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In a hydrodynamic model, with fluctuating initial conditions, the correlation between triangular flow and
initial spatial triangularity is studied. The triangular flow, even in ideal fluid, is not strongly correlated
with the initial triangularity. The correlation is largely reduced in viscous fluid. Elliptic flow on the other
hand appears to be strongly correlated with initial eccentricity. Weak correlation between triangular
flow and initial triangularity indicates that a part of triangular flow is unrelated to initial triangularity.
Triangularity acquired during the fluid evolution also contributes to the triangular flow.

© 2012 Published by Elsevier B.V. Open access under CC BY license.
In ultra-relativistic nuclear collisions, a deconfined state of
quarks and gluons, commonly called Quark–Gluon–Plasma (QGP)
is expected to be produced. One of the experimental observables
of QGP is the azimuthal distribution of the produced particles.
In a non-zero impact parameter collision between two identical
nuclei, the collision zone is asymmetric. Multiple collisions trans-
form the initial asymmetry into momentum anisotropy. Momen-
tum anisotropy is best studied by decomposing it in a Fourier
series,

dN

dφ
= N

2π

[
1 + 2

∑
n

vn cos(nφ − nψn)

]
, n = 1,2,3, . . . , (1)

φ is the azimuthal angle of the detected particle and ψn is the
plane of the symmetry of initial collision zone. For smooth ini-
tial matter distribution, plane of symmetry of the collision zone
coincides with the reaction plane (the plane containing the im-
pact parameter and the beam axis), ψn ≡ ΨR P , ∀n. The odd Fourier
coefficients are zero by symmetry. However, fluctuations in the po-
sitions of the participating nucleons can lead to non-smooth den-
sity distribution, which will fluctuate on event-by-event basis. The
participating nucleons then determine the symmetry plane (ψP P ),
which fluctuate around the reaction plane [1]. As a result odd har-
monics, which were exactly zero for smoothed initial distribution,
can be developed. It has been conjectured that third hadronic v3,
which is a response of the initial triangularity of the medium, is re-
sponsible for the observed structures in two particle correlation in
Au + Au collisions [2–12]. The ridge structure in pp collisions also
has a natural explanation if odd harmonic flow develops. Recently,
ALICE Collaboration has observed odd harmonic flows in Pb + Pb
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collisions [13]. In most central collisions, the elliptic flow (v2) and
triangular flow (v3) are of similar magnitude. In peripheral colli-
sions however, elliptic flow dominates.

In a hydrodynamic model, collective flow is a response of the
spatial asymmetry of the initial state. For example, elliptic flow
is the response of ellipticity of the initial medium. If elliptic-
ity in the initial medium is characterized by spatial eccentricity,

ε2 = 〈〈y2−x2〉〉
〈〈y2+x2〉〉 , more eccentric is the initial medium, more flow will

be generated, v2 ∝ ε2. Similar correlation is expected between the
triangular flow and initial triangularity. Recently in [14], the cor-
relation between triangular flow and initial triangularity is studied
for fluctuating initial conditions. However, the study is limited to
ideal hydrodynamics and dependence on viscosity has not been
well studied. Since viscosity introduces additional length scales,
qualitatively, one can argue that correlation between momentum
anisotropy of produced particles and asymmetry of initial density
distribution will reduce in presence of viscosity. In the present Let-
ter, in a hydrodynamic model with fluctuating initial conditions,
we have studied the effect of (shear) viscosity on the correlation
between triangular flow and initial triangularity. For comparison,
we have also studied the correlation between elliptic flow and ini-
tial eccentricity. In ideal fluid, elliptic flow shows strong correlation
with spatial eccentricity. The correlation is weakened with viscos-
ity. For triangular flow, even in ideal fluid, the correlation is not
strong. In viscous fluid, it gets even weaker.

For the fluctuating initial conditions, we have used a model of
hot spots in the initial states. Similar models are used to study el-
liptic flow in pp collisions at LHC [15–17]. In [18], a similar model
was used to study anisotropy in heavy ion collisions due to fluc-
tuating initial conditions. Recently, we have used the model to
study viscous effects on elliptic and triangular flow [19]. In the
model, it is assumed that in an impact parameter b collision, each
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participating nucleon pair randomly deposit some energy in the re-
action volume, and produce a hot spot. The hot spots are assumed
to be Gaussian distributed. The initial energy density is then super
position of N = Nparticipant hot spots.

ε(x, y) = ε0

Nparticipant∑
i=1

e
− (r−ri )

2

2σ2 . (2)

The participant number Nparticipant is calculated in a Glauber
model. We also restrict the center of hotspots (ri) within the trans-
verse area defined by the Glauber model of participant distribu-
tion. The central density ε0 and the width σ are parameters of
the model. We fix σ = 1 fm. The central density ε0 is fixed to
reproduce approximately the experimental charged particles in a
peripheral (30–40%) Pb + Pb collisions.

We characterize the initial density distribution in terms of ec-
centricity ε2 and triangularity ε3.

ε2ei2ψ2 = −
∫∫

ε(x, y)r2ei2φ dx dy∫∫
ε(x, y)r2 dx dy

, (3a)

ε3ei3ψ3 = −
∫∫

ε(x, y)r3ei3φ dx dy∫∫
ε(x, y)r3 dx dy

. (3b)

ψ2 and ψ3 in Eqs. (3a), (3b), are participant plane angle for
elliptic and triangular flow respectively. Note that for the trian-
gularity, we have used the definition due to Teaney and Yan [7].
An alternate definition was used by Alver and Rolland [5], where
r3 terms in Eq. (3b) are replaced by r2. However, Teaney and Yan
argued from theoretical consideration that in the definition of tri-
angularity, r3 terms are more appropriate than r2.

Space–time evolution of the fluid was obtained by solving
Israel–Stewart’s 2nd order theory. We assume that in

√
sN N =

2.76 TeV, Pb + Pb collisions at LHC, a baryon free fluid is formed.
Only dissipative effect we consider is the shear viscosity. Heat con-
duction and bulk viscosity is neglected. Space–time evolution of
the fluid was obtained by solving the following equations,

∂μT μν = 0, (4a)

Dπμν = − 1

τπ

(
πμν − 2η∇〈μuν〉)

− [
uμπνλ + uνπμλ

]
Duλ. (4b)

Eq. (4a) is the conservation equation for the energy-momentum
tensor, T μν = (ε + p)uμuν − pgμν + πμν , ε, p and u being the
energy density, pressure and fluid velocity respectively. πμν is the
shear stress tensor. Eq. (4b) is the relaxation equation for the shear
stress tensor πμν . In Eq. (4b), D = uμ∂μ is the convective time
derivative, ∇〈μuν〉 = 1

2 (∇μuν + ∇νuμ) − 1
3 (∂.u)(gμν − uμuν) is

a symmetric traceless tensor. η is the shear viscosity and τπ is
the relaxation time. It may be mentioned that in a conformally
symmetric fluid the relaxation equation can contain additional
terms [20]. Assuming boost-invariance, the equations are solved
in (τ = √

t2 − z2, x, y, ηs = 1
2 ln t+z

t−z ) coordinates, with the code
“‘AZHYDRO-KOLKATA”’, developed at the Cyclotron Centre, Kolkata.
Details of the code can be found in [21].

Hydrodynamic equations are closed with an equation of state
(EoS) p = p(ε). Currently, there is consensus that the confinement–
deconfinement transition is a cross over and the cross over or
the pseudo critical temperature for the transition is Tc ≈ 170 MeV
[22–25]. In the present study, we use an equation of state where
the Wuppertal–Budapest [22,24] lattice simulations for the de-
confined phase is smoothly joined at T = Tc = 174 MeV, with
hadronic resonance gas EoS comprising all the resonances below
mass mres = 2.5 GeV. Details of the EoS can be found in [26].
Fig. 1. In four panels (a)–(d), for fluid viscosity to entropy ratio η/s = 0, 0.08, 0.12
and 0.16, the correlation between elliptic flow (v2) and initial eccentricity (ε2) is
shown. Event size is Nevent = 500.

In addition to the initial energy density for which we use
the model of hot spots, solution of partial differential equations
(Eqs. (4a), (4b)) requires to specify the fluid velocity (vx(x, y),

v y(x, y)) and shear stress tensor (πμν(x, y)) at the initial time τi .
One also needs to specify the viscosity (η) and the relaxation time
(τπ ). A freeze-out prescription is also needed to convert the infor-
mation about fluid energy density and velocity to particle spectra.
We assume that the fluid is thermalized at τi = 0.6 fm and the ini-
tial fluid velocity is zero, vx(x, y) = v y(x, y) = 0. We initialize the
shear stress tensor to boost-invariant values, π xx = π yy = 2η/3τi ,
π xy = 0 and for the relaxation time, we use the Boltzmann esti-
mate τπ = 3η/2p. We also assume that the viscosity to entropy
density (η/s) remains a constant throughout the evolution and
simulate Pb + Pb collisions for a range of η/s. The freeze-out is
fixed at T F = 130 MeV.

For fluid viscosity to entropy ratio η/s = 0, 0.08, 0.12 and 0.16,
we have simulated b = 8.9 fm Pb + Pb collisions. b = 8.9 fm col-
lisions approximately corresponds to 30–40% collision. In viscous
evolution, entropy is generated. To account for the entropy gen-
eration, the Gaussian density ε0 was reduced with increasing vis-
cosity, such that in ideal and viscous fluid, on the average, π−
multiplicity remains the same. In the present study, we have used
Nevent = 500 events. In each event, Israel–Stewart’s hydrodynamic
equations are solved and from the freeze-out surface, invariant dis-
tribution ( dN

dy d2 pT
) for π− was obtained. In analogy to Eqs. (3a),

(3b), invariant distribution can be characterized by ‘harmonic flow
coefficients’ [27].

vn(y)einψn(y) =
∫

pT dpT dφ einφ dN
dy pT dpT dφ

dN
dy

, n = 2,3. (5)

In a boost-invariant version of hydrodynamics, flow coefficients
are rapidity independent and in the following, we drop the rapidity
dependence. Present simulations are applicable only in the central
rapidity region, y ≈ 0, where boost-invariance is most justified.

In Fig. 1, in four panels, for fluid viscosity η/s = 0, 0.08, 0.12
and 0.16, simulated elliptic flow (v2) is plotted against initial
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Fig. 2. Same as in Fig. 1, but for the triangular flow (v3) and initial triangularity
(ε3).

eccentricity (ε2). Each panel contains 500 data points. In ideal
fluid, v2 and ε2 are strongly correlated, v2 ∝ ε2. Evidently, the
correlation is gradually weakened as the viscosity of the fluid is
increased. The result is not unexpected. As argued earlier, in vis-
cous fluid, correlation between elliptic flow and initial eccentricity
is reduced due to introduction of the additional length scale. Cor-
relation between triangular flow (v3) and initial triangularity (ε3)
is studied in Fig. 2. The results are more interesting. Even in ideal
fluid, v3 and ε3 are not strongly correlated. In viscous fluid corre-
lations are even worse. Indeed, for fluid viscosity η/s = 0.12–0.16,
it appears that flow coefficients are marginally related to initial tri-
angularity.

Qualitatively, from Figs. 1 and 2, one understands that the cor-
relation between triangular flow and initial triangularity is much
less than the correlation between the elliptic flow and initial ec-
centricity. One also understands that the correlation reduces with
viscosity. We can obtain a quantitative measure of the correlation
between flow coefficients (v2/3) and initial asymmetry parameter
(ε2/3). We note that for a perfect correlation, vn ∝ εn and simu-
lated flow coefficients will fall on a straight line. Dispersion of the
flow coefficients around the best fitted straight line then gives a
measure of the correlation. We thus define a correlation measure
function Cmeasure ,

Cmeasure(vn) =
∑

i[vi
n,sim(εn) − vn,st.line(εn)]2

∑
i[V i

random(ε) − vst.line(ε)]2
, (6)

which measure the dispersion of the simulated flow coefficients
from the best fitted straight line, relative to completely random
flow coefficients [28]. In order to compare the correlation be-
tween v2 and ε2 and the correlation between v3 and ε3, we
also rescale the flow coefficients (v2/3) and asymmetry param-
eters (ε2/3) to vary between (0–1), such that the dispersion is
measured in a common scale. Cmeasure varies between 0–1. If sim-
ulated flows are perfectly correlated with the asymmetry measure,
Cmeasure = 0, at the opposite limit, when they are perfectly uncorre-
lated (random) Cmeasure = 1. In Table 1, we have noted Cmeasure for
elliptic and triangular flow, as a function of η/s. With increasing
fluid viscosity, correlation between the flow coefficient and spatial
Table 1
Correlation measure for elliptic and triangular flow, as a function of viscosity over
entropy ratio.

η
s = 0 η

s = 0.08 η
s = 0.12 η

s = 0.16

Cmeasure(v2) 0.052 0.060 0.105 0.202
Cmeasure(v3) 0.280 0.336 0.446 0.513

asymmetry parameter is reduced. In ideal and minimally viscous
fluid, elliptic flow and initial eccentricity are mostly correlated,
Cmeasure(v2) ≈ 0.05. For more viscous fluid η/s = 0.12–0.16, cor-
relation though reduced, remains strong, Cmeasure(v2) ≈ 0.1–0.2. If
we interpret Cmeasure as the fraction of flow unrelated to the ini-
tial spatial asymmetry, for elliptic flow, the fraction is small, less
than ∼ 10% for fluid viscosity over entropy ratio η/s = 0–0.12. Tri-
angular flow on the other hand appears to be highly uncorrelated.
Even for ideal fluid, Cmeasure(v3) ≈ 0.3. In the above interpretation,
∼ 30% of triangular flow is unrelated to the initial triangularity.
For more viscous fluid, η/s = 0.12–0.16, the fraction is increased
to ∼ 50%. Comparatively large value of Cmeasure for triangular flow
raises an important question. Is triangular flow a response of the
initial triangularity of the medium only? One may argue that in
RHIC/LHC energy collisions, viscosity of the produced fluid is not
large and the simulation results for fluid viscosity η/s = 0.12–0.16
will not be of any practical concern. However the correlation be-
tween v3 and ε3 is not strong in ideal or minimally viscous fluid.
While for elliptic flow, ∼ 95% of the flow is related to initial spatial
asymmetry, for the triangular flow, the fraction is only ∼ 65–70%.
It is reasonable to conjecture that a large part of the triangular
flow is unrelated to the initial triangularity. What are the mech-
anisms by which the system acquires triangularity is uncertain.
In the present simulations, final triangular flow depends only on
the initial transverse distribution of energy density. Even there is
no initial flow. Yet, the initial triangularity is not perfectly corre-
lated with the triangular flow. It indicates that other aspects of the
initial density (higher moments or products of moments) are im-
portant in development of triangular flow.

To summarize, in a hydrodynamic model, with fluctuating ini-
tial conditions, we have studied the correlation between triangular
flow and initial triangularity of the medium. In ideal or minimally
viscous fluid, the correlation between initial triangularity and tri-
angular flow is not strong. In more viscous fluid, the correlation
gets even weaker. Elliptic flow on the other hand is strongly cor-
related with initial eccentricity in ideal or viscous fluid. Weak cor-
relation between triangular flow and initial triangularity strongly
indicates that a part of the triangular flow is unrelated to ini-
tial triangularity of the medium. Final state triangularity, gener-
ated by unknown mechanisms, also contributes to the triangular
flow.
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