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1. INTRODUCTION 

We consider differential equations of the form 

Lu- p%fu -pl=o, (1-l) 

Lur+pU=O, (1.2) 

where the operators L and M are linear ordinary differential operators and L 
is of higher order. Chandrasekhar [1] studied Problem I (p. 386), which is of 
the type (1. l), and ProbEem II (p. 430), which is of the type (1.2). In each L 
and M are positive definite operators and the order of L is at least twice that 
of M. In this case (1.1) and (1.2) re d uce to quadratic eigenvalue problems in 
which operators are compact: Class I (Section 2) and Class II (Sections 4-6). 
We show that each class has an equivalent linear form 

KW = KW, (1.3) 

where K is compact, symmetric and one to one. It follows that the eigen- 
values may be determined by one of the classical variational principles and 
that the eigenfunctions are complete. The reformulation of the problems 
into classes I-II make the results applicable to partial differential equations, 
matrix equations or to any eigenvalue problem which falls into either of the 
two classes. 

Problem I, which arises in the theory of hydrodynamic stability, also 
appears in the theory of wave propagation and in that context, it was studied 
by Cohen [2]. Cohen reduced the problem to a linear (but not self-adjoint) 
form. He was able to show that the eigenfunctions are complete but the 
method makes use of the fact that L is of the second order. Another treatment, 
using the equivalence with a compact, symmetric linear problem, is given 
in [3]. Chandrasekhar obtained a variational formulation by solving for /L 
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QUADRATIC EIGENVALUE PROBLEMS 59 

in (Lu, u) - @(Mu, u) - ~(u, u) = 0, thus obtaining a “nonlinear variational 
principle.” He obtained a similar result for Problem II. 

Problem II has been considered also by Shinbrot [4] and Turner [5]. The 
former showed that the eigenfunctions are “nearly” complete while the 
latter, with the aid of a “pseudo-inner product,” attempted the construction 
of a nonlinear variational principle which corresponds say, to the Rayleigh- 
Ritz method. 

The phenomenon of a quadratic eigenvalue problem having a symmetric 
linear equivalent has also been observed by Duffini [6] and Muller [7]. 

Applications to (1.1) and (1.2) are discussed in Sections 3 and 7. 

Added 7 March 1968. An earlier version of this paper was submitted 
to this Journal in May 1967. Since that time a short proof of the completeness 
of the eigenvectors of (4.1) (wh’ h ic is slightly less general than our class II 
problems) has been obtained independently by H. F. Weinberger [13]. 
Weinberger’s method is different from ours. He does not show that the 
eigenvalue problem is equivalent to one of the form (1.3) but he does obtain 
that the eigenvectors which correspond only to the positive eigenvalues are 
complete with respect to the norm (Ax, .x) i12. Using Weinberger’s technique 
one can show that the eigenvectors corresponding to the positive eigenvalues 
of our class I problems are complete with respect to the original norm. 

2. CLASS I PROBLEMS 

Let L and M be ordinary differential operators on L,[a, b], the order of L 
exceeds that of M, and the boundary conditions are such that L and M are 
positive definite on their respective domains. If the domain of L1j2 is contained 
in the domain of M, 

D(L”2) C D(M) 

then (1.1) has the equivalent form 

x - hAx - X2Bx = 0. 

Here h = CL, x = L% and 

A = L-l, B = L-1/2J,fL-If2 

are compact, positive definite operators. 

(2.1) 

(2.2) 

(2.3) 

1 DufFin shows that X’Ax + XBx f Cx = 0 can be reduced to symmetric linear 
form. His method leads to further generality since it does not require that the operators 
be positive definite. See also [lo]-[12]. 
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It will be shown in the next section that the condition (2.1) may be replaced 
by one which is easier to apply; that the order ofL is at least twice the order 
of M. In the event that (2.1) is not satisfied then Turner shows that if B is 
now defined as the completion ofL-lJ2ML- ‘/’ then B continues to be compact 
and positive definite (in fact, it can be shown that B is Hilbert-Schmidt) and 
the eigenvalue problem (1.1) is “inbedded” in (2.2) i.e., every solution of 
(2.1) corresponds to a solution of (2.2). 

More generally, consider the problem of finding a number A such that 
for a nonzero vector x, in a Hilbert space &? 

x - AAx - X2Bx = 0 (class I) P-4) 

where A and B are compact and symmetric on % -+ Z and B is positive 
definite. By introducing 

y = hB112x, (2.5) 

(2.4) takes the form 

Kw = KL?8, (2.6) 

where K = A-r, w = (E) is in % X s, and 

BlP 0 ) (2.7) 

is compact, symmetric and one to one on # x # + &@ x L%?. It follows 
that K has at most a denumerable number of solutions 

KWn = K,w, , n = 1, 2,... . (24 

These eigenvectors may be selected so that 

((%I Y w,)) = (%a , %72) + (Y, J Ym) = ha, * (2.9) 

If Z is separable then the eigenvectors {wn} form a basis for X x X. For a 
detailed account of compact symmetric operators on a separable Hilbert space 
see Riesz and Sz. Nagy, Chapter VI. 

THEOREM 2.1. Problem (2.4) has a denumerable number of solutions: 

X?L - &Ax, - hn2Bx,, = 0, n = 1, 2,..., (2.10) 

which may be selected so that 

(xn > x,) + bLz(Bxn , 4 = Ln . (2.11) 

If GW is separable then one has the expansion 

f=C(f,xn)xn, fE=@. (2.12) 
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PROOF. Let yn = &$l/z~, and w, = (2) then (2.10) is satisfied if and 
only if (2.8) is satisfied. If X is separable, {w,} is complete in Z x Z and 
we have, in view of (2.9), 

F = 1 (VT wn>) wn 9 FE% x 2. 

Taking F = (3 this reduces to (2.12). 

3. EIGENFUNCTION EXPANSIONS FOR (1.1) 

Let L and M be positive definite, self-adjoint, ordinary differential operators 
defined on &[a, b]. We assume (2.1) so that (1.1) and (2.2) are completely 
equivalent. A useful characterization of D(P2) is given by Krein (cf. [14], 
p. 387) as follows. Let the order of L be 28 and let C denote a set of 2& 
homogeneous boundary conditions associated with L, then D(L1’2) consists 
of those functions in L,[a, b] which have t strong derivatives in L,[a, b], 
the first G - 1 being continuous, and which satisfy only those boundary 
conditions involving derivatives of order at most / - 1. It follows from this 
characterization that if M is another differential operator of order 2m such 
that D(L) CD(M) and 2m < & then (2.1) is satisfied. To see this observe 
that D(L) C D(M) implies that every boundary condition associated with M 
is also associated with L. Since 2m < e such a boundary condition would 
involve not more than 8 - 1 derivatives and thus it must also be associated 
with L1j2. 

Krein also shows that the elements in D(L1/2) form a Hilbert space &“’ with 
respect to the inner product 

(-9 .)L = Me), *), (3.1) 

and that a sequence fi -+ f in 2 means that the differentiated sequences 
f I”) --f f (s) in L,[a, b] for K = 0, l,..., 8, and that the convergence is point- 
wise, uniformly and absolutely, in [a, b], for s = 0, I,..., & - 1. That is, 
Z” is a subspace of the Sobolev space of order 8. 

It is not difficult to see, in view of the above remarks, that the eigenfunctions 
of (1.1) are not only complete in L,[a, b] but the expansion converges point- 
wise, uniformly and absolutely, in [a, b] and that term by term differentiation 
of the series is permissible. 

THEOREM 3.1. Let L and M be positive definite, ordinary dz@erential 
operators on L,[u, b] satisfying (2.1), then (1.1) has a denumeruble number of 
solutions : 

Lu, - /L,~Mu,, - /L,u, = 0, n = 1, 2,..., (3.2) 



62 EISENFELD 

which ma-v be selected so that 

v4, 9 %I) I- !whn(Mu, , %) -= L,, 3 

and one has the expansion 

f ‘“’ = c (1; a.&) a& f E f!l(Ll’2), 
where the convergence is in L,[a, b] for s = 0, l,..., C arld pointwise in [a, b], 
uniformly and absolutely, for s = 0, I,..., / - 1. Here 28 is the order of L. 

PROOF. Let g = L112f. Then by Theorem 2.1 

R = c k, x7%> xn 9 

where x, = L112u, . That is, if gj = J$, (g, x,) x, is the partial sum then 

II& -g II -as j-+ co. If fj = xi=, (f, u,) u, then L’l2fi = gi and hence 

llh -f IL = I/h --B II-+0 as+ ~0. 

4. CLASS II PROBLEMS 

Consider the eigenvalue problem (1.2) where L and M are as in Section 2. 
This corresponds to the “compact eigenvalue problem” 

Ax - h2Bx - Ax = 0, (4.1) 

where h = CL-‘, x = L112u and A and B are given by (2.3). The above remarks 
concerning the equivalence of (1.1) and (2.2) apply to that of (1.2) and (4.1). 
In particular, (1.2) and (4.1) are completely equivalent in the event that (2.1) 
is satisfied. 

We will study the slightly more general problem 

Ax-PBx-Xx=0 (class II), (4.2) 

where iz, B, and C are symmetric operators on a separable Hilbert space X 
and A and B are compact and positive definite. Another condition on C is 
given below but this will be such as to include the case: C = 1. 

If we apply the trick of introducing the new variable y = /\B1/2~ then (4.2) 
reduces to the symmetric, linear form 

T,w = hT,w, (4.3) 

where w = (;) is in Z x Z and 

(4.4) 
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are symmetric operators on Z X 2 -+ X x &‘. In view of the symmetry, 
if we define 

((*v .NT, = Vd-), .>I (4.5) 

on X x Z (cf. (2.9) for the definition of the product on the right), then the 
eigenvectors of (4.3) may be selected so as to satisfy the orthogonality relation- 
ship 

Since X is separable this means that there are at most a denumerable number 
of mutually orthogonal vectors (P2w,} in A@ x 2 and therefore, at most 
a denumerable number of distinct solutions 

T,w,, = ~,Tzw, , II = 1, 2,... . (4.7) 

The form (4.3) is useful but it is not as desireable as the form (1.3) in which 
one has a single operator K which is symmetric, compact and one to one. 
For such problems, not only are the eigenvectors complete but also there are 
numerical procedures for calculating the eigenvalues. The remainder of this 
section will be devoted to providing such an equivalent form for (4.2). One 
may point out that simply multiplying by TF’ will not suffice for the operator 
T;‘T2 is unbounded and has an unbounded inverse. This is true no matter 
what norm we choose for (4.2) h as a sequence of eigenvalues tending to 
zero as well as a sequence tending to infinity. This will be established in 
Section 6 and it was observed in the special case C = I by Turner. One sees 
therefore, that any transformation which produces the desired form (1.3) 
must be nonlinear. 

Let 

and let 

E, sz A - X2B - MY (4.8) 

p = {A : EA has a bounded inverse}. 

In addition to the conditions on the operators cited above we assume that C 
is such that p contains at least one real number. For example, if C has a 
bounded inverse then E, is a Fredholm operator, i.e., either X E p or h is an 
eigenvalue. However, we have observed above that there are at most a 
denumerable number of eigenvalues. Therefore, the condition is satisfied 
when C is invertable. On the other hand, the condition is not satisfied when C 
is compact and in fact, when A = B = C the equivalence we seek is impos- 
sible. 
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5. AN EQUIVALENT COMPACT PROBLEM 

Since A is positive definite on GP, Tl has a positive definite square root: 

Let D(T) denote the set of vectors z, in Range (Tt”) such that TST~1’2~ is in 
Range (Tt’2) and let 

TV = T-112T 7+-‘t”v 
1 21 7 v E D(T). 

Then (4.3) is satisfied for X = p-l and w = Ti’2v if 

TV = pv, v E D( TJ. 

If for each f E Z x X the equation 

TV -pv =f 

has a unique solution v E D(T) then we write 

v = R,f. 

(5.1) 

(5.2) 

If the linear operator R, is bounded then it is called the resolvent and the set 
p*, of numbers p, for which the resolvent is defined, is called the resolvent 
set. The resolvent is discussed in most textbooks on functional analysis 
(e.g., cf. [9]). 

LEMMA 5.1. Let p, v E p*, w E SP x 2, then the following statements are 
true: 

(i) R, is one to one mapping 2 x Z onto D(T). 

(ii) TR,w = w + pT,,w 

(iii) TR,w = R,Tw, w E D(T) 

(iv) (R, - RJ w = (p - v) R,R,w. 

The above lemma is immediate from the definition of the resolvent. The 
next lemma describes how to construct the resolvent. 

LEMMA 5.2. If X E p then p = X-l E p* then 



QUADRATIC EIGENVALUE PROBLEMS 65 

PROOF. Observe first that Tt” is a left factor of R, so that Range 
(R,) C Range ( T:j2). Using matrix multiplication and the identity: 

hCE,l + h2BE,l = AE,I - I 

we see that Range ( TzT;1’2R,) C Range (Ti”) and that 

T&f -dLf =f, fE~X~. 

Finally, the solution z, = R, f is unique for suppose that (5.2) has a second 
solution then by substracting we see that p is an eigenvalue of (5.1) and hence, 
X is an eigenvalue of (4.3). This contradicts the assumption that X E p. 

Observe from (5.3) that 

R, = PFu + PJ, (5.4) 

where P2 is the projection P,(z) = (,“) and Ku is compact on 2 x Z. 
Moreover, Ku is symmetric when p is real. 

LEMMA 5.3. Let u-l and 7-l be real numbers in p (not necessarily distinct) 
then 

K(a, T) = R, + rR,,R, (5.5) 

is compact, symmetric and one to one. 

PROOF. The symmetry follows from the symmetry of R, , p-l up 
(cf. (5.3)) and the commutivity of R, and R, (cf. Lemma 5.1, (iv)). The 
compactness follows from the identity 

K(u,T) =P-~(K,K, + J&J', +P,Kv -Ku), 

which is easily obtained with the aid of (5.4). In view of Lemma 5.1, (ii), (5.5) 
reduces to 

K(a, T) = T,TR, . (5.6) 

Since R, , R, , Tl and T, are all one to one the same is true of K(u, 7). 
Observe from (5.6) that K is symmetric in u and 7 and that (5.1) implies 

that 
Kv = KV (K = K(u, 4, (5.7) 

where by (5.6) 

K = [(CL - 47r - 41. (5.8) 

In order to establish the equivalence of the eigenvalues problems (5.1) and 
(5.7) one must show that the converse is true. One may select a complete 
sequence of eigenvectors of K {v~} such that 
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If one of the eigenvalues corresponds to more than one eigenvector of R, 
then there is more than one sequence of eigenvectors satisfying (5.9). 
The following theorem shows that a sequence may be selected so that each 
member is also an eigenvector of T. 

THEOREM 5.3. Let u-l and 7-l be (not necessarily distinct,) real numbers 
in p, then K = IC(a, 7) and T share a complete orthonormal sequence of eigen- 
vectors of both. 

PROOF. Let K be an eigenvalue of K and let V, be the linear space of 
eigenvectors of K corresponding to K. Since K is compact V, is finite dimen- 
sional. Since T commutes with K on D(T) (cf. Lemma 5.1, (iii)) and since 
V, C D(T), T maps V, into itself. Therefore, T may be considered as a one 
to one, symmetric matrix mapping V, -+ V, , and thus, one can select an 
orthonormal basis for V, of eigenvectors of T. The union of these basis 
vectors for each eigenvalue K of K forms the desired sequence. 

By using the completeness of the eigenvectors of T, the next theorem shows 
that (4.3) and (5.1) are equivalent. The existence of at least one K = K(o, T) 
follows from the restriction on C given above. 

THEOREM 5.4. The eigenvalue problem (4.3) has a solution ;f and only if 
(5.1) has a solution with w = T;% and X = p-l. 

PROOF. It is easy to see that every solution of (5.1) corresponds to a 
solution of (4.3). It remains to show the converse. Let (vn} denote a complete 
orthonormal sequence of eigenvectors of T. If roL’, = T;1/2v, , n = 1, 2,..., 
then {We} is a sequence of eigenvectors of (4.3) such that { T:“w,} is complete. 
If T,w = XT,w, w f 0, is a solution of (4.3) such that k1 is not an eigenvalue 
of T then, in view of (4.6) and the completeness of { Ti”w,), Ti”w = 0 which 
implies that w = 0. If p = h-r is an eigenvalue of T then the completeness 
of {T~‘2w,} and the orthogonality (4.6) imply that Tf12w is in the space V 
spanned by the eigenvectors of T corresponding to the eigenvalue EL. Since 
the vectors in V are also eigenvectors of some K(u, 7) corresponding to the 
eigenvalue K given by (5.9), and since K(o, T) is compact, V is finite dimen- 
sional. Therefore, T:12w = v where v is an eigenvector of T corresponding 
to p. 

REMARK. It was necessary to show that the subspace of eigenvectors of T 
corresponding to a single eigenvalue is finite dimensional to insure that Tii2w 
is in D(T). It is worth noting that the eigenvalues of (4.2) have finite multi- 
plicity. 

As a consequence of Theorems 5.3-5.4, if 0-l and 7-l are any real numbers 
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in p then the eigenvalues of (4.2) and those of the compact, symmetric 
operator K(a, T) are related by 

Kn = [l - &l - h,T] ’ 
n = 1, 2,... . 

THEOREM 5.5. Let {We} be the eigenvectors of (4.3) normalized by (4.6), 
then for each F E 2 x 2. 

T;“F = c ((F, w& T,““w,, . (5.11) 

Let {xn} be the eigenvectors of (4.2) normalized by 

(Ax, , %n) + &A@% 9 %J = Li , 

where {X,} are the corresponding eigenvalues, then for each f E Z& 

(5.12) 

A1/2f = c (Af, xn) Allax, (5.13) 

PROOF. The expansion (5.11) follows from the completeness of the eigen- 
vectors of T v = T112w n, 1z = 1,2,... and the orthogonality relation (4.6). 
Recalling thit nwn = i(Z) where y,, = h,B112x,, , x,, , 12 = 1,2,..., being the 
eigenvectors of (4.2) we obtain (5.12) from (4.6). Letting F = (3 in (5.11) 
yields (5.13). 

The next theorem gives conditions under which the operator Tf” can be 
“removed” from both sides of (5.11). 

THEOREM 5.6. Under the hypothesis of Theorem 5.5 

T;l”F = c ((T,-1’2F, w& w,, , F E D(T). (5.14) 

PROOF. Let x E D(T), u-l E p be real, and 0 = TX - OX, then 

x = R&l (5.15) 
In view of Theorem 5.3 

fJ = c ((0, %a)) %I * 

Making use of (5.3) and (5.15), the first component 

WI = m2 cW4 4) [Wn,)1 + B2W21, 

where B1 and B, are bounded operators on X. It follows that 

II A-1’2(~)1 II G A, I I I 0 I I I 3 
where ,B, is a positive constant. Now let 

(5.16) 

Fs = i W vn>) vn , 
?l=l 
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xs = F -F,\ and fl,$ = R,xS , then (5.16) yields 

I/ A-l”(F -FJl II <& Iii 14 I ~ -0 

as s + NJ. This is equivalent to the first component expansion of (5.14); the 
second component expansion follows from Theorem 5.5. 

6. DISTRIBUTION OF EIGENVALUES 

THEOREM 6.1. The eigenvalues of (4.2) are: 

(i) real 

(ii) discrete 

(iii) have precisely two accumulation points: zero and injinity. 

PROOF. The first two properties and the fact that the eigenvalues have at 
most two accumulation points: zero and infinity follow from formula (5.10) 
and corresponding facts about the eigenvalues of a compact, symmetric 
operator. Moreover, since the sequence (~3 accumulates at zero we know that 
one of the points zero or infinity must be an accumulation point of {A,}. 
Let us suppose that infinity is the only accumulation point and that 
if An = p;‘, YZ = 1,2,... then 

I Pn I < i-3, n = 1, 2,... (6.1) 

for some positive constant p. It follows from Theorems 5.3-5.4 that 

III Tw III <B III w Ill 7 w E D(T). 

The operator A-1/2CA-1/2, which is the first row-first column entry of the 
matrix T, therefore satisfies 

// A-1’2cA-“2x j/ < /3 /I x I/ ) x E D(A-w-A-1’“). 

Since the eigenvectors of (5.1) are complete, D(T) is dense in A? x X and 
hence, D(A-1/2CA-1/2) is dense in 2. It follows that A-1/2CA-1/2 has a 
bounded completion F and that 

C = A112FAlJ2. 

If this is true, C is compact, EA is compact (cf. (4.8)), and p is empty, con- 
tradicting the assumption that p contains at least one real number. 

We conclude that zero is always an accumulation point of (4.2). Since (4.2) 
may also be written as 

Bx - /.L~Ax -&x=0 

where p = - (l/X), it follows that infinity must also be an accumulation 
point. 
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The above theorem generalizes a result by Turner in the case C = I. 
However, Turner shows also that the positive eigenvalues lie in (0, 11 A 11) 
and that the negative eigenvalues lie in (- co, - 11 B 11-l) which we are not 
able to deduce in the more general case. 

7. EIGENFUNCTION EXPANSION FOR (1.2) 

Since the convergence of the expansions in Theorem 5.5 are weaker then 
the corresponding expansions in Theorem 2.1 the next theorem is not as 
strong as its counterpart, Theorem 3.1. However, we are able to obtain 
results concerning term by term differentiation and uniform, absolute 
convergence of the eigenfunction expansion. 

THEOREM 7.1. Let L and M be positive definite, ordinary differential 
operators on L,[a, b] satisfying (2,1), then (1.2) has a denumerable number of 
solutions: 

Mu, - p,u,, = 0, n = 1, 2,..., 

which may be selected so that 

6% 9 urn) = & W%z > urn) = %m 
and one has the expansion 

f (*) = c ( f, %J %F’, f E W), 

where the convergence is in L,[a, b] for s = 0, l,..., & and point&se in [a, b], 
uniformly and absolutely, for s = 0, l,..., L - 1. Here 26’ is the order of L. 

PROOF. Let F = (3 E ..8 x =X where here .3? = L,[a, b], C = 1 and 
A and B are given by (2.3). It is not difficult to see that F E D(T). Theorem 
5.6 yields 

Lli2f = 1 (f, x,) LllZx, ) 

where the convergence is in L,[a, b]. Letting fS = Cizl (f, x,J x, we see 
from the proof of Theorem 3.1 that fs -f in &“. 
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