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1. Introduction

Let n be a non-negative integer, F a field, and q an element of F. The Iwahori–Hecke algebra
H = HF,q(Sn) is a finite-dimensional F-algebra which arises in various mathematical contexts. Its
representation theory bears a close resemblance to the representation theory of the group algebra
FSn (which arises in the special case q = 1). A particularly important class of modules for H is the
class of Specht modules; these arise as cell modules for a certain cellular basis of H, and in cases
where H is semi-simple the Specht modules are irreducible and afford all the irreducible representa-
tions of H.

In the non-semi-simple case (where q is a root of unity in F), it is still interesting to know
which Specht modules are irreducible; for the case where q = 1 and F has prime characteristic p,
this amounts to asking which ordinary irreducible representations of the symmetric group remain
irreducible in characteristic p. The classification of irreducible Specht modules has been studied by
several authors, and is almost complete. This paper is a contribution towards completing the remain-
ing open case, namely the case where q = −1 ∈ F and the characteristic of F is not 2. Our main result
is Theorem 2.1, where we prove the reducibility of a large class of Specht modules. We hope to be
able to extend our results in future.
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We now give an indication of the layout of this paper. In Section 2, we give some very basic
definitions and state our main result; we also present a conjectured classification of the irreducible
Specht modules in the case where F has infinite characteristic. In Section 3, we recall the additional
definitions and background theory that we shall need. In Section 4, we state some fundamental results
on homomorphisms between various modules for H; we use these to prove further results which aid
us in proving reducibility of Specht modules. In Section 5, we recall the Fock space representation of
the quantum group Uv(ŝl2) and its applications to representation theory of Iwahori–Hecke algebras,
and we use these results to show reducibility of certain Specht modules. Finally in Section 6, we
combine our results to complete the proof of the main theorem.

2. The main result and a conjecture

In this section, we give our main theorem, and also present a conjectured classification of irre-
ducible Specht modules in the case where char(F) = ∞. First we review the background required to
enable us to state our results.

2.1. Iwahori–Hecke algebras, partitions and Specht modules

Throughout this paper F denotes a fixed field and q a non-zero element of F. We define e to be
the multiplicative order of q in F if q �= 1, or the characteristic of F if q = 1; we adopt the convention
that a field whose prime subfield is Q has infinite characteristic. In this paper we shall be primarily
concerned with the case where e = 2 (that is, q = −1 ∈ F), though we shall state results for arbitrary
values of q as long as it is convenient. More general results than those quoted can easily be found
elsewhere, especially in the book by Mathas [21], which is our main reference. Note, however, that
we do not always follow Mathas’s conventions; in particular, we use the Specht modules defined by
Dipper and James [4] rather than those of Mathas.

Given any integer n � 1, the Iwahori–Hecke algebra of the symmetric group Sn is defined to be the
unital associative F-algebra HF,q(Sn) with generators T1, . . . , Tn−1 and relations

(Ti − q)(Ti + 1) = 0 (1 � i � n − 1)

Ti Ti+1Ti = Ti+1Ti Ti+1 (1 � i � n − 2)

Ti T j = T j Ti (1 � i < j − 1 � n − 2).

The combinatorics describing the representation theory of HF,q(Sn) is based on compositions and
partitions. A composition of n is defined to be a sequence λ = (λ1, λ2, . . .) of non-negative integers
such that the sum |λ| = λ1 + λ2 + · · · equals n; if in addition we have λ1 � λ2 � · · · , we say that λ is
a partition of n. When writing compositions and partitions, we often omit trailing zeroes and group
together equal non-zero parts, and we write ∅ for the unique partition of 0. If λ is a partition, we
write λ′ for the conjugate partition to λ; this is the partition in which

λ′
i = ∣∣{ j ∈ N | λ j � i}∣∣.

We say that a partition λ is e-regular if there does not exist i � 1 such that λi = λi+e−1 > 0, and we
say that λ is e-restricted if there is no i with λi − λi+1 � e.

With a partition [λ] is associated its Young diagram, which is the set

[λ] = {
(i, j) ∈ N2

∣∣ j � λi
}
.

We refer to elements of N2 as nodes, and to elements of [λ] as nodes of λ.
Now we can describe some modules for HF,q(Sn). For any composition of n, one defines a module

Mλ
F,q known as the permutation module. If λ is a partition, then Mλ

F,q has a distinguished submodule
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Sλ
F,q called the Specht module, which is the main object of study in this paper. We retain the subscript

F,q in our notation, to enable us to make statements about modules without reference to the under-
lying Iwahori–Hecke algebra; for example, when we say that Sλ

F,q is irreducible, we mean that it is
irreducible as an HF,q(Sn)-module, where n = |λ|.

2.2. The main result

The purpose of this paper is to consider the question of which Specht modules for HF,q(Sn) are
irreducible. As with many statements about the representation theory of HF,q(Sn), the classification
of irreducible Specht modules for HF,q(Sn) involves the parameter e defined above, which is often
called the ‘quantum characteristic’. If e = ∞, then all the Specht modules are irreducible, and they
afford all irreducible representations of HF,q(Sn) as λ varies over the set of partitions of n. So we
assume from now on that e is finite.

In the case where e > 2, the classification of the irreducible Specht modules for HF,q(Sn) is com-
plete; this result was proved by the authors and others over the course of several papers [5,6,14,16,17,
19,20]. To describe the classification, we begin with the case of Specht modules labelled by e-regular
partitions; the irreducibility of these Specht modules is determined by a theorem known as the Carter
Criterion [21, Corollary 5.43], of which a special case appears in Theorem 3.8 below. Applying a the-
orem concerning conjugate partitions (Corollary 3.3 below), one obtains a corresponding result for
Specht modules labelled by e-restricted partitions. The general case is a natural combination of the
e-regular case and the e-restricted case; a partition labelling an irreducible Specht module (called a
JM-partition) consists of an e-regular partition and an e-restricted partition, each labelling an irre-
ducible Specht module, joined together in a simple way.

When e = 2, the Carter Criterion is still valid, so the classification of irreducible Specht modules
labelled by 2-regular or 2-restricted partitions is known. However, for the case of partitions which
are neither 2-regular nor 2-restricted, things are different; one cannot just take the definition of
JM-partitions and set e = 2. In fact, the partitions of n which are neither 2-regular nor 2-restricted and
label irreducible Specht modules for HF,−1(Sn) seem to take a very different form from JM-partitions.
Roughly speaking, JM-partitions tend to be ‘thin’, by which we mean that a JM-partition has very few
diagonal nodes (i, i) relative to its size; conversely, the partitions labelling irreducible Specht modules
when e = 2 tend to be closer to rectangular partitions (indeed, the rectangular partitions (ab) all
label irreducible Specht modules when e = 2 and char(F) = ∞). Our main theorem illustrates this
difference, since it implies in particular that when e = 2 a Specht module labelled by a (neither
2-regular nor 2-restricted) JM-partition is reducible.

To give our main result, we need to define ladders: for l � 1, the lth ladder in N2 is defined to be
the set

Ll = {
(i, j) ∈ N2

∣∣ i + j = l + 1
}
.

Given a partition λ, we define the lth ladder of λ to be the intersection Ll(λ) = Ll ∩ [λ]. We say that
Ll(λ) is disconnected if the nodes in Ll(λ) do not form a consecutive subset of Ll; that is, there exist
1 � a < b < c � l such that (a, l + 1 − a) and (c, l + 1 − c) lie in [λ], but (b, l + 1 − b) does not. Now
we can state our main theorem.

Theorem 2.1. Suppose F is any field, and λ is a partition. If there is some l such that the lth ladder of λ is
disconnected, then the Specht module Sλ

F,−1 is reducible.

The reader may prefer a statement of Theorem 2.1 that does not involve ladders: it is a simple
exercise to show that a partition λ has a disconnected ladder if and only if there exist 1 � a < b such
that λa − λa+1 � 2 and λb = λb+1 > 0.

Theorem 2.1 will be proved in the subsequent sections. For the rest of this section, we consider
how to extend it to give a complete classification of irreducible Specht modules.
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2.3. A conjecture in infinite characteristic

In the case where char(F) = ∞, the decomposition numbers for HF,q(Sn) may be computed using
the LLT algorithm [18]; so for any λ, there is a finite algorithm to determine whether Sλ

F,q is reducible.
For the case e = 2, Andrew Mathas and the first author have carried out these computations for
partitions of size at most 45, and on the basis of this have made a conjecture.

In order to state this conjecture, we need to introduce some more terminology concerning Young
diagrams. If λ is a partition, then we say that a node (i, j) of λ is removable if [λ] \ {(i, j)} is the
Young diagram of a partition (i.e. if j = λi > λi+1), while a node (i, j) not in [λ] is an addable node of
λ if [λ] ∪ {(i, j)} is the Young diagram of a partition. For any node (i, j) in N2, we define its residue
to be the residue modulo 2 of the integer j − i.

Now suppose λ is neither 2-regular nor 2-restricted. Let a be maximal such that λa − λa+1 � 2, let
b be maximal such that λb = λb+1 > 0, and let c be maximal such that λa+c > 0. We say that λ is an
FM-partition if the following conditions hold:

• λi − λi+1 � 1 for all i �= a;
• λb � a − 1 � b;
• λ1 > · · · > λc ;
• if c = 0, then all the addable nodes of λ, except possibly those in the first row and first column,

have the same residue;
• if c > 0, then all addable nodes of λ have the same residue.

Now we can give our conjecture; note that the case where a partition is 2-regular or 2-restricted
is covered by the discussion in Section 2.2, so we can restrict attention to partitions which are neither
2-regular nor 2-restricted.

Conjecture 2.2. Suppose char(F) = ∞ and that λ is neither 2-regular nor 2-restricted. Then the Specht mod-
ule Sλ

F,−1 is irreducible if and only if either λ or λ′ is an FM-partition.

This still leaves open the case where λ has prime characteristic. Thanks to the theory of decompo-
sition maps (see Theorem 3.4 below), we know that the set of partitions labelling irreducible Specht
modules for q = −1 in characteristic p is a subset of the set of partitions labelling irreducible Specht
modules in infinite characteristic. Experimental evidence suggests that it is a rather small subset; in
fact, it seems likely that for any prime p there are only finitely many partitions which are neither
2-regular nor 2-restricted and label irreducible Specht modules. This statement has been proved in
the case p = 2 by James and Mathas [17]; here the only such partition is (22). We hope to be able to
make a more precise statement in the future.

3. Useful background results

In this section we summarise some simple background results which we shall need in order to
prove our Theorem 2.1.

3.1. Irreducible modules for HF,q(Sn) and the dominance order

In order to examine the reducibility of Specht modules, it will be helpful to understand the clas-
sification of irreducible HF,q(Sn)-modules. Let e be as defined in Section 2.2, and suppose that λ is
a partition of n. If λ is e-regular, then the Specht module Sλ

F,q has an irreducible cosocle which is

labelled Dλ
F,q; the modules Dλ

F,q give all the irreducible HF,q(Sn) modules, as λ ranges over the set
of e-regular partitions of n.

The classification of irreducible Specht modules is a special case of the decomposition number prob-
lem, which asks for the composition multiplicities [Sλ

F,q : Dμ
F,q], as λ and μ vary. The most basic results



916 M. Fayers, S. Lyle / Journal of Algebra 321 (2009) 912–933
on this problem concern the dominance order. If λ and μ are partitions, we say that λ dominates μ
(and write λ � μ) if for each i � 1 we have

λ1 + · · · + λi � μ1 + · · · + μi .

Now we have the following.

Proposition 3.1. (See [4, Corollaries 4.12 and 4.14].) Suppose λ and μ are partitions of n, with μ e-regular.
Suppose M is either the permutation module Mλ

F,q or the Specht module Sλ
F,q. If [M : Dμ

F,q] > 0, then μ � λ.

If μ = λ, then [M : Dμ
F,q] = 1.

3.2. Conjugate partitions and duality

Let T1, . . . , Tn−1 be the standard generators of HF,q(Sn). Let � : HF,q(Sn) → HF,q(Sn) be the
involutory automorphism sending Ti to q − 1 − Ti , and let ∗ : HF,q(Sn) → HF,q(Sn) be the anti-
automorphism sending Ti to Ti . Given a module M for HF,q(Sn), define M� to be the module with
the same underlying vector space and with action

h · m = h�m,

and define M∗ to be the module with underlying vector space dual to M and with HF,q(Sn)-action
given by

h · f (m) = f
(
h∗m

)
.

We can describe the effect of these functors on Specht modules, using conjugate partitions.

Proposition 3.2. Suppose λ is a partition, and let λ′ denote the conjugate partition. Then

(
Sλ

F,q

)� ≡ (
Sλ′

F,q

)∗
.

Proof. This is the result of [21, Exercise 3.14(iii)]. Although Mathas’s definition of Specht modules is
different from ours, his description of the relationship between the two definitions [21, p. 38] ensures
that the result holds for our Specht modules also. �

This has the following immediate corollary, which will be very useful.

Corollary 3.3. Suppose λ is a partition. Then Sλ
F,q is irreducible if and only if Sλ′

F,q is.

3.3. Decomposition maps and adjustment matrices

In this section we quote a result which will allow us to assume that our underlying field F is the
field of rational numbers. The theorem we shall state was proved by Geck in [10], and arises from
a consideration of decomposition maps between Iwahori–Hecke algebras defined over different rings.
(For an introduction to decomposition maps, see Geck’s article [11].) The theorem is most conveniently
stated in terms of the decomposition matrix of HF,q(Sn); this is the matrix with rows indexed by the
partitions of n and columns indexed by the e-regular partitions, and with the (λ,μ)-entry being the
decomposition number [Sλ

F,q : Dμ
F,q].
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Theorem 3.4. Let ζ be a primitive eth root of unity in C. Let D(C, ζ ) and D(F,q) denote the decomposition
matrices of HC,ζ (Sn) and HF,q(Sn) respectively. Then there is a square matrix A with non-negative integer
entries and with 1s on the diagonal, such that

D(F,q) = D(C, ζ )A.

The important consequence of this theorem from our point of view is that for any field F and any
partition λ, the Specht module Sλ

F,q has at least as many composition factors as Sλ
C,ζ

; in particular, if

Sλ
C,ζ

is reducible, then so is Sλ
F,q .

3.4. Cores and blocks

Here we give the classification of the blocks of HF,−1(Sn); this is based on the combinatorics of
dominoes. Define a domino to be a pair of horizontally or vertically adjacent nodes in N2. A removable
domino of a partition λ is a domino contained in [λ] such that the removal of this domino leaves
the Young diagram of a partition. The core of λ is the partition obtained by repeatedly removing
removable dominoes until there are no more. This partition has the form (l, l − 1, . . . ,2,1) for some
l � 0, and is independent of the way is which the removable dominoes are chosen at each stage. The
weight of λ is the number of dominoes removed to obtain the core.

Example. Let λ = (62,5,2,1). Then λ has core (3,2,1) and weight 7, as we can see from the following
diagram.

Now we can address the blocks of HF,−1(Sn). Because the Specht modules are the cell modules
arising from a particular cellular basis of HF,−1(Sn), it follows that each Specht module lies entirely
within one block of HF,−1(Sn) [21, Corollary 2.22]; we abuse notation by saying that a partition λ

lies in a block B if Sλ
F,−1 lies in B . Each block must contain at least one Specht module (because every

simple module occurs as a composition factor of some Specht module), and so a classification of the
blocks of HF,−1(Sn) may be described by giving the appropriate partition of the set of partitions of n.
This is done as follows.

Theorem 3.5. (See [21, Corollary 5.38].) Suppose λ and μ are two partitions of n. Then λ and μ lie in the same
block of HF,−1(Sn) if and only if λ and μ have the same core. Hence if μ is 2-regular, then [Sλ

F,−1 : Dμ
F,−1] = 0

unless λ and μ have the same core.

As a consequence of this theorem, we can define the weight and core of a block B , meaning the
weight and core of any partition labelling a Specht module lying in B .

3.5. Rouquier blocks

Suppose B is a block of HF,−1(Sn), with core ν = (l, l − 1, . . . ,1) and weight w . We say that B
is Rouquier if w � l + 1. Rouquier blocks are very useful because we have an explicit formula for
their decomposition numbers in the case where the underlying field has infinite characteristic. We
now describe these results, following [15] (where a Rouquier block is referred to as a ‘block with an
enormous 2-core’).



918 M. Fayers, S. Lyle / Journal of Algebra 321 (2009) 912–933
Suppose B, ν, w are as above, with w � l + 1. If λ is a partition in B , then there is a unique way
to partition the set [λ] \ [ν] into dominoes. Given this partition, we define λh

i to be the number of
horizontal dominoes in row i of [λ] \ [ν], and we define λv

i to be the number of vertical dominoes
in column i of [λ] \ [ν], for i � 1. Then λh and λv are partitions, with |λh| + |λv | = w . Moreover, λ is
uniquely specified by ν,λh, λv , and in fact given any pair σ ,τ of partitions with |σ | + |τ | = w , there
is a partition μ in B with μh = σ , μv = τ .

Example. Suppose λ = (13,8,7,4,3,2,15). Then λ has weight 7 and core (7,6,5,4,3,2,1), so lies
in a Rouquier block. The Young diagram [λ] may be drawn as follows, and we see that (λh, λv) =
((3,12), (2)):

So we may label a partition λ in a Rouquier block B by the pair (λh, λv); we remark that the pair
(λh, (λv)′) is often referred to as the 2-quotient of λ. It is easy to see that λ is 2-regular if and only if
λv = ∅, while λ is 2-restricted if and only if λh = ∅. Now we can describe the decomposition numbers
for a Rouquier block in infinite characteristic; given any partitions α,β,γ with |α| = |β|+ |γ |, let cα

βγ

be the corresponding Littlewood–Richardson coefficient (see [9]).

Theorem 3.6. (See [15, Theorem 2.5].) Suppose char(F) = ∞ and B is a Rouquier block of HF,−1(Sn). Suppose
λ and μ are partitions in B, with μ 2-regular, and let (λh, λv) and (μh,∅) be the corresponding pairs of
partitions. Then

[
Sλ

F,−1 : Dμ
F,−1

] = cμh

λhλv .

The only corollary we need from this is the following.

Corollary 3.7. Suppose B is a Rouquier block of HF,−1(Sn), and λ is a partition in B which is neither 2-regular
nor 2-restricted. Then Sλ

F,−1 is reducible.

Proof. By the results of Section 3.3, we may assume that char(F) = ∞. Since λ is neither 2-regular
nor 2-restricted, the labelling partitions λh and λv are both non-empty. It is well known and easy
to prove from the definition of Littlewood–Richardson coefficients that if β and γ are non-empty
partitions, then there are at least two partitions α for which cα

βγ > 0, and now the result follows
from Theorem 3.6. �
3.6. Alternating partitions

The question of irreducibility of Specht modules labelled by 2-regular partitions has been settled
for some time. We shall need this result later, so we quote it here, concentrating for simplicity on the
case where char(F) = ∞. Say that a partition is alternating if for every i either λi + λi+1 is odd or
λi+1 = 0.
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Theorem 3.8. (See [21, Theorem 5.42].) Suppose char(F) = ∞, and λ is a 2-regular partition. Then Sλ
F,−1 is

irreducible if and only if λ is alternating.

We combine this with the following simple lemma.

Lemma 3.9. Suppose λ is a partition with core (l − 1, l − 2, . . . ,1) for some l � 1, and that λl+1 = 0. Then λ

is alternating.

Proof. We use induction to prove a stronger statement, namely that λi ≡ i + l (mod 2) for 1 � i � l.
The induction is on the weight w of λ; if w = 0 then λ is the core (l − 1, l − 2, . . . ,1), which certainly
has the required property. For the inductive step, suppose that w > 0 and let ν be a partition obtained
by removing a domino from [λ]. Then ν satisfies the hypotheses of the lemma, so by induction we
have νi ≡ i + l (mod 2) for i = 1, . . . , l. In particular, we have νi �= νi+1 if 1 � i � l − 1. This means
that the domino added to [ν] to obtain [λ] must be horizontal; for if it were vertical, consisting of
the nodes (i, j) and (i + 1, j) say, then we would have νi = νi+1(= j − 1), and hence i � l. But this
would give λl+1 > 0, contradicting our assumptions. So the added domino is horizontal, and hence
λi ≡ νi (mod 2) for all i, which gives the required conclusion. �

When we combine Lemma 3.9 with Proposition 3.1, the following result is immediate.

Corollary 3.10. Suppose char(F) = ∞, and μ is a 2-regular partition with core (l − 1, l − 2, . . . ,1). If λ is a
partition such that [Sλ

F,−1 : Dμ
F,−1] > 0 and λl+1 = 0, then λ = μ.

3.7. Ladders and James’s regularisation theorem

We saw above that when λ is 2-regular, the simple module Dλ
F,−1 occurs as a composition factor

of Sλ
F,−1 with multiplicity 1. James has given an extension of this result to the case where λ is

not 2-regular, giving an explicit simple module which occurs exactly once as a composition factor
of Sλ

F,−1. This was done in [12] for symmetric groups, and extended to the general case in [13].

This is very useful from the point of view of classifying irreducible Specht modules, since if Sλ
F,−1 is

irreducible, the theorem tells us which irreducible module Dμ
F,−1 is isomorphic to Sλ

F,−1.
Recall the definition of ladders from Section 2.2. Given a partition λ, it is easily seen that λ

is 2-regular if and only if for each l the nodes in the lth ladder of λ are as high as possible,
i.e. Ll(λ) = {(1, l), (2, l − 1), . . . , (s, l + 1 − s)} for some s. Furthermore, for any λ we may obtain a
2-regular partition by moving the nodes in each ladder of λ to the topmost positions in that ladder;
this 2-regular partition is called the regularisation of λ, written λreg.

Example. Let λ = (4,23). Then we have

Ll(λ) = Ll for l � 3,

L4(λ) = {
(1,4), (3,2), (4,1)

}
,

L5(λ) = {
(4,2)

}
,

Ll(λ) = ∅ for l � 6.

By replacing L4(λ) with {(1,4), (2,3), (3,2)} and L5(λ) with {(1,5)}, we obtain λreg = (5,3,2):

λ = ; λreg = .
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Theorem 3.11. (See [13, Theorem 6.21].) Suppose λ,μ are partitions of n, with μ 2-regular. If [Sλ
F,−1 :

Dμ
F,−1] > 0, then μ � λreg . Furthermore, [Sλ

F,−1 : Dλreg

F,−1] = 1.

We note the following corollary concerning homomorphisms.

Corollary 3.12. Suppose λ,μ are partitions of n. Suppose that either:

1. λreg � μreg , and there exists a non-zero homomorphism from Sμ
F,−1 to Sλ

F,−1; or

2. λreg � μ, and there exists a non-zero homomorphism from Mμ
F,−1 to Sλ

F,−1 .

Then Sλ
F,−1 is reducible.

Proof. This follows immediately from Theorem 3.11 and Proposition 3.1. �
3.8. A useful lemma

In this section we recall a very useful result; the general version of this result was the main tool
used in [19] for proving the reducibility of Specht modules.

Given a partition λ and i ∈ {0,1}, define the partition λ−i by removing all removable nodes of
residue i. Then we have the following, which is a corollary of [2, Lemma 2.13].

Lemma 3.13. Suppose λ is a partition and i ∈ {0,1}. Then Sλ
F,−1 has at least as many composition factors

as Sλ−i

F,−1 . In particular, if Sλ−i

F,−1 is reducible, then so is Sλ
F,−1 .

We also need a ‘dual’ result to this. Given λ and i ∈ {0,1}, define λ+i by adding all addable nodes
of residue i. Then the following result may be proved in exactly the same way as Lemma 3.13.

Lemma 3.14. Suppose λ is a partition and i ∈ {0,1}. Then Sλ
F,−1 has at least as many composition factors

as Sλ+i

F,−1 . In particular, if Sλ+i

F,−1 is reducible, then so is Sλ
F,−1 .

To use the latter result in inductive proofs, it will be helpful to have the following lemma, in which
we write w(λ) for the weight of a partition λ.

Lemma 3.15. Suppose λ is a partition and i ∈ {0,1}. Then w(λ+i) � w(λ).

Proof. A much more general result is proved in [7, Lemma 3.6]. �
4. Homomorphisms

In this section we recall some results concerning the existence of homomorphisms between per-
mutation modules and Specht modules, and we use these to construct homomorphisms in particular
cases; we also recall the second author’s analogue of a special case of the Carter–Payne theorem for
homomorphisms between Specht modules. In conjunction with Corollary 3.12, these results will be
useful for proving reducibility of Specht modules.

4.1. Homomorphisms from permutation modules to Specht modules

Suppose μ is a composition of n. A μ-tableau is a function T from [μ] to Z�0; given a tableau T ,
we write T (i, j) instead of T ((i, j)), and we usually depict T by drawing the Young diagram [μ], and
filling each node with its image under T . Given i, j � 1, we write Ti, j for the number of entries equal
to j in row i of T . If λ is another composition of n, then we say that a μ-tableau T has content λ if
for every i there are exactly λi nodes mapped to i by T .
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Example. Let μ = (5,3,1) and λ = (4,3,2). Then the tableau

T =

is a μ-tableau of content λ. The values Ti, j are given by the following matrix:

1 2 3
1 3 0 2
2 1 2 0
3 0 1 0

.

For each μ-tableau T of content λ, Dipper and James define a homomorphism ΘT : Mμ
F,q → Mλ

F,q ,
for any F,q. The homomorphisms ΘT and ΘU are equal if T and U are row equivalent; that is, Ui, j =
Ti, j for each i, j. We say that T is row-standard if the entries in T are weakly increasing along rows,
and we write T (μ,λ) for the set of row-standard μ-tableaux of content λ. Dipper and James prove
that the set

{
ΘT

∣∣ T ∈ T (μ,λ)
}

is a basis for the space of homomorphisms from Mμ
F,q to Mλ

F,q .
A particular set of homomorphisms ΘT can be used to give a convenient characterisation of the

Specht module. Suppose λ is a partition, and suppose d, t � 1 are such that t � λd+1. Define the
composition λd,t by

λ
d,t
i =

{
λd + t (i = d),

λd+1 − t (i = d + 1),

λi (otherwise).

Then there is a unique tableau A ∈ T (λ,λd,t) with the property that A(i, j) = i for all (i, j) ∈ [λ] with
i �= d + 1. We write ψd,t for the homomorphism ΘA : Mλ

F,q → Mλd,t

F,q . (Warning: in [20] and elsewhere,

the map ψd,t is written as ψd,λd+1−t . Our convention is more convenient here.)
Now the Specht module can be characterised as follows.

Theorem 4.1. (See [4, Theorem 7.5].) Suppose λ is a partition. Then

Sλ
F,q =

⋂
d�1

⋂
1�t�λd+1

kerψd,t .

This theorem is known as the kernel intersection theorem, and is very useful for constructing and
classifying homomorphisms M → Sλ

F,q , when M is a module for which one knows all homomorphisms

M → Mλ
F,q; specifically, the homomorphisms M → Sλ

F,q are precisely the homomorphisms Θ : M →
Mλ

F,q such that ψd,t ◦ Θ = 0 for all d, t . This approach has been particularly exploited by the second

author, using an explicit description of the composition ψd,t ◦ ΘT , when T ∈ T (μ,λ). Before we can
give this result, we need to give a very brief account of quantum binomial coefficients. For any non-
negative integer a, we define the quantum integer [a] = 1+q+q2 +· · ·+qa−1, and the quantum factorial
[a]! = [1][2] . . . [a]. Now for 0 � b � a the quantum binomial coefficient is defined to be[

a
b

]
= [a]!

[b]![a − b]! .
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Of course, if q = 1 then this coincides with the usual binomial coefficient
(a

b

)
.

The only property of quantum binomial coefficients we need is the following, which is well known.

Lemma 4.2. Suppose q = −1, and 0 � b � a. Then[
a
b

]
=

{(
a/2�

b/2�

)
(if a is odd or b is even),

0 (if a is even and b is odd).

Suppose μ and λ are two partitions, and d, t are chosen as above. Given T ∈ T (μ,λ), let VT ⊆
T (μ,λd,t) be the set of row-standard tableaux V with the property that for each (i, j) ∈ [μ] either
V (i, j) = T (i, j) or V (i, j) = d = T (i, j) − 1. (In other words, V is a row-standard tableau obtained
from T by replacing t of the entries equal to d + 1 with ds.)

Given V ∈ VT , define

x =
∑
i�1

(
(V i,d − Ti,d)

∑
k>i

Tk,d

)
,

and set

b(q)
T V = qx

∏
i�1

[
V i,d
Ti,d

]
,

considered as an element of the field F. Now we have the following statement.

Proposition 4.3. (See [20, Proposition 2.14].) Suppose λ,μ, T ,d, t are as above. Then

ψd,t ◦ ΘT =
∑

V ∈VT

b(q)
T V ΘV .

We shall use this to prove the following proposition.

Proposition 4.4. Suppose ν and ξ are partitions; put l = ν ′
1 , and suppose that ξl−1 � l. Define partitions λ,μ

by

λi = ξi + 2νi,

μi = ξ ′
i + 2νi

for all i � 1. Then there is a non-zero H-homomorphism from Mμ
F,−1 to Sλ

F,−1 .

Example. Put ξ = (24) and ν = (12). Then we have l = 2, so that ξl−1 � l, and so when q = −1
there is a non-zero homomorphism from Mμ

F,−1 to Sλ
F,−1, where λ = (42,22) and μ = (62). We have

λreg = (5,4,2,1), which does not dominate μ, and so by Corollary 3.12 we deduce that S(42,22)
F,−1 is

reducible.

Proof of Proposition 4.4. Using the kernel intersection theorem, we need to construct a linear com-
bination

θ =
∑

T ∈T (μ,λ)

cT ΘT
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such that ψd,t ◦ θ = 0 for all d, t . To do this, we begin with the semi-simple Iwahori–Hecke algebra
HQ = HQ,1(Sm), i.e. the group algebra QSm , where m = |ν|. The module Mν

Q,1 contains the Specht
module Sν

Q,1 as a submodule; since HQ is semi-simple, Sν
Q,1 is also a quotient of Mν

Q,1, so there
is a non-zero HQ-homomorphism φ : Mν

Q,1 → Sν
Q,1. Regarding this as a homomorphism from Mν

Q,1

to itself, and using the fact that the homomorphisms ΘT for T ∈ T (ν, ν) span the space of such
homomorphisms, we may write

φ =
∑

T ∈T (ν,ν)

aT ΘT

with aT ∈ Q. By re-scaling, we may assume that the aT are coprime integers.
The fact that the image of φ lies in the Specht module Sν

Q,1 implies that∑
T ∈T (ν,ν)

aT ψd,τ ◦ ΘT = 0

for all d, τ with 1 � τ � νd+1. By Proposition 4.3, this means that for each pair d, τ we have

∑
T ∈T (ν,ν)

aT

( ∑
V ∈VT

b(1)
T V ΘV

)
= 0.

Since the set {ΘV | V ∈ T (ν, νd,τ )} is linearly independent, this says that for each V ∈ T (ν, νd,τ ), the
sum ∑

T ∈T (ν,ν)|V ∈V (T )

aT b(1)
T V

vanishes.
Now we construct a homomorphism θ : Mμ

F,−1 → Mλ
F,−1, whose image we claim lies in Sλ

F,−1. For

each T ∈ U (ν, ν), let T̂ be the row-standard μ-tableau given by

T̂ i, j =
{

2Ti, j + 1 ( j � ξ ′
i ),

2Ti, j ( j > ξ ′
i )

for each i, j. Then we have T̂ ∈ T (μ,λ), and we define

θ =
∑

T ∈T (ν,ν)

aT ΘT̂ .

(We are committing a minor abuse of notation here: by aT , we really mean the image of aT in F,
which is well defined since we are assuming that each aT is an integer.) The tableau T is easily
recovered from T̂ , so the tableaux T̂ are distinct, and therefore the homomorphisms ΘT̂ are linearly
independent; since we assume that the integers aT are coprime, this implies that θ is non-zero.
(Alternatively, one can use the results of Section 3.3 and assume throughout that F = Q.)

Fix a pair d, t with 1 � t � λd+1. Using the kernel intersection theorem and Proposition 4.3, our
task is to show that the sum ∑

T ∈T (ν,ν)

aT

∑
V ∈VT̂

b(−1)

T̂ V
ΘV

equals zero.
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Claim. Suppose T ∈ T (ν, ν) and V ∈ VT̂ , and define

βi = ∣∣{ j
∣∣ V (i, j) �= T̂ (i, j)

}∣∣
as above. If βi is odd for any i, then b(−1)

T̂ V
= 0.

Proof. Fix i such that βi is odd. Then we claim that T̂ i,d is odd. This will then imply that the integer

yi = V i,d is even, so that
[ yi

βi

]
equals zero, and hence b(−1)

T̂ V
is zero.

The fact that βi > 0 means that T̂ i,d+1 > 0. Write l = ν ′
1 as above, and suppose first that i > l. Then

by construction the entries in row i of T̂ are 1,2, . . . , ξ ′
i each occurring once; since d + 1 occurs, we

have d + 1 � ξ ′
i , so that T̂ i,d = 1.

Alternatively, suppose that i � l. Then we claim that ξ ′
i � d, which will mean that

T̂ i,d = 1 + 2Ti,d,

which is odd. We are given that ξl−1 � l, i.e. ξ ′
l � l − 1, and hence ξ ′

i � l − 1. So if d � l − 1 we are
done. If d > l − 1 then d + 1 > l, so Ti,d+1 = 0; but by assumption there is an entry equal to d + 1 in
row i of T̂ , and hence we must have ξ ′

i � d + 1. �
As a consequence of the claim, we need only consider those pairs (T ∈ T (ν, ν), V ∈ VT̂ ) for which

βi is even for each i. Given such a pair, this condition implies that t = ∑
i βi is even and there is a

unique W ∈ T (ν, νd,t/2) such that V = Ŵ (where we define Ŵ analogously to T̂ ). Furthermore, for
each such V and each T ∈ T (ν, ν) we have V ∈ VT̂ if and only if W ∈ VT , and if this is the case then

it is easy to calculate that b(−1)

T̂ V
= b(1)

T V , using Lemma 4.2. Now the result follows. �
Example. Let ξ, ν be as in the previous example. The two tableaux in T (ν, ν) are

T1 = 1
2

, T2 = 2
1

,

and a non-zero homomorphism from Mμ
Q,1 to Sμ

Q,1 is given by

φ = ΘT1 − ΘT2 .

So a homomorphism from M(62)
F,−1 to S(42,22)

F,−1 is given by

θ = ΘT̂1
− ΘT̂2

,

where

T̂1 = , T̂2 = .
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4.2. Homomorphisms between Specht modules

We now quote a result due to the second author which gives the existence of non-zero homo-
morphisms between Specht modules under certain circumstances. This is a generalisation to Iwahori–
Hecke algebras of a special case of the Carter–Payne theorem [3]. Recall the notion of the residue of
a node from Section 3.8.

Theorem 4.5. (See [20, Theorem 4.1.1].) Suppose λ is a partition, and that λ has an addable node (i, λi +1) and
a removable node ( j, λ j) of the same residue, with i < j. Let μ be the partition obtained by adding the node
(i, λi + 1) and removing the node ( j, λ j). Then there exists a non-zero homomorphism from Sμ

F,−1 to Sλ
F,−1 .

This result will be helpful in conjunction with Corollary 3.12. A particular application is the fol-
lowing.

Proposition 4.6. Suppose λ is a partition. Suppose λ has

• an addable node (i, λi + 1) lying in ladder Lm, and
• a removable node ( j, λ j) lying in ladder Ll ,

where m > l and l ≡ m (mod 2). Then Sλ
F,−1 is reducible.

Proof. By replacing λ with its conjugate if necessary and appealing to Corollary 3.3, we may assume
that i < j. Since l ≡ m (mod 2) and the nodes in ladder Ll all have residue (l + 1) (mod 2), the
addable node (i, λi + 1) and the removable node ( j, λ j) both have the same residue. So if we define
μ as in Theorem 4.5, then there is a non-zero homomorphism from Sμ

F,−1 to Sλ
F,−1. By Corollary 3.12,

it suffices to show that λreg � μreg; this follows from [5, Lemma 2.1], given the assumption that
m > l. �
5. The Fock space and canonical bases

Now we introduce the Fock space, which is our most powerful tool. In fact, via Ariki’s Theorem,
this theory provides an algorithm for computing the decomposition matrix of HF,−1(Sn) completely
when char(F) = ∞. However, it does not seem easy to use this algorithm to decide the reducibility of
Specht modules, and our application of the Fock space will be less direct.

Let v be an indeterminate over Q, and let h = Qh0 ⊕ Qh1 ⊕ QD be a three-dimensional vector
space. In this section we work with the quantum group U = Uv(ŝl2), which may be realised as the
associative algebra over Q with generators e0, e1, f0, f1 and vh (h ∈ h), subject to well-known rela-
tions; these may be found in [18], which is an excellent background reference for this section.

Define the Fock space to be the Q(v)-vector space F with a basis {s(λ)} indexed by the set of
all partitions. Let 〈 , 〉 be the inner product on F for which the basis {s(λ)} is orthonormal. The Fock
space has the structure of a U -module, and has important connections to the representation theory of
Iwahori–Hecke algebras. It will suffice for our purposes to describe the action on F of the ‘negative’
generators f0, f1 and their ‘quantum divided powers’

f (a)
i = f a

i

va−1 + va−3 + · · · + v3−a + v1−a
.

Fix i ∈ {0,1} and a � 1, and suppose λ and μ are partitions. Write λ
a:i−→ μ if the Young diagram for

μ may be obtained from the Young diagram for λ by adding a addable nodes of residue i. If this is
the case, then for each j such that λ j = μ j define

ε j =
{+1 (res( j, λ j + 1) = i),

−1 (res( j, λ j + 1) = 1 − i),
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and set

N(λ,μ) =
∑

j|λ j=μ j

ε j × (
no. of nodes of [μ] \ [λ] below row j

)
.

Now the action on F of the quantum divided power f (a)
i is given by Q(v)-linear extension of

f (a)
i s(λ) =

∑
μ|λ a:i−→μ

v N(λ,μ)s(μ).

Of particular importance is the submodule of F generated by the vector s(∅). This submodule
is isomorphic to (and therefore often identified with) the irreducible highest-weight representation
M(Λ0) of U . This representation is equipped with a Q(v + v−1)-linear map called the bar involution,
which can be specified by the conditions

s(∅) = s(∅)

and

f i(m) = f i(m)

for i ∈ {0,1} and m ∈ M(Λ0).
The bar involution allows us to define the canonical basis of M(Λ0), via the following theorem.

Theorem 5.1. For each 2-regular partition μ there is a unique element G(μ) of M(Λ0) with the properties

• G(μ) = G(μ), and
• G(μ) = ∑

λ dλμ(v)s(λ), where dλμ(v) is a polynomial in v, with dμμ(v) = 1, and dλμ(v) divisible by v
for λ �= μ.

The set

{
G(μ)

∣∣ μ a 2-regular partition
}

is a Q(v)-basis of M(Λ0).

Now we can state (a special case of) Ariki’s Theorem, which gives the connection to the represen-
tation theory of Iwahori–Hecke algebras.

Theorem 5.2. (See [1, Theorem 4.4].) Suppose λ and μ are partitions of n, with μ 2-regular, and let dλμ(v) =
〈G(μ), s(λ)〉 as in Theorem 5.1. Then

[
Sλ

Q,−1 : Dμ
Q,−1

] = dλμ(1).

In view of this theorem, the polynomials dλμ(v) are known as ‘v-decomposition numbers’. It is
known [21, Theorem 6.28] that dλμ(v) has non-negative integer coefficients, and is zero unless λ and
μ have the same core and weight (and therefore the same size). The non-negativity of the coefficients
has the following obvious consequence, in conjunction with Theorems 3.11 and 5.2.
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Lemma 5.3. Suppose λ and μ are partitions of n, with μ 2-regular.

1. If [Sλ
F,−1 : Dμ

F,−1] = 0, then dλμ(v) = 0.

2. If [Sλ
F,−1 : Dμ

F,−1] = 1 (in particular, if μ = λreg), then dλμ(v) = vs for some s.

Remark. In the case where μ = λreg, the integer s in Lemma 5.3 has been computed explicitly by the
first author in [8]; however, we shall not need this result in the present paper.

Next we prove a crucial lemma, which enables us to use Fock space computations to prove re-
ducibility of Specht modules.

Lemma 5.4. Suppose λ is a partition, and suppose X and Y are bar-invariant elements of M(Λ0), such that

〈
X, s(λ)

〉 = vx,
〈
Y , s(λ)

〉 = v y

for some x �= y. Then the Specht module Sλ
Q,−1 is reducible.

Proof. Suppose not, and write ν = λreg. Then by Theorem 3.11 and Lemma 5.3 we have 〈G(μ), s(λ)〉 =
0 for any μ �= ν . We write X and Y as linear combinations of canonical basis vectors

X =
∑
μ

αμ(v)G(μ), Y =
∑
μ

βμ(v)G(μ);

since X and Y are bar-invariant, αμ(v) and βμ(v) lie in Q(v + v−1) for each μ. Taking inner products
with s(λ) yields

αν(v)dλν(v) = vx, βν(v)dλν(v) = v y .

This gives

v yαν(v) = vxβν(v)

with αν(v) and βν(v) non-zero, but this is impossible if x �= y and αν(v) and βν(v) lie in Q(v +
v−1). �
Remark. In fact, Lemma 5.4 shows something rather stronger than the reducibility of Sλ

F,−1. Let us say
that λ is homogeneous if there is some x such that every v-decomposition number dλμ(v) is either
zero or a monomial of degree x. According to popular conjectures relating v-decomposition numbers
to the Jantzen filtration of the Specht module, the homogeneity of λ ought to imply that the Specht
module Sλ

Q,−1 is completely reducible.
A weaker condition we might impose on λ is that it is quasi-homogeneous, meaning that there is

some x such that every dλμ(v) lies in vx.Q(v + v−1). As a representation-theoretic interpretation, we
would speculate that quasi-homogeneity corresponds to the Specht module Sλ

F,−1 being self-dual.
What we have actually shown is that if the hypotheses of Lemma 5.4 are satisfied, then λ is not

homogeneous or even quasi-homogeneous. It would be very interesting to classify homogeneous and
quasi-homogeneous partitions, and the authors hope to be able to say something more about this in
the future.
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Our next step is to prove a result in which we phrase the action of a certain composition of powers
of f0, f1 in a convenient form, in certain special cases. Fix partitions μ and λ with [μ] ⊆ [λ], and fix
x ∈ {0,1}. Suppose that the following condition holds:

for each i with λi > 0, the node (i,μi + 1) has residue x. (∗)

In other words, μi ≡ i + x (mod 2) whenever λi > 0. Note that this implies in particular that λ′
1 −

μ′
1 � 1.

Define a sequence of partitions μ = μ0,μ1,μ2, . . . as follows: for j � 0, μ j+1 is obtained from
μ j by adding all addable nodes that are contained in [λ]. We define a j = |μ j| − |μ j−1| for j � 1, and
then set

f = · · · f (a4)
1−x f (a3)

x f (a2)
1−x f (a1)

x ∈ U .

(For j sufficiently large we have μ j = λ, and so a j = 0 for large j, so this definition makes sense.)
Our objective is to compute the coefficient of s(λ) in f s(μ). To do this, we construct a λ-tableau T
by filling each node of [μ] with a 0, and then for j � 1, filling each node of [μ j] \ [μ j−1] with a j.
Given a node (k,h) ∈ [λ], let j = T (k,h), and set

N(k,h) = ∣∣{m < k
∣∣ T (m, λm) < j, T (m, λm) �≡ j (mod 2)

}∣∣
− ∣∣{m < k

∣∣ T (m, λm) < j, T (m, λm) ≡ j (mod 2)
}∣∣.

Finally, set N = ∑
(k,h)∈[λ] N(k,h). Now we have the following.

Lemma 5.5. With the above definitions, we have

〈
f s(μ), s(λ)

〉 = v N .

Proof. The hypothesis on μ means that for any i, the nodes (i,μi + 1), (i,μi + 2), . . . , (i, λi) are filled
with the integers 1,2, . . . , λi − μi in T . In particular, for each j � 1, the nodes (k,h) with T (k,h) = j
all have residue x + j (mod 2). Now the lemma is straightforward to prove, given the above formula
for the actions of f (a)

0 , f (a)
1 on F . �

Example. Set λ = (72,52,4), μ = (7,6,3,2,1), x = 1. Then we have

μ0 = μ,

μ1 = (
72,4,3,2

)
,

μ2 = (
72,5,4,3

)
,

μ j = λ for j � 3,

and

T = .



M. Fayers, S. Lyle / Journal of Algebra 321 (2009) 912–933 929
The values of N(k, l) are given by

,

so that

〈
f (2)
1 f (3)

0 f (4)
1 s

(
(7,6,3,2,1)

)
, s

((
72,52,4

))〉 = v6.

We now use the last two results to prove the following proposition, which covers the bulk of cases
in our main theorem.

Proposition 5.6. Suppose λ is a partition satisfying the hypothesis of Theorem 2.1. Let l = λ′
1 , and suppose

that for i = 1, . . . , l we have λi � l − i + 2. Suppose also that for 1 � k � λ1 the ladder Lk(λ) is connected.
Then Sλ

F,−1 is reducible.

Proof. By the results of Section 3.3, we may assume that F = Q. The hypothesis of Theorem 2.1
is that some ladder Lm(λ) is disconnected; take the smallest such m, and choose i such that
(i − 1,m + 2 − i) ∈ [λ] /� (i,m + 1 − i) and ( j,m + 1 − j) ∈ [λ] for some j > i. Now define

μ = (l + 1, l, l − 1, . . . ,3,2),

μ̂ = (l + 1, l, l − 1, . . . , l − i + 3, l − i, l − i − 1, . . . ,2,1).

Setting x = l + 1 (mod 2), we find that μ and μ̂ both satisfy (∗); we define the operator f and the
tableau T corresponding to (λ,μ, x) as above, we define f̂ and T̂ corresponding to (λ, μ̂, x) in the
same way. Our aim is to show that the hypotheses of Lemma 5.4 are satisfied, with

X = f G(μ), Y = f̂ G(μ̂).

Certainly X and Y are bar-invariant elements of the Fock space. We now claim that we can ignore all
terms in G(μ), G(μ̂) except the leading terms, i.e.

〈
X, s(λ)

〉 = 〈
f s(μ), s(λ)

〉
,

〈
Y , s(λ)

〉 = 〈
f̂ s(μ̂), s(λ)

〉
.

Note that μ is an alternating partition with core (l − 1, l − 2, . . . ,1); so by Corollary 3.10 and The-
orem 5.2, any ν �= μ which gives a non-zero term dνμ(v)s(ν) in G(μ) satisfies νl+1 > 0. But this
means that [ν] � [λ], which obviously implies that 〈 f s(ν), s(λ)〉 = 0. The same argument applies to
G(μ̂), and so we can concentrate on f s(μ) and f s(μ̂). If we define the integer N corresponding to T
as above, and define N̂ from T̂ analogously, then by Lemma 5.5 we have

〈
f s(μ), s(λ)

〉 = v N ,
〈
f̂ s(μ̂), s(λ)

〉 = v N̂ ,

and it remains to prove the purely combinatorial statement that N̂ �= N .
In fact, we shall estimate N̂ − N , and show that it is strictly positive. To do this, we compare

N(k,h) with N̂(k,h) for the various nodes (k,h) ∈ [λ]. It will help to introduce some notation: for any
j � 0, we let a j be the number of k ∈ {1, . . . , i − 1} such that T (k, λk) = j; that is, the number of rows
of T above row i ending in j . We also define b j to be the number of nodes (k,h) with k � i such
that T (k,h) = j.
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First we note that T and T̂ agree on rows 1, . . . , i − 1, so certainly for any node (k,h) with k < i
we have N̂(k,h) = N(k,h). So we concentrate on nodes in rows i and below. Consider first the nodes
lying in [μ] \ [μ̂]. There are two of these in each row from i to l; these are labelled 0 0 in T , and
1 2 in T̂ . By the definitions of N and N̂ , each such pair of nodes contributes nothing to N , and

contributes a1 to N̂ (the node 1 contributes a0, while the node 2 contributes −a0 + a1).
Next let (k,h) be a node of [λ] \ [μ] with k � i, and let j = T (k,h) = k + h − l − 2. Then T̂ (k,h) =

j + 2, and using the definitions we can compute

N̂(k,h) − N(k,h) = a j+1 − a j

(note that the rows from i to k − 1 make no contribution). Summing, we find that

N̂ − N = (l − i + 1)a1 + (a2 − a1)b1 + (a3 − a2)b2 + · · ·
= (l − i + 1 − b1)a1 + (b1 − b2)a2 + (b2 − b3)a3 + · · · .

We claim that each term of the latter sum is non-negative, and that some term is positive. Certainly
b1 � l − i + 1, since there can be at most one node labelled 1 in any of rows i, . . . , l. Also, b j � b j−1
for j � 2, since each node labelled j must have a node labelled j − 1 immediately to its left. So each
term of the sum is non-negative. Now let j = T (i − 1,m − i + 2); that is, j = m − l − 1. If j � 2, we
claim that (b j−1 − b j)a j > 0; otherwise we claim (l − i + 1 − b1)a1 > 0. Suppose j � 2. To see that
the factor b j−1 − b j is positive, note that there is a node labelled j − 1 at the end of row i, but no
node labelled j in this row; in any subsequent row, if there is a node labelled j then there is a node
labelled j − 1 immediately to its left. Similarly if j = 1, there is no node in row i labelled 1, and so
l − i + 1 > b1.

Now we show that a j > 0. The last hypothesis of the proposition implies that ladder m does not
meet row 1, so that T (1, λ1) < j; on the other hand, there is a node labelled j in row i − 1, so
T (i − 1, λi−1) � j. For any 1 < k � i − 1 it is easy to see that T (k, λk) � T (k − 1, λk−1) + 1 so every
value from T (1, λ1) to T (i − 1, λi−1) occurs as some T (k, λk) for 1 � k � i − 1. In particular, the value
j occurs, and we are done. �
6. Proof of Theorem 2.1

Proposition 6.1. Suppose λ is a partition and l � 1. Suppose that (1, l) and (l,1) both lie in Ll(λ), but that
Ll(λ) is disconnected. Then Sλ

F,−1 is reducible.

Proof. Suppose λ has weight w and core (r, r − 1, . . . ,1); we proceed by induction on w , and for
fixed w by reverse induction on r. The starting case for this induction is where r � w − 1, so that λ

lies in a Rouquier block. Since λ is certainly neither 2-regular nor 2-restricted, Corollary 3.7 gives the
result in this case.

For the case where r < w − 1, recall the definition of the partition λ+i for i ∈ {0,1} from Sec-
tion 3.8. By Lemma 3.15, we have w(λ+i) � w(λ), and obviously if w(λ+i) = w(λ) but λ+i �= λ then
the core of λ+i is larger than the core of λ. So to complete the inductive step is suffices to show that
for either i = 0 or i = 1 we have λ+i �= λ with λ+i also satisfying the hypotheses of the lemma.

Let j = l (mod 2). Consider two cases.

• Suppose λ has at least one addable node of residue j. Then we have λ+ j �= λ, and (since all of
the nodes in Ll have residue 1 − j) we have Ll(λ

+ j) = Ll(λ), so λ+ j satisfies the hypotheses of
the lemma.

• Alternatively, suppose λ has no addable nodes of residue j. Then the nodes (1, l +1) and (l +1,1)

must lie in [λ] (since these nodes have residue j, and if either of them were not contained in [λ]
then it would be an addable node). On the other hand, [λ] cannot contain all the nodes in Ll+1
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since it does not contain all the nodes in Ll; so ladder Ll+1 is disconnected. Now we can replace
l with l + 1 (and j with 1 − j), and appeal to the previous case. �

Proposition 6.2. Suppose λ is a partition and l � 1. Suppose the ladder Ll(λ) is disconnected, and that (1, l) ∈
[λ] /� (l,1). Then Sλ

F,−1 is reducible.

Proof. Divide Ll(λ) into ‘segments’ of consecutive nodes; the condition that Ll(λ) is disconnected
is precisely the statement that there are at least two segments. Let s be the length of the shortest
segment other than the segment containing the node (1, l), and proceed by induction on s. Let j =
l+1 (mod 2) be the common residue of the nodes in Ll , and let λ+ = λ+(1− j) be the partition defined
in Section 3.8.

Suppose s = 1. This means that there is some i ∈ {3, . . . , l − 1} such that (i, l + 1 − i) is a node
of λ but neither (i − 1, l + 2 − i) nor (i + 1, l − i) is. In particular, this implies that (i, l + 1 − i) is
a removable node of λ. We claim that this node is also a removable node of λ+: since neither of
the nodes (i − 1, l + 2 − i), (i + 1, l − i) lies in [λ] by assumption, neither of the nodes (i, l + 2 − i),
(i + 1, l + 1 − i) can lie in [λ+(1− j)]; so (i, l + 1 − i) is a removable node of λ+ , as claimed. Now
consider the addable node a = (1, λ+

1 + 1) of λ+ . Since λ+ cannot have addable nodes of residue
1 − j, a must have residue j. Moreover, since (1, l) ∈ [λ], a lies in ladder Lm for some m > l. Hence
by Proposition 4.6 Sλ+

F,−1 is reducible, and so by Lemma 3.14 Sλ
F,−1 is reducible.

Now we consider the inductive step; suppose s > 1, and that

{
(i, l + 1 − i), (i + 1, l − i), . . . , (i + s − 1, l + 2 − i − s)

}
is a segment of length s, with 3 � i � l − s. That is, the nodes listed above are nodes of λ, but the
nodes (i − 1, l + 2 − i), (i + s, l + 1 − i − s) are not. This means that the nodes

(i + 1, l + 1 − i), (i + 2, l − i), . . . , (i + s − 1, l + 3 − i − s)

are either nodes or addable nodes of λ, and hence (since they have residue 1 − j) are nodes of λ+ .
On the other hand, neither of the nodes (i, l + 2 − i), (i + s, l + 2 − i − s) is a node or an addable
node of λ, so neither of these nodes is a node of λ+ . So Ll+1(λ

+) includes a segment of length s − 1;
it also contains the node (1, l + 1) but not the node (l + 1,1), and so we may apply the inductive
hypothesis, replacing λ with λ+ and l with l + 1, to deduce that Sλ+

F,−1 is reducible. Now we can apply
Lemma 3.14. �
Example. Let λ = (5,32,2). Then λ satisfies the hypotheses of Proposition 6.2, with l = 5. We have
s = 2 and j = 0, and we examine the partition λ+ = λ+1 = (6,33). This partition also satisfies the
hypotheses of Proposition 6.2, with l = 6 and s = 1. We construct the partition λ++ = (λ+)+0 =
(7,4,32,1); this satisfies the hypotheses of Proposition 4.6, since it has an addable node (1,8) ∈ L8
and a removable node (4,3) ∈ L6. So Sλ++

F,−1 is reducible, and hence so is Sλ+
F,−1, and hence so is Sλ

F,−1.
The Young diagrams of the partitions, with the residues of their nodes marked, are given below.

λ λ+ λ++

Proposition 6.3. Suppose λ satisfies the hypothesis of Theorem 2.1, that λ1 = λ′
1 , and that λi � λ1 + 1 − i for

i = 1, . . . , λ1 . Then Sλ
F,−1 is reducible.
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Proof. Using Proposition 4.4 and Corollary 3.12, our task is to show that we can find partitions ν, ξ

such that ξν ′
1−1 � ν ′

1, λi = ξi + 2νi for all i, and λreg � μ, where μ is the partition given by μi =
ξ ′

i + 2νi for all i.
Let m be minimal such that Lm(λ) is disconnected, and let i,k be such that k � i + 2, (i,m +

1 − i), (k,m + 1 − k) lie in [λ] and none of the nodes (i + 1,m − i), . . . , (k − 1,m + 2 − k) lies in [λ].
We would like to assume that i + 1 � m − i, i.e. the node (i + 1,m − i) lies on or above the main
diagonal of the Young diagram. If this is not the case, then we can replace λ with λ′ (appealing to
Corollary 3.3), and replace (m, i,k) with (m, ı̄, k̄), where ı̄ = m + 1 − k, k̄ = m + 1 − i; it is then easy
to check that ı̄ + 1 � m − ı̄ .

So we shall assume that i +1 � m− i. Since (i,m+1− i) ∈ [λ] /� (i +1,m− i), we have λi −λi+1 � 2.
So we if we define ν = (1i) and ξ = (λ1 − 2, λ2 − 2, . . . , λi − 2, λi+1, λi+2, . . .), then ξ is a partition.
Furthermore, we have

ξν ′
1−1 = ξi−1 = λi−1 − 2 � λi − 2 � m − 1 − i � i = ν ′

1,

and it remains to show that λreg � μ. In fact, we shall show that μ′
1 < (λreg)′1, which is certainly good

enough. By assumption Lλ1 (λ) = Lλ1 , and hence Lλ1 (λ
reg) = Lλ1 , and this means that (λreg)′1 = λ1.

On the other hand,

μ′
1 = max

{
ξ1, ν

′
1

} = max{λ1 − 2, i} < λ1,

and we are done. �
Proof of Theorem 2.1. Suppose λ satisfies the hypothesis of Theorem 2.1. By replacing λ with λ′ if
necessary and appealing to Corollary 3.3, we may assume that λ1 � λ′

1.
Let m be minimal such that ladder Lm(λ) is disconnected. If m � λ1, then Lm(λ) meets the top

row of [λ] (i.e. (1,m) ∈ [λ]), and so we may appeal to Proposition 6.1 or Proposition 6.2. So we can
assume that m > λ1, and in particular no disconnected ladder of λ meets the top row.

If λ1 = λ′
1, then we may appeal to Proposition 6.3, so instead we suppose that λ1 > λ′

1. Let l = λ′
1,

and suppose that λl � 2. Then we have (l,2) ∈ [λ]. Since λ1 > l, we also have (1, l + 1) ∈ [λ], and now
the assumption that Ll+1(λ) is connected means that the nodes (2, l), (3, l − 1), . . . , (l − 1,3) all lie
in λ. So λi � l − i + 2 for i = 1, . . . , l, and we may appeal to Proposition 5.6.

We are left with the case where λl = 1. In this case, λ has a removable node (l,1), of residue
j = l + 1 (mod 2). We now consider two cases.

• Suppose the nodes in ladder Lm have residue j. We claim that there is an addable node of λ in
this ladder. Indeed, let i,k be such that k � i +2, (i,m +1− i), (k,m +1−k) lie in [λ] and none of
the nodes (i + 1,m − i), . . . , (k − 1,m + 2 − k) lies in [λ]. Then (i,m − i) and (k − 1,m + 1 − k) lie
in [λ], and since Lm(λ) is the first disconnected ladder of λ, the nodes (i + 1,m − 1 − i), . . . , (k −
2,m + 2 − k) lie in [λ]. So λ has an addable node (i + 1,m − i) ∈ Lm . Now we may appeal to
Proposition 4.6.

• Alternatively, suppose the nodes in ladder Lm have residue 1 − j, and consider the partition λ− j .
This is strictly smaller than λ since it does not contain the node (l,1), but also has a disconnected
ladder, i.e. Lm(λ− j) = Lm(λ). So by induction on |λ| and Lemma 3.13, Sλ

F,−1 is reducible. �
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