EMBEDDING FINITE POSETS IN CUBES

William T. TROTTER, Jr.
Department of Mathematics and Computer Science, University of South Carolina, Columbia, S.C. 29208, USA

Received 5 Octeber 1973
Revised 19 November 1974

In this paper we define the n-cube Q_{n} as the poset obtained by takirg the cartesian product of n chains each consisting of two points. For a finite poset X, we then define $\operatorname{dim}_{2} X$ as the smallest positive integer n such that X can be embedded as a subposet of Q_{n} For any poset X we then have $\log _{2}|X| \leqslant \operatorname{dim}_{2} X \leqslant|X|$. For the distributive lattice $L=2^{X}, \operatorname{dim}_{2} L=|X|$ and for the crown $S_{n}^{k}, \operatorname{dim}_{2}\left(S_{n}^{k}\right)=n+k$. For each $k \geqslant 2$, there exist positive constants c_{1} and c_{2} so that for the poset X consisting of all one elemeat and k-element subsets of an n-element set, the inequality $c_{1} \log _{2} n<\operatorname{dim}_{2}(X)<c_{2} \log _{2} n$ holds for all n with $k<n$. A poset is called Q-critical if $\operatorname{dim}_{2}(X-x)<\operatorname{dim}_{2}(X)$ fct every $x \in X$. We define a join operation on posets under which the collection Q of all Q-critical posets which are not chaias forms a semigroup in which unique factorization holds. We then compietely determine the subcollection $\subseteq \subseteq Q$ consisting of all posets X for which $\operatorname{dim}_{2}(X)=|X|$.

1. Introduction

A partially ordered set or poset is a pair (X, P) where X is a set and P is a reflexive, antisymmetric, and transitive relation on X. The notations $(x, y) \in P, x \leqslant y$ in P, and $x P y$ are used interchangeably. If neither (x, y) nor (y, x) is in P, we say x and y are incomparable and write $x I y$. For convenience we frequently denote a poset by a single symbol: we also use $X=Y$ and $X \subseteq Y$ for X is isomorphic to Y and X is isomorphic to a subposet of Y.

The n-cube Q_{n} is the set of all $0-1$ sequences of length n. We consider Q_{n} as a poset with the natural partial ordering P defined by $f P g$ ift $f(i) \leqslant g(i)$ for all $i \leqslant n . Q_{n}$ is then isomorphic to the poset consisting of all subsets of an n-element set ordered by inclusion. Equivalently, Q_{n} is the poset obtained by taking the cartesian product of n copies of the two elerment chain $0<1$.

In this paper we denote an n-element chain by \underline{n} and label the points of \underline{n} so that $0<1<2<\ldots<n-1$ in \underline{n}. With this notation, $Q_{n}=\underline{2}^{n}$.

We also denote an n-element antichain (a poset in which distinct points are always incomparable) by \bar{n}.

For a poset (X, P), Dushnik and Miller [4] defined the dimension of (X, P), denoted $\operatorname{dim}(X, P)$, as the smallest positive integer \boldsymbol{n} for which there exist linear orders $L_{1}, L_{2}, \ldots, L_{n}$ on X such that $x s_{i} y$ in P iff $x \leqslant y$ in each L_{i}. Equivalently, Ore [8] defined $\operatorname{dim}(X, P)$ as the smallest positive integer n for which $(X, P) \subseteq C_{1} \times C_{2} \times \ldots \times C_{n}$ where each C_{i} is a chain. For a finite f oset X and an integer $k \geqslant 2$, we defin ${ }^{*}$ the k-dimension of $X, \operatorname{dim}_{k} X$, as the smallest positive integer n for which $X \subseteq \underline{k}^{n}$. In this paper we are concerned primarily with the case $k=2$ i.e., the erabedding of finite posets in cubes. We refer the reader to $\{12,13]$ for theorems when $k \geqslant 3$. We also note that the problem of embedding graphs in cuties is dicussed in $[5,6]$.

For each $n \geqslant 1$, the length of the longest chain in Q_{n} is easily seen to be $n+1$. If we take dim d $_{2}$ (1) to be zero by convention, then we have $\operatorname{dim}_{2} \underline{n}=n \cdots$ for all $n \geqslant 1$. On the other hand, it follows immediately from Sperner's theorem [10], that $\operatorname{dim}_{2}(\bar{n})$ is, the smallest positive integer t for which $\left(t^{t} / 21\right) \geqslant n$.

If $X=Q_{n}$ and $f: X \rightarrow Q_{n}$ is an embedding, then the mapg: $\hat{X} \rightarrow Q_{n}$ detined by $g(x)(i)=1-f(x)(i)$ is an embedding of the dual \hat{X} of X in Q_{n} and ihus $\operatorname{dim}_{2}(X)=\operatorname{dim}_{2}(\hat{X})$.

For any poset X we have the trivial lower bound $\operatorname{dim}_{2}(X) \geqslant \log _{2}|X|$ since $\left|Q_{n}\right|=\%^{n}$. If $X=\left\{x_{1}, x_{2} \ldots, x_{p}\right\}$, then the map $f: X \rightarrow Q_{p}$ defined by $f\left(x_{i}\right)(j)=$ if $x_{j} \leqslant x_{i}$ in X and $f\left(x_{i}\right)(j)=i$ otherwise is an embedding of \hat{X} in Q_{p} and thus we have the upper bound $\operatorname{dim}_{2}(X) \leqslant|X|$.

A poset X for which $\operatorname{dim}_{2}(X-x)<\operatorname{dim}_{2}(X)$ for every $x \in X$ is called a Q-critical poset. Every chain of two or more points is Q-critical. We denote the set of all Q-critical posets which are not chains by Q. A poset X for which $\operatorname{dim}_{2}(X)=|X|$ is called an $M Q$ poset and we denote the set of all $M Q$ posets by \mathcal{O}. Ciearly every $M Q$ poset is also Q-critical.

For arbitrary posets X and Y we define the join (or ordinal sum) of X and Y, denoted $X \oplus Y$, as the poset obtained by placing all elements of X under all elements of Y. This operation is analogous to the join operation $G_{1} 1 \cdot G_{2}$ defined for graphs by Zykov for if $G(X)$ is the comparability graph of X, then $G(X \oplus Y)=G(X)+G(Y)$. However, in this pape:, we will use the symbol + to denote the free sum or cardinal sum of pesets as defined by Birkhoff [1, p. 55]. In subsequent sections of this paper, we will show that both ($(\underset{\sim}{m}, \oplus)$ and (Q, G) are semigroups

[^0]with no prime posets which are composite in the semigroup of all posets under \oplus. We will then completely determine the set of al' prime $M Q$ posets.

For any pair of posets we have $\operatorname{dim}_{2}(X \times Y) \leqslant \operatorname{dim}_{2}(X)+\operatorname{dim}_{2}(Y)$ and $\operatorname{dim}(X \times Y) \leqslant \operatorname{dim} X+\operatorname{dim} Y$. If X and Y have universal bounds, then $\operatorname{dim}_{2}(X \times Y)=\operatorname{dim}_{2}(X)+\operatorname{dim}_{2}(Y)$ and $\operatorname{dim}(X \times Y)=\operatorname{din} X+$ $\operatorname{dim} Y\left(\operatorname{in}\right.$ particular, $\left.\operatorname{dim} Q_{n}=n\right)$:tabsequent sections, we will discuss the analogy between $\operatorname{dim}_{2}(X)$ and $\operatorname{dim} X$ in more detail.

2. Embedding the join of posets in cubes

In this section, we produce a formula for computing $\operatorname{dim}_{2}(X)$ in terms of its prime join factors.

Lemma 2.1. $\operatorname{dim}_{2}(X \oplus Y) \geqslant \operatorname{dim}_{2}(X)+\operatorname{dim}_{2}(Y)$ for every X, Y.
Proof. Let $f: X \oplus Y \rightarrow Q_{n}$ be an embedding. Define $A \subseteq\{1,2, \ldots, n\}$ by $A=\left\{i\right.$: there exist $x, x^{\prime} \in X$ such that $f(x)(i)=0$ and $\left.\mathrm{f}\left(x^{\prime}\right)(i)=1\right\}$. We observe that for each $y \in Y$ and for each $i \in A, f(y)(i)=1$. Now' define $B=\left\{i\right.$: there exist $y, y^{\prime} \in Y$ such that $f(y)(i)=0$ and $\left.f\left(y^{\prime}\right)(i)=1\right\}$. Then it is easy to see that A and B are disjoint and that $|A| \geqslant \operatorname{dim}_{2}(X)$ and $|B| \geqslant \operatorname{dim}_{2}(Y)$.

Lemma 2.2. If X has a greatest element and Y a least element, then $\operatorname{dim}_{2}(X \oplus Y) \geqslant 1+\operatorname{dim}_{2}\left(X^{\prime}\right)+\operatorname{dim}_{2}(Y)$.

Proof Let $f: X \oplus Y \rightarrow Q_{n}$ be any embedding and let A and B be defined as in the preceding lemma. Let x be the greatest element of X and let y be the least element of Y. Then define $C=\{i: f(:)(i)=0$ and $f(y)(i)=1$. It follows that A, B and C are mutually disjoint and that C is nonempty.

Theorem 2.3. $\mathrm{dim}_{2}(X \oplus Y)=\operatorname{dim}_{2}(X)+\operatorname{dim}_{2}(Y)$ unless X has a greatest element and Y has a least element. In that case $\operatorname{dim}_{2}(X \oplus Y)=$ $1+\operatorname{dim}_{2}(X)+\operatorname{dim}_{2}(Y)$.

Proof. Let $f: X \rightarrow Q_{n}$ and $g: Y \rightarrow Q_{m}$ be embeddings. Define $h: X \oplus Y$ $\rightarrow Q_{m+n}$ by $h(x)(i)=0$ for $1 \leqslant i \leqslant m ; h(x)(i)=f(x)(i)$ for $m+1 \leqslant i \leqslant n+m$; $h(y)(i)=g(y)(i)$ for $1 \leqslant i \leqslant m$; and $h(y)(i)=1$ for $m+1 \leqslant i \leqslant m+n$.

Then h is an embedding of $X \oplus Y$ unless $h(r)=l(y)$ for some $x \in X$, $y \in Y$. It is easy to see that this may occur only if X has a greatest element and Y has a least element. In this case, it suffices to add one additional term to these sequences: a zero for each point in X and a one for each point in Y.

It should be noted that the order of factors in the join operation is important.

Corslary 2.4. If $X=P_{1} \oplus P_{2} \oplus P_{3} \oplus \ldots \oplus P_{t}$ is the decormposition of X into prime join factors. then $\operatorname{dim}_{2}(X)=s+\Sigma_{i} \operatorname{dim}_{2}\left(P_{i}\right)$ where s is the number of subscripts $i \leqslant t-1$ such that $P_{i}=P_{i+1}=1$.

3. The structure of Q-critical posets

I: follows immediately from the formula ior $\operatorname{dim}_{2}(X)$ given in the preceding section that the chains are the only Q-critical posets which have 1 as a join factor. Also we see that $X \oplus Y$ is Q-critical and does not have 1 as a join factor iff both X and Y are Q-critical a ad neither has 1 as a join factor. Similarly $X \oplus Y$ is $M Q$ iff both X and ase are $M Q$.

Example 3.1. For each $n \geqslant 2$, let $L_{n}=n-1+1$. Since every chain in Q_{n-1} of length $n-1$ contains at least one of the two univerial bounds and these points compare with every other point of Q_{n-1}, it follows tha: L_{n} cannot be embedded in Q_{n-1} and thus $Q\left(L_{n}\right)=n$. Clearly each L_{n} is a prime $M Q$ poset.

Example 3.2. For each $n \geqslant 4$, let N_{n} denote the poset consisting of two disj jint chains $a_{1}<a_{2}$ and $b_{1}<b_{2}<\ldots<b_{n-2}$ uith a_{2} also covering b_{n-3}. Then $Q\left(N_{n}\right)=n-1$.

Example 3.3. The only $M Q$ poset on two points is $L_{2}=\overline{2}$. The only $M Q$ posets on three points aie L_{3} and $\overline{3}$. The only prime $M Q$ posets on four points are $L_{4}, L_{3}+1$ and $\overline{4}$. The only prime $M Q$ poset on five points is L_{5}.

Lemma 3.4. If a is a maximal elernent of a finite poset X and $X-a$ roes no: have a greatest element, then $\operatorname{dim}_{2} X \leqslant 1+\operatorname{dim}_{2}(X-a)$

Proof. Let $f:(X-a) \rightarrow Q_{t}$ be an embedding. Define $g: X \rightarrow Q_{t+1}$ by $g(x)(i)=f(x)(i)$ for every $x \in X-a$ and every $i \leqslant t ; g(a)(i)=1$ for every $i \leqslant t ; g(x)(t+1)=0$ if $x \leqslant a$ and $\left.g(x))_{i}+1\right)=1$ if $x \leqslant a$ for every $x \in X$. It follows easily that g is an embedding of X in Q_{t+1}.

Theorem 3.5. For $n \geqslant 5$, the only prime MQ poset is L_{n}.
Proof. Assume ralidity for $n \leqslant k$, where $k \geqslant 5$. Now suppose that X is a prime $M Q$ poset on $k+1$ points. Since X is prime, it has two or more maximal elements. Suppose that X has only two maximal elements a and b. If a is the greatest element of $X-b$ and b is the greatest element of $X-a$, ther X has L_{2} as a join factor. Now suppose that a is the greatest element of $X-b$ but that b is not the greatest element of $X-a$. Choose $c \in X$ such that a covers c but b and c are incomparable. By Lemma 3.4, $X-a$ is an $M Q$ poset and if $X-a$ is composite so is X. If $X-a$ is L_{k}, then X is either L_{k+1} or N_{k+1} and since N_{k+1} is not $M Q$, X must be L_{k+1}.

Now suppose that a is not the greatest element of $X-b$ and that b is not the greatest element of $X-a$. Choose elements c, d such that a covers c, b covers d, but a is incomparable with d and b is incomparable with c. Now $X-a$ and $X-b$ are both $M Q$ posets and if either has a join factor, so does X. Hence we may assume that $X-a=X-b=L_{k}$. But it is easy to see that no such pose* ${ }^{*}$ xists. The contradiction shows that X must have at least three maximal elements.

Choose any three maximal elements a, b and c. Then by Lemma 3.4, we conclude that each of the posets $X-a, X-b$ and $X-c$, must be L_{k}. Clearly this is not possible.

4. Embedding distributive lattices in cubes

In this section, we develop a formula for $\operatorname{dim}_{2}(L)$ when L is a distributive lattice. We employ the concept of exporentiation (cardinal power) of posets and define X^{Y} as the collection of all order reversing functions from Y to X with $f \leqslant g$ in X^{Y} iff $f(y) \leqslant g(y)$ in X for every $y \in Y$. We refer the reader to $[1$, p. 57] for elementary properties of X^{Y}. In particular we note that for eacl distributive lattice L there is a unique poset X for which $L=2^{X}$.

Theorem 4.1. If $L=\underline{2}^{X}$ is a distributive lattice, then $\operatorname{dim}_{2}(L)=|X|$.

Proof. Let $|X|=n$. Then $2^{X} \subset \underline{2}^{\bar{n}}=\underline{2}^{n}=Q_{n}$ and thus $\operatorname{dim}_{2}(L) \leqslant n$. On the other hand, if we let Y be a linear extension of X, then $\underline{n+1}=\underline{2}^{n}=$ $\underline{2}^{Y} \subseteq \underline{2}^{X}$ and thus $n=\operatorname{dim}_{2}(n+1) \leqslant \operatorname{dim}_{2}(L)$.

Theorem 4.1 is a special case of a result for enbedding distributive lattices in chains of bounded lengths. We state this result and refer the reader to [12] for the proof.

Theorem 4.2. Let $L=\underline{2}^{X}$ be a distributive lattice and let $k \geqslant 2$ be a positive integer. Then the smallest positive integer t for which L can be embedded in \underline{k}^{t} is equal to the smallest positive integer s for which there exists a decomposition $X=C_{1} \cup C_{2} \cup \ldots \cup C_{s}$, where each C_{i} is a chain containiag at most $k-1$ points.

We note that Theorem 4.2 includes Dilworth's elegant result [2] for the dimension of a distributive lattice, $\operatorname{dim} \underline{2}^{X}=$ width X.

5. Embedding crowns in cubes

For $n \geqslant 3, k \geqslant 0$, the crown S_{n}^{\prime} is defined in [11] as a poset with $n+k$ maximal elements $a_{1}, a_{2}, \ldots, a_{n+k}$ and $n+k$ minimal elements $b_{1}, b_{2}, \ldots, b_{n+k}$. Each b_{i} is incomparable with $a_{i}, a_{i+1}, \ldots, a_{i+k}$ (cyclically) and less than the remaining $n-1$ maximal elements. In [11], it is shown that $\operatorname{dim} S_{n}^{k}=\{2(n+k) /(k+2)\}$. To determine $\operatorname{dim}_{2}\left(S_{n}^{k}\right)$, we note that $\operatorname{dim}_{2}\left(S_{n}^{*}\right)$ is the smallest integer t for which there exists an order preserving map $f: S_{n}^{k} \rightarrow Q_{t}$ such that for every incomparable max-min pair $a, b \in S_{n}^{k}$, there exists $i \leqslant t$ with $f(b)(i)=1$ and $f(a)(i)=0$.

Theosem 5.1. $\operatorname{dim}_{2}\left(S_{n}^{k}\right)=n+k$ for every $n \geqslant 3, k \geqslant 0$.
Proof. The map $f: S_{n}^{k} \rightarrow Q_{n+k}$, defined by $f\left(b_{j}\right)(i)=1$ if $i=j, 0$ otherwise, and $f(a)(i)=0$ if $a I b_{i}$, otherwise, shows that $\operatorname{dim}_{2}\left(S_{n}^{k}\right) \leqslant n+k$. Now suppose that $\operatorname{dim}_{2}\left(S_{n}^{k}\right)=t$. Choose an embedding $g: S_{n}^{k} \rightarrow Q_{t}$ with

$$
M=\sum_{i=1}^{t} \sum_{x \in S_{n}^{k}} g(x)(i)
$$

as small as possible. For each $i \leqslant t$, let B_{i} denote the set of minimal elements b for which $g(b)(i)=1$. It is clear that each $B_{i} \neq \phi$ and that $g(a)(i)=0$ iff a is incomparable with each $b \in P_{i}$.F reach i, choose a
maximal element a^{i} such that $g\left(a^{i}\right)(i)=0$ and let A_{i} be the set of all maximal elements a such that $g(a)(i)=0$. Then B_{i} is a subset of the set D_{i} consisting of all $k+1$ minimal elements which are incomparable with a^{i}. Subscripts interpreted cyclically impose a linear order on each D_{i}. Then for each i, let b^{i} be the largest element in B_{i} as determined by this linear order on D_{i}. Suppose that there exist distinct integers $i, j \leqslant t$ with $b^{i}=b^{j}$. It follows that either $A_{i} \subseteq A_{j}$ or $A_{j} \subseteq A_{i}$; we assume without loss of generality that $A \subseteq A_{i}$. Then define $h: S_{n}^{k} \rightarrow Q_{i}$ by $h\left(b^{i}\right)(i)=0$ and $h(x)=g(x)$ otherwise. It is easy to see shat h is an embedding but M has been reduced by 1 . The contradiction shows that $b^{i} \neq b^{i}$ for every distinct pair i, j and thus $\operatorname{dim}_{2} S_{n}^{k}=t \geqslant n+k$.

6. Embedding collections of sets in cubes

Dushnik [3] and Spencer [9] use the notation $N(n, k)$ for the dimer. sion of the poset X consisting of all one clement and ($k-1$)-element subsets of an n-element set ($n \geqslant k \geqslant 3$) ordered by inclusion. We will denote $\operatorname{dim}_{2}(X)$ by $Q(n, k)$. It is easy to see that the following alternate definition of $Q(n, k)$ is valid.

Lemma 6.1. $Q(n, k)$ is the smallest integer t for which there exists a coliection $A_{1}, A_{2}, \ldots, A_{t}$ of subsets of $\{1,2, \ldots, n\}$ so that for each k-eiement subset $F \subseteq\{1,2, \ldots, n\}$ and each $a \in F$, there exists $i \leqslant t$ such that $F \cap A_{i}=\{a\}$.

Since $|X|=n+\left({ }_{k-1}^{n}\right)$, we see that for each $k \geqslant 3$, there exists a positive constant c_{1} so that $Q(n, k) \geqslant c_{1} \log _{2} n$ for all $n \geqslant k$. We can modify Spencer's probabilistic argı ment [9] to produce the following upper bound

Theorem 6.2. For each $k \geqslant 3$, there exists a positive constant c_{2} so that $Q(n, k) \leqslant c_{2} \log _{2} n$ for all $n \geqslant k$.

Proof. Let s be a positive integer. Then there are $2^{n s} s$-tuples of subsets of $\{1,2, \ldots, n\}$. For each k-element subset $F \subseteq\{1,2, \ldots, n\}$ and each $a \in F,\left(2^{k}-1\right)^{s} 2^{n s-k s}$ of these s-tuples fail to satisfy the requirements of Lemma 6.1. There are $\binom{n}{k} k<n^{k+1}$ ways to choose F and a. In order to insure the existence of an s-tuple of subsets of $\{1,2, \ldots, n\}$ satisfying the requirements of the lemma, it is sufficient to choose ss that
$n^{k+1}\left(2^{k}-1\right)^{s} 2^{n s-k s}<2^{n s}$. But it is easy to see that this inequality holds if

$$
s>\left\{\left(k+13\left[k-\log _{2}\left(2^{k}-1\right)\right]\right\} \log _{2} n\right.
$$

and the theorem is proved.

References

[1] G. Birkhoff, Littice Theory, AMs Colloq. Publ., Vol. 25 (Am. Math. Soc., Providence, RI., 1967).
[2] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. Math. 51 (1950) 161-166.
[3] B. Dush aik, Concerning a certain set of arrangements, Proc. Am. Math. Soc. 1 (1950) 788 796.
\{4] B. Dushnik and E. Miller, Partially ordered iets, Am. J. Math. 63 (1941) 6.
(5) R.L. Graharn and ?.O. Pollak, On the addressing problem for loop switchind, beil System Tech. J. 50 (1971) 2495-2519.
[6] R.L. Graharn and H.O. Follak, On embedding graphs in squashed cubes in: Graph Theory and Applications (Springer, Berlin, 1972) 99-110.
[7] V. Novák, On the pseudo-dimension of ordered sets, Czechoslovak Math. J. 13 (1963) 587-398.
[8] O. Ore, Theory of Graphs, AMS Colloq. Publ., Vol. 38 (Am. Math. Soc., Providence, R.I., 1962).
[9] 1. Spencer, Minimal scrambling sets of simple orders, Acta Math. Acad. Sci. Hungar. 22 (1971) 349-353.
[10] E. Sperner, Ein Satz über Untermengen eimer endlichen Menge, Math. Z. 27 (1928) 544548.
[11] W.T. Trotter Dimension of the crown S_{n}^{k}, Discrete Math. 8 (1974) 85-103.
[12] W.T. Trotter, A note on Dilworth's emberding theorem, Proc. Am Math. Soc., to appear.
[13] W.T. Trotter, A generalization of Hiragurlii's inequality for posets, to appear.

[^0]: "This concept has been studied by Novak [7] who used the terminolc $p \boldsymbol{k}$-pseudo-dimension.

