FR4hiCD25hi cells from the OVA-immunized or -nonimmu-

nized BALB/c mice were equivalent when polyclonally

stimulated with CD3 mAb (Figure 3F).

In addition to the increase in the number of FR4hiCD25hi

cells after OVA-CFA immunization, the immunization re-

sulted in a marked and slight increase in the number of

FR4hiCD25�CD4+ T cells and FR4loCD25+CD4+ T cells,

respectively, in the regional lymph nodes of both RAG2-

intact and -deficient DO11.10 mice (Figure 3A). FR4hi

CD25� and FR4loCD25+CD4+ T cells similarly increased

in the regional lymph nodes of normal BALB/c mice immu-

nized with OVA-CFA, although less conspicuous than

DO11.10 mice (Figure 3C). Interestingly, upon in vitro

OVA restimulation 1 week after OVA immunization,

BALB/c FR4hiCD25�CD4+ cells vigorously proliferated

and produced IL-2, but scarcely produced IFN-g, whereas

FR4loCD25+CD4+ cells proliferated and produced IL-2 to

a lesser degree but almost solely produced a large amount

of IFN-g (Figure 3D). Even 3 months after immunization,

lymph node FR4hiCD25� cells proliferated and produced

IL-2 but not IFN-g in response to in vitro OVA restimula-
tion, whereas other fractions failed to proliferate or

produce cytokines (Figure 3E). Furthermore, T cells

secreting IL-17 in chronic inflammation, for example, in

spontaneous T cell-mediated autoimmune arthritis in

SKG mice, were confined to FR4loCD25+CD4+ T cells

in lymph nodes (Figure 3G; Hirota et al. 2007). Phenotyp-

ically, both FR4hiCD25� and FR4loCD25+ cells in naive

DO11.10 and normal BALB/c mice expressed various

activation markers (e.g., CD69, CD44, IL-2Rb [CD122],

GITR, and IL-7Ra) differently (Figures S5 and S6).

These functional and phenotypic characteristics of the

FR4-CD25 subpopulations indicate that, in addition to

FR4hiCD25hi cells as natural Treg cells, activated non-

Treg CD4+ cells can be differentiated into two pheno-

typically and functionally discrete populations; i.e.,

FR4loCD25+ effector (and presumably effector memory)

T cells and FR4hiCD25� cells including memory (espe-

cially central memory) T cells (Lanzavecchia and Sallusto,

2005; Reinhardt et al., 2001). Furthermore, this distinction

of Treg cells from activated non-Treg cells reveals that not

only in vitro allogeneic stimulation (Figure 2) but also in

vivo stimulation with protein antigen enhances antigen-

specific suppressive activity of the Foxp3+FR4hiCD25hi

Treg cell population.

In Vivo Antigen-Specific Clonal Expansion

of FR4hiCD25hi Treg Cells

To determine then whether the enhancement of alloanti-

gen-specific in vivo and in vitro suppression by

FR4hiCD25hiCD4+ T cells is due to expansion of antigen-

specific Treg cell clones in the FR4hiCD25hi T cell fraction,

we inoculated DBA/2 spleen cells into BALB/c mice and

assessed possible expansion of each FR4-CD25 subpop-

ulation expressing TCR Vb6 subfamily, which specifically

respond to Mls1a antigen (Mtv-7 superantigen) expressed

by DBA/2 spleen cells (Figure 4; Nishimura et al., 2004).

Whereas the percentages of FR4-CD25 subpopulations

among CD4+ T cells did not markedly change 1 week

after immunization, the percentages of FR4hiCD25+ and

FR4hiCD25� cells among Vb6+CD4+ cells increased 2-

fold after DBA/2 stimulation; the percentages of these

populations among Vb6�CD4+ T cells did not change

and were similar to those among unstimulated CD4+ T

cells (Figure 4A). The percentages of Vb6+ cells among

more strictly gated FR4-CD25 fractions (fraction a–d in

Figure 4A) similarly changed 1 week after stimulation:

they significantly increased in the FR4hiCD25hi fraction,

decreased in the FR4loCD25� fraction, and greatly

increased in the FR4hiCD25� fraction (Figure 4B). The
(D) Amounts of Foxp3 mRNA measured by real-time quantitative PCR before and after stimulation. a–e correspond to the populations shown in (A).

(E) Proliferative responses of T cell subpopulations (a–e in [A]) to restimulation with B6 splenocytes for 5 or 7 days. The means and SDs of triplicates

are shown. Cpm, counts per minute.

(F) Antigen-specific suppressive activity of B6- or C3H-stimulated BALB/c FR4hiCD25hi cells on BALB/c CD25�CD4+ T cells at various ratios in 6-day

culture with B6 or C3H splenocytes (APC, antigen-presenting cells).

(G) B6 skin graft survival on BALB/c nude mice after transfer of 2 3 105 BALB/c naive T cells with 1 3 105 sorted CD4+ T cell subpopulations shown

in (A).

(H) B6 and C3H skin graft survival in the same BALB/c nude mice after transfer of 2 3 105 BALB/c T cells with 1 3 105 alloantigen-stimulated

FR4hiCD25hi cells. The results in (A)–(F) are representative of more than three independent experiments; those in (G) and (H) are the total of three

separate experiments.
Immunity 27, 145–159, July 2007 ª2007 Elsevier Inc. 149
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percentage of Vb6+ cells among Foxp3+ cells also

increased to a similar extent as among Foxp3� cells, in

contrast with no significant changes in Foxp3+ or Foxp3�

cells expressing Mls1a nonreactive TCR Vb10 (Figure 4C).

The results collectively support the hypothesis that

antigen-specific natural Foxp3+ Treg cells in the

FR4hiCD25hi fraction clonally expand after antigen stimu-

lation. In addition, after in vivo antigen stimulation, a great

number of antigen-specific naive T cells, which are

FR4loCD25�, differentiate to FR4hiCD25� cells.

Treatment of Tumors by Depleting FR4hi T Cells

Based on the above results indicating high expression of

FR4 as a marker for Foxp3+ natural Treg cells regardless

of whether they are activated or not, we attempted to

control ongoing immune responses by the use of FR4

mAb. In vivo injection of TH6 in a range of 1 to 25 mg

reduced the number of CD25+CD4+ T cells and

CD25�CD4+ T cells in the peripheral blood to �20% and

70%, respectively, of control mice and, at a large

amount (100 mg) of injected TH6, to 15% and 50%,

respectively (Figures 5A and 5B). Importantly, injection

of Fab fragment of TH6 also reduced the number of

CD25+CD4+ cells to a similar extent (Figure 5A), indicating

that blockade of FR4 suffices to deplete CD25+CD4+

natural Treg cells.

To examine then whether depletion of FR4-expressing

cells can enhance antitumor immune responses in

tumor-bearing mice, we assessed tumor growth after

TH6 administration to BALB/c mice bearing Meth A fibro-

sarcoma or Colon 26 colorectal adenocarcinoma cells,

both of which are BALB/c derived and neither of which

expressed FR4 (data not shown). The percentages of

FR4hiCD25hi T cells among CD4+ T cells infiltrating into

Meth A tumor masses were higher (2- to 3-fold) than that

in lymph nodes or spleen of the tumor-bearing hosts; the

majority of such FR4hiCD25hiCD4+ T cells were Foxp3+

(Figure 5C). When BALB/c mice were intradermally inocu-

lated with Meth A and i.v. injected with 100 mg of TH6 on

the same day, all the mice rejected tumors and survived
more than 3 months (Figure 5D). When mice bearing

advanced Meth A or Colon 26 tumors larger than 4 mm

in diameter 8 days after tumor inoculation were treated

3 times with i.v. injection of a small dose (10 mg) of TH6

every 4 days, 60% of the mice rejected tumors and

survived more than 3 months (Figures 5E and 5F). The

majority of control-treated mice died of tumor progression

by 40 days in both experiments.

Next, as an adaptive cell therapy for tumors, lymph

nodes and spleen cells from BALB/c mice with advanced

Meth A tumors were stimulated in vitro with tumor cells

and IL-2 and then transferred to tumor-inoculated BALB/c

nude mice (Figure 6). The stimulated CD4+ T cells

were composed of FR4hiCD25hi, FR4intCD25int-hi, and

FR4loCD25lo cells, whereas CD8+ cells contained FR4int

CD25int-hi and FR4loCD25lo cells, as observed in in vitro

allogeneic stimulation (Figures 2A and 6A). Transfer of

these stimulated CD4+ and CD8+ T cells led to tumor

rejection only in 17% of Meth A-inoculated BALB/c nude

mice. In contrast, when FR4hi cells were removed prior

to cell transfer, a substantially larger number of nude

mice (46%) rejected tumors; they rejected earlier and non-

rejecting mice exhibited retarded tumor growth compared

with those transferred with nondepleted cell suspensions

(Figure 6B).

This transfer of FR4hi cell-depleted T cell suspensions

also induced autoimmune disease in nude mice that had

rejected tumors (Sakaguchi et al., 1995; Shimizu et al.,

1999). Histologically evident autoimmune gastritis (see

below) developed in 20% of them (Figures 6B and 6C).

In contrast, TH6 mAb treatment of tumor-bearing euthy-

mic BALB/c mice hardly elicited autoimmunity (Figures

5D–5F and 6C).

Thus, in vivo depletion of activated Treg cells as FR4hi T

cells can provoke effective tumor immunity even in

advanced stages of tumor progression. Furthermore,

depletion of FR4hi cells from tumor-stimulated T cell

suspensions enhances tumor-killing activity of the cell

suspensions when adoptively transferred to tumor-bear-

ing hosts.
Figure 3. In Vivo Antigen-Specific Activation of Treg Cells

(A) Expression of FR4, CD25, and Foxp3 by CD4+ T cells in regional lymph nodes of DO11.10 and Rag2�/� DO11.10 mice before and 1 week after

immunization with OVA-CFA. FR4-CD25 expression by Foxp3+ (black dots) and Foxp3� cells (gray dots) after intracellular staining of Foxp3 is shown

(right) with percentages of Foxp3+ cells in each fraction among CD4+ cells.

(B) Expression of Bcl-2 by CD4+ lymph node T cells in DO11.10 mice before and 1 week after OVA immunization. Upper panels show FR4-CD25

expression by Bcl-2lo (black dots) and Bcl-2hi (gray dots) cells. Lower histograms show Bcl-2 expression by Foxp3+ and Foxp3� CD4+ T cells in

DO11.10 mice before and after OVA immunization with percentages of Bcl-2hi cells in Foxp3+ cells.

(C) FR4-CD25 expression by CD4+ T cells in the regional lymph nodes of OVA-CFA-immunized or control BALB/c mice. Numbers indicate the

percentages in each quadrant.

(D) Function of CD4+ T cell subpopulations from BALB/c mice immunized with OVA-CFA 1 week before. Top panel shows the percentages of intra-

cellular Foxp3+ cells in T cell subpopulations (a–d in [C]). Lower 3 panels show proliferation, IL-2 and IFN-g production by T cell subpopulations (a–d in

[C]) after in vitro stimulation with graded concentrations of OVA.

(E) Proliferation and cytokine (IL-2 and IFN-g) production by T cell subpopulations (a–d in [C]) from BALB/c mice immunized with OVA-CFA 3 months

before.

(F) Suppressive activity of OVA-CFA- or CFA-immunized FR4hiCD25hiCD4+ T cells on in vitro proliferation of Rag2�/� DO11.10 T cells in the presence

of 300 mg/ml OVA or 0.5 mg/ml CD3 mAb. The open circles represent proliferation of Rag2�/� DO11.10 T cells alone. The means and SDs of triplicate

cultures are shown.

(G) Intracellular staining of IL-17 in FR4-CD25 subsets in lymph nodes of 10-month-old SKG mice. IL-17 was stained as previously described (Hirota

et al., 2007). Shown are representative of three independent experiments.
Immunity 27, 145–159, July 2007 ª2007 Elsevier Inc. 151
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Figure 4. In Vivo Antigen-Specific Expansion of Treg Cells
(A) Expression of FR4, CD25 by CD4+, and TCRVb6+CD4+ lymph node T cells in BALB/c mice immunized with DBA/2 spleen 1 week before. Numbers

show percentages of cells in each quadrant.

(B) Proportion of TCRVb6+ cells in CD4+ T cell subpopulations (a–d in [A]) from BALB/c mice before and 1 week after in vivo stimulation with DBA/2

spleen.

(C) Proportion of TCRVb6+ and TCRVb10+ cells in Foxp3+ and Foxp3� CD4+ T cell subpopulations from BALB/c mice before and 3 days after stim-

ulation with DBA/2 spleen cells. Circles indicate individual mice, and the means and SDs are shown. Student’s t tests were performed for statistical

analyses.
Development of Autoimmune Diseases after FR4

mAb Treatment

Although the administration of TH6 to adult BALB/c mice

at a single high dose or several times at a low dose failed

to produce histologically evident autoimmune disease

(Figure 6C), we attempted to determine whether treatment

of young mice with a large dose of TH6 for a limited period

would elicit autoimmune disease. With administration of

100 mg TH6 mAb to BALB/c mice on day 10 and 20 after

birth, all the mice developed macroscopically evident

gastritis with parietal cell autoantibody (Figures 7A–7C).

Notably, many mice (50%) developed hydronephrosis

(Figures 7D and 7E). They showed histologically evident

inflammatory damage of urinary bladder and ureter,

accompanied by the development of circulating autoanti-

body specific for the epithelial cells of these organs, indi-

cating that the hydronephrosis was due to inflammatory
152 Immunity 27, 145–159, July 2007 ª2007 Elsevier Inc.
narrowing of the lumen of the organs (Figures 7F–7K).

Similar treatments of young NOD mice, which are geneti-

cally diabetes prone, enhanced the development of diabe-

tes: the treated mice started to develop the disease before

3 months of age and all the mice developed overt diabetes

by 5 months of age (Figure 7L) with severe insulitis

(Figure 7M), whereas none of the control NOD mice devel-

oped the disease by then and they had only mild insulitis

(Figures 7L and 7N).

In the pancreatic lymph nodes of NOD mice with insuli-

tis, whether they had developed overt diabetes or not,

FR4hiCD25+ cells were Foxp3+ (Figures 7O and 7P and

data not shown). Notably, a discrete population of

FR4loCD25hi cells (about 1% of CD4+ cells) developed in

the pancreatic lymph nodes, but not in the inguinal lymph

nodes, of such NOD mice (fraction a in Figure 7O). The

population was CD45RBlo, CD44hi, CD62Llo, IL-7Rahi,



Immunity

Regulatory T Cells Expressing the Folate Receptor
Figure 5. Induction of Tumor Immunity by FR4 mAb Treatment

(A) Depletion of CD25+CD4+ lymph node T cells 4 days after i.v. injection of 10 mg TH6 or its Fab fragment.

(B) Reduction of CD25+ or CD25�CD4+ T cells in peripheral blood lymphocytes (PBLs) 4 days after i.v. injection of graded doses of TH6 or control rat

IgG. The mean and SD of three mice is shown for each dose.

(C) Expression of FR4-CD25 by CD4+ T cells in an inguinal lymph node and the tumor mass from BALB/c mice with Meth A tumor on the back. Num-

bers indicate percentages of CD4+ cells in each quadrant; numbers in blankets indicate percentages of Foxp3+ cells in each fraction.

(D–F) Tumor diameter of each mouse and Kaplan-Mayer survival curve of each group. Meth A-inoculated BALB/c mice were treated with 100 mg TH6

i.v. on day 0 (D). Meth A- or Colon 26-inoculated BALB/c mice ([E] and [F], respectively) were treated with 10 mg TH6 i.v. on day 8, 12, and 16. Arrows

show the days of antibody injection. The results are the total of 3 or 4 separate experiments. Logrank test was performed for statistical analyses.
Immunity 27, 145–159, July 2007 ª2007 Elsevier Inc. 153
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Figure 6. Adaptive Cell Therapy with Antigen-Stimulated T Cells after Depletion of FR4hi Cells

(A) FR4 and CD25 expression of whole, CD4+, or CD8+ T cells after in vitro stimulation with Meth A cells for 9 days. Right panel shows FR4-CD25

expression of FR4hi-depleted cells.

(B) Stimulated lymphocytes with or without depletion of FR4hi cells were transferred to Meth A-inoculated BALB/c nude mice. Tumor diameter of each

mouse and survival curves of treated mice are shown. The results are the total of four separate experiments with Logrank test for statistical estimation.

(C) Autoimmune gastritis in treated mice. Autoantibodies against gastric parietal cells in the sera from FR4 mAb-treated BALB/c mice (mice in Figures

5D–5F) or BALB/c nude mice transferred with FR4hi cell-depleted lymphocytes were assessed by ELISA (Sakaguchi et al., 1995). Closed circles rep-

resent macroscopically and histologically evident autoimmune gastritis; open circles represent histologically intact gastric mucosa (Sakaguchi et al.,

1995).
IL-2Rb+, Foxp3�, and Bcl-2hi (Figure 7P), corresponding

to effector or effector memory T cells (Lanzavecchia and

Sallusto, 2005).

Thus, expression of FR4 and CD25 can separate Treg

cells from effector and memory-like T cells. Treg deletion

by FR4 mAb in young mice can elicit a variety of autoim-

mune diseases depending on the genetic background of

the hosts.

DISCUSSION

We have shown in this report that FR4 is constitutively ex-

pressed in Treg cells at a higher amount compared with
154 Immunity 27, 145–159, July 2007 ª2007 Elsevier Inc.
other activated or naive T cells before and after antigenic

stimulation. FR4 is not a mere marker for natural Treg cells

but also is functionally essential for their maintenance be-

cause blockade of FR4, for example by administration of

Fab fragment of TH6 mAb, was sufficient for reducing nat-

ural Treg cells in vivo. It has been shown that despite in vi-

tro hypoproliferation upon TCR stimulation, natural Treg

cells are more proliferative in vivo than other T cells in

normal naive mice, presumably by responding to self-

antigens or commensal microbes (Fisson et al., 2003;

Setoguchi et al., 2005; Walker et al., 2003). It is therefore

likely that natural Treg cells are highly dependent on folic

acid for their maintenance in the periphery and that high
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expression of FR4 may enable them to bind and incorpo-

rate folic acid efficiently. This is similar to the fact that nat-

ural Treg cells are highly dependent on IL-2 for their pe-

ripheral survival, and mere blockade of IL-2 binding can

reduce the number of natural Treg cells (Setoguchi et al.,

2005). Small compounds capable of blocking the uptake

of folic acid or altering its cellular metabolism could selec-

tively control the number of natural Treg cells.

With FR4 as a Treg cell marker, we have shown here that

strong in vivo or in vitro antigenic stimulation activates and

expands not only antigen-specific nonregulatory T cells

but also antigen-reactive Treg cells, leading to an

enhancement of antigen-specific suppression. This en-

hancement of antigen-specific suppressive activity is

mainly due to clonal activation and expansion of anti-

gen-reactive Treg cells, as indicated by the following find-

ings. First, Foxp3-expressing Mls1a-reactive BALB/c Vb6+

T cells expanded in the FR4hiCD25hi population after DBA/

2 stimulation whereas Mls1a-nonreactive Foxp3+Vb10+

cells did not. This in vivo expansion of Vb6+ cells corre-

lates with our previous finding that in vitro stimulation of

BALB/c T cells with DBA/2 antigen-presenting cells

resulted in a substantial increase of the number of TCR

Vb6+ T cells in the Foxp3+ Treg population (Nishimura

et al., 2004). Second, not only the number of FR4hiCD25+

T cells but also that of Foxp3+ cells increased 3-fold in the

regional lymph nodes of OVA-CFA-immunized DO11.10

mice compared with nonimmunized mice. Third,

FR4hiCD25+ T cells increased the expression of CTLA-4,

CD69, and CD103 in DO11.10 mice after OVA-CFA immu-

nization. Previous studies by others showed that antigen-

specific Treg cells isolated from TCR transgenic mice ex-

hibited in vivo and in vitro clonal expansion upon antigenic

stimulation (Klein et al., 2003; Tang et al., 2004; Walker

et al., 2003). Also, antigen-pulsed mature DCs were able

to induce proliferation of TCR-transgenic natural Treg

cells in vitro and in vivo (Fehervari and Sakaguchi, 2004;

Yamazaki et al., 2003). Together with these findings, our

results with nontransgenic T cells demarcated by FR4

and CD25 expression indicate that the clonal activation

and expansion of antigen-specific Treg cells physiologi-

cally occurs upon strong antigenic exposure, such as

immunization with protein antigen in CFA or allogeneic

grafts. This may form the cellular basis of antigen-specific

downregulation or tolerance mediated by natural Treg

cells.

The combination of FR4 and CD25 can define two func-

tionally distinct subpopulations of Foxp3� non-Treg CD4+

T cells. FR4hiCD25� cells in BALB/c mice after OVA-CFA

immunization vigorously proliferated and abundantly

produced IL-2 but scarcely produced IFN-g, whereas

FR4loCD25+ cells from the same mice produced a large

amount of IFN-g but showed much less proliferation and

production of IL-2. FR4hiCD25� cells retained this re-

sponse pattern when restimulated in vitro with OVA 3

months after initial immunization. Phenotypically,

FR4loCD25+ cells and FR4hiCD25� cells in antigen-primed

mice were similarly Bcl-2hi, CD44hi, largely CD69hi, largely

CD62Llo, whereas the former were higher in IL-7Ra ex-
pression than the latter. Notably, in NOD mice with insuli-

tis, pancreatic lymph nodes but not inguinal lymph nodes

contained a larger number of FR4loCD25hi cells as a phe-

notypically discrete population. Furthermore, FR4loCD25+

cells predominantly secrete proinflammatory cytokines

such as IL-17 and IFN-g. These functional and phenotypic

differences, when taken together, indicate that

FR4loCD25+ cells contain effector and effector memory

T cells, whereas FR4hiCD25� cells, which enormously ex-

pand after antigen stimulation, include central memory T

cells. Distinction between effector memory and central

memory T cells by cell-surface markers has not been clear

in murine CD4+ T cells compared with the human counter-

parts (Lanzavecchia and Sallusto, 2005; Reinhardt et al.,

2001; Sallusto et al., 1999; Seder and Ahmed, 2003;

Sprent and Surh, 2002). The combination of FR4 and

CD25 may help phenotypically distinguishing these T

cell subsets.

Differentiation of activated Treg cells from activated

non-Treg cell effector or memory T cells by FR4 mAb

makes it possible to specifically manipulate Treg cells in

ongoing immune responses. For example, FR4 mAb

(TH6) treatment can preferentially reduce natural Treg

cells, enhance antitumor immune responses, leading to

eradication of even advanced tumors, whereas anti-

CD25 treatment or IL-2 neutralization by IL-2 mAb affects

both Treg cells and effector T cells and therefore may fail

to induce effective tumor immunity against advanced tu-

mors (Ko et al., 2005, and data not shown). Although

high-dose TH6 mAb treatment may reduce FR4hiCD25�

memory-like T cells to a certain extent, it apparently

spares FR4loCD25+CD4+ and CD25+CD8+ activated ef-

fector T cells. In addition to such TH6 mAb-mediated

in vivo depletion, in vitro complement-dependent cell lysis

of FR4-expressing cells enhanced antitumor activity of T

cell suspensions from tumor-bearing mice in adoptive im-

munotherapy. In contrast, use of FR4 as a marker for ac-

tivated Treg cells enables us to isolate antigen-activated

and clonally expanded Treg cells as FR4hiCD25hi cells,

for example, from the host undergoing graft rejection, to

expand them ex vivo polyclonally or antigen specifically,

and to transfer them back for suppressing graft rejection.

A similar procedure can also be of use for the treatment of

autoimmune disease by enriching antigen-expanded Treg

cells from the site or regional lymph nodes of autoimmune

tissue damage.

Our study shows the possibility that depletion of FR4-

expressing T cells, especially in young mice, can evoke

severe immune responses to self antigens, in addition to

enhancing immune responses to nonself antigens (such

as allotransplantation antigens) or quasi-self tumor anti-

gens. For example, TH6 mAb treatment of young BALB/

c mice produced not only gastritis, to which BALB/c

mice are genetically susceptible upon depletion or reduc-

tion of Treg cells (Sakaguchi et al., 1995), but also autoim-

mune cystitis, which can be adoptively transferred to

BALB/c nude mice by CD4+ T cells (data not shown).

This autoimmune cystitis can be a good model for human

chronic interstitial cystitis associated with other
Immunity 27, 145–159, July 2007 ª2007 Elsevier Inc. 155
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autoimmune diseases (Alarcon-Segovia et al., 1984; Ora-

visto, 1980). In contrast to young mice, however, TH6 mAb

treatment of adult mice at a dose sufficient to provoke ef-

fective tumor immunity failed to elicit histologically evident

autoimmune disease. This indicates that tissue-damaging

autoimmune responses are more tightly regulated than

antitumor immune responses, especially in adult animals.

Nevertheless, the two-sided effect of Treg depletion on tu-

mor immunity and autoimmunity needs to be considered

in its clinical application for immunotherapy of cancer, in

particular in individuals genetically susceptible to autoim-

mune disease.

In conclusion, FR4 is a functionally essential molecule

for Treg cells and also a useful marker for distinguishing

functionally different T cell subpopulations after antigenic

stimulation, in particular between activated Treg cells

and other T cells, and for monitoring immune responses

involving various T cell subpopulations. It needs to be

determined whether FR4 is a useful molecular marker for

manipulating natural Treg cells and other T cell subpopu-

lations in humans as well.

EXPERIMENTAL PROCEDURES

Mice

BALB/c, C57Bl/6 (B6), C3H, DBA/2, and BALB/c nude mice of 6 to 10

weeks of age were purchased from Japan SLC (Shizuoka, Japan), and

NOD mice were purchased from Japan Clea (Tokyo, Japan). RAG2-

deficient DO11.10 TCR transgenic mice were bred in our animal facil-

ity. They were maintained in our animal facility and treated in accor-

dance with the guidelines for animal care in the Institute for Frontier

Medical Sciences, Kyoto University.

Preparation of mAbs

Wistar rats from Charles River Japan (Yokohama, Japan) were three

times i.p. immunized with 5 3 106 cells of CD3 mAb-activated

CD25+CD4+ T cells, and spleen cells were fused with P3U1 myeloma

cells 3 days after the final immunization (Shimizu et al., 2002). Hybrid-

oma cells secreting mAbs that stained CD25+CD4+ T cells in flow

cytometry were selected and cloned. Purified mAbs were conjugated

with biotin (GE Healthcare Bio-Sciences Co., Piscataway, NJ), Alexa

Fluor 455, or FITC (Invitrogen Co., Carlsbad, CA). Fab fragments

were prepared by as previously described (Shimizu et al., 2002).

Immunoprecipitation

Lymph nodes and spleen cells were lysed, incubated with protein G

Sepharose prereacted with antibodies, and subjected to SDS-PAGE

(Shimizu et al., 2002). Protein extracted from bands in SDS-PAGE visu-
alized by silver staining (DAIICHI PURE Chemicals, Tokyo, Japan) was

subjected to Mass-Fingerprint analysis (Henzel et al., 1993).

Transfection of FR4 and Foxp3

Cos-7 cells were transfected with the pMXS-IG expression vector

(Kitamura et al., 2003) with or without Folr4 cDNA with Lipofect-

amine2000 (Invitrogen). For the retroviral transduction of Foxp3, CD3

mAb-activated CD25�CD4+ T cells were infected with MIGR1 ex-

pressing GFP (Kitamura et al., 2003) with or without Foxp3 cDNA

(Hori et al., 2003).

Flow Cytometry and Cell Sorting

CD4+ T cells were stained with Alexa Fluor 488- or FITC-conjugated

FR4, Phycoerthrin-conjugated CD25 (BD Biosciences, San Jose,

CA), and CyChrome-conjugated CD4 (BD Biosciences) mAbs, and

fractionated to each population by a MoFlo cell sorter (DAKO, A/S,

Denmark) to more than 97% purity of each fraction. For intracellular

Foxp3 staining, cells were fixed after cell-surface staining of FR4,

CD25, and CD4, permeabilized, and stained with Foxp3 mAb (eBio-

science, San Diego, CA).

RT-PCR

Total cellular RNA was extracted with Isogen (Nippon Gene, Tokyo,

Japan) from sorted lymphocytes or mouse placenta. The total amount

of RNA was reverse transcribed with Superscript II reverse-transcrip-

tase and oligo(dT)12-18 primer (Invitrogen). PCR consisted of a dena-

turation step at 94�C for 2.5 min, followed by 25–40 cycles (40 cycles

for FR1 and FR2, 30 cycles for FR4, and 25 cycles for HPRT), at 94�C

for 30 s, at 60�C for 30 s, and at 72�C for 45 s, with following primer

sequences: FR1, gggttgtattttacccagtaggagt and aggtaggaaatgtcctta

tgtgctt; FR2, gctggaagactgaactaagacagaa and ggagtcttggatgaagtg

actctta; FR4, cactgtggactgctga and ggctcaaaccacttctg; HPRT, tgaag

agctactgtaatgatcagtcaac and agcaagcttgcaaccttaacca. Real-time

quantitative PCR analysis of Foxp3 was performed as described pre-

viously (Hori et al., 2003).

In Vivo T Cell Activation and In Vitro Assay for

Proliferation and Cytokine Production

For in vivo stimulation, 25 mg of OVA emulsified in 50 ml of CFA was in-

jected into footpads, and 8 days later, popliteal lymph node cells were

collected. Rag2�/� DO11.10 T cells (5 3 104 per well) were cultured

with a graded number of FR4hiCD25+CD4+ cells for 5 days in the pres-

ence of 300 mg/ml OVA and 15 Gy-irradiated BALB/c spleen cells (1 3

105) in U-bottomed 96-well plates; incorporation of 3H-thymidine (1

mCi/well) (Du Pont/NEN, Boston, MA) during the last 6 hr of culture

was measured (Takahashi et al., 1998). In allogeneic mixed lympho-

cytes reactions, CD4+ or CD8+ cells were stimulated with allogeneic

15 Gy-irradiated spleen cells in 1:1 ratio with 50 U/ml IL-2 (Shionogi,

Osaka, Japan) for 3–9 days. In suppression assay, CD25�CD4+ cells

(2.5 3 104) were stimulated with irradiated allogeneic spleen cells

(1 3 105) and graded numbers of FR4+CD25+CD4+cells for 5 days,
Figure 7. Autoimmune Diseases in Mice Treated with TH6 mAb on Day 10 and 20 after Birth

(A) Autoantibodies against gastric parietal cells in the sera from TH6-treated BALB/c and NOD mice were assessed as in Figure 6C. Closed or open

circles, see Figure 6C.

(B and C) Gastric mucosa from BALB/c mice treated with TH6 (B) or control rat IgG (C). Hematoxilin and eosin (HE) staining (350 as original magni-

fication).

(D and E) Section of a kidney of a BALB/c mouse treated with TH6 (D) or control rat IgG (E). HE staining (31).

(F and G) Bladder of BALB/c mice treated with TH6 (F) or control rat IgG (G). HE staining (350).

(H–K) Indirect immunofluorescence staining of normal bladder (H and J) (350) and ureter (I and K) (3100) with the sera from TH6- or control rat IgG-

treated mice (H) and (I) or control rat IgG (J) and (K). Autoantibody against the epithelia of normal bladder and ureter were detected with Alexa 488-

conjugated anti-mouse IgG antibody as green with counter nuclear staining (POPO-3 iodide) as red.

(L) Incidence of diabetes in NOD mice after treatment with TH6 or control rat IgG.

(M and N) Histology of islets from NOD mice treated with TH6 (M) or control rat IgG (N). HE staining (350).

(O) Expression of FR4 and CD25 by CD4+ T cells in pancreatic or inguinal lymph nodes from NOD mice without overt diabetes.

(P) Pancreatic lymph node CD4+ T cells (gated as shown in [O]) from NOD mice were stained for FR4, CD25, and indicated molecules. Foxp3, CTLA-4,

Bcl-2, and Hamster IgG were stained intracellularly. Shown in (O) and (P) are representative of three independent experiments.
Immunity 27, 145–159, July 2007 ª2007 Elsevier Inc. 157
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as previously described (Nishimura et al., 2004). Concentrations of IL-2

and IFN-g in the culture supernatants were determined by ELISA (eBio-

science).

Tumor Inoculation

BALB/c mice were intradermally inoculated with Meth A (2 3 105) or

Colon 26 cells (1 3 105) and i.v. injected with TH6 mAb (Ko et al.,

2005). Tumor diameter in two directions was measured for each

mouse every 4 days, and mice were sacrificed when the average of

the tumor diameter exceeded 15 mm. For in vitro stimulation with tu-

mor cells, draining lymph nodes and spleen cells from Meth A-bearing

mice were cultured with mitomycin C-treated Meth A cells and 50 U/ml

IL-2 for 9 days, treated in vitro with TH6 and rabbit complement, and

2 3 106 remaining T cells were i.v. transferred to nude mice that

were inoculated with Meth A cells on the same day.

Histology and Serology

Autoantibodies specific for the gastric parietal cells were determined

by ELISA (Sakaguchi et al., 1995). Urinary or blood glucose levels

were measured with Testape or the Medisafe reader (TERUMO, Tokyo,

Japan), respectively. Mice with blood glucose levels higher than 300

mg/dl were considered diabetic. Histological and immunohistochem-

ical examination was performed as previously described (Ono et al.,

2006).

Statistical Methods

Logrank or Student’s t test was used for statistical analyses.

Supplemental Data

Six figures are available at http://www.immunity.com/cgi/content/full/

27/1/145/DC1/.
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