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A Novel Framework for Sib Pair Linkage Analysis
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Sib pair linkage analysis of a dichotomous trait is a popular method for narrowing the search for genes that influence
complex diseases. Although the pedigree structures are uncomplicated and the underlying genetic principles straight-
forward, a surprising degree of complexity is involved in implementing a sib pair study and interpreting the results.
Ascertainment may be based on affected, discordant, or unaffected sib pairs, as well as on pairs defined by threshold
values for quantitative traits, such as extreme discordant sib pairs. To optimize power, various domain restrictions
and null hypotheses have been proposed for each of these designs, yielding a wide array of choices for the analyst.
To begin, we systematically classify the major sources of discretion in sib pair linkage analysis. Then, we extend
the work of Kruglyak and Lander (1995), to bring the various forms into a unified framework and to facilitate a
more general approach to the analysis. Finally, we describe a new, freely available computer program, SPLAT (Sib
Pair Linkage Analysis Testing), that can perform any sib pair statistical test currently in use, as well as any user-
defined test yet to be proposed. SPLAT uses the expectation maximization algorithm to calculate maximum-likelihood
estimates of sharing (subject to user-specified conditions) and then plots LOD scores versus chromosomal position.
It includes a novel grid-scanning capability that enables simultaneous visualization of multiple test statistics. This
can lead to further insight into the genetic basis of the disease process under consideration. In addition, phenotype
definitions can be modified without the recalculation of inheritance vectors, thereby providing considerable flexi-
bility for exploratory analysis. The application of SPLAT will be illustrated with data from studies on the genetics
of diabetic nephropathy.
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Sib pair analysis is a powerful linkage technique based
on an elegantly straightforward principle: pairs of phe-
notypically similar sibs will tend toward excess sharing
of relevant chromosomal regions, whereas those that are
dissimilar will tend toward lower sharing. Therefore, a
set of sib pairs is typically ascertained such that either
all pairs are concordant or all are discordant for a given
trait. Then, at some region of interest or at loci across
the genome, the degree of intrapair genetic similarity in
the study population is assessed. This is done by esti-
mating the sharing pattern—( , , ), the probabilitiesz z z0 1 2

that a typical pair shares zero, one, or two alleles iden-
tical by descent (IBD)—and by evaluating statistical sig-
nificance via likelihood theory.

Although the pedigree structures are uncomplicated
and the problem is simply stated, sib pair linkage anal-
ysis turns out to be surprisingly complex. Beyond basic
design issues, such as the type of sib pairs involved in
the study, much of the ongoing debate focuses on two
issues: how best to restrict the parameter domain and
which null/alternative hypotheses to use. As for domain
restriction, the baseline set of acceptable values comes
from the fact that the sharing pattern is a 2-df proba-
bility vector, with z2 fixed, given a suitable (z0, z1) pairing.
On the -plane, this point must fall within the trianglez z0 1

bound by {z0, z1}�0 and . However, to in-z � z � 10 1

crease power, it is often desirable to further limit the
domain of sharing patterns by imposing additional re-
strictions. Within the specified domain, regions corre-
sponding to the null and alternative hypothesis must be
chosen from among a growing collection of legitimate
contenders. Other choices, including the method for
handling multiple sibs per family, must also be made.
Permutation of these various options leads to a wide
array of possible analytic approaches.

Our intent in investigating such facets of sib pair anal-
ysis stems from our desire to gain control, both the-
oretically and practically, of the plethora of options
available when searching for linkage. To accomplish this,
we set out to generalize the framework of Kruglyak and
Lander (1995) to encompass the broadest possible set
of pairwise sib pair linkage tests. Our goal was not only
to capture all variations currently described but also to
allow for emerging developments in the field. This uni-
fied sib pair linkage framework served as the motivation
for our software program, SPLAT (Sib Pair Linkage Anal-
ysis Testing), which was designed to handle any sib pair
statistical test currently in use, as well as any user-defined
test yet to be proposed. SPLAT also includes features to
make sib pair analysis more efficient and more revealing.
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For example, sib pair linkage analysis is generally per-
formed in two steps: (1) inference of familial inheritance
patterns and (2) assessment as to whether this infor-
mation suggests genetic linkage (Kruglyak and Lander
1995). Since the first step is usually far more time con-
suming, SPLAT allows this information to be retained so
that linkage assessment can be performed repeatedly
with some variation. The desire for such repetition may
arise from a definition of “affection” that is somewhat
fluid. For instance, in our studies of diabetic nephro-
pathy, it is not always clear a priori whether to consider
as affected subjects who do not present with advanced
kidney disease but do express early biomarkers of
disease.

Another issue addressed by SPLAT is that differing user
interfaces may be more suitable for different analytical
tasks. For when the analyst wishes to quickly engage in
exploratory analyses, a point-and-click graphical user
interface (GUI) is provided. With this GUI, the user may
see the linkage results as they are generated, within a
single program. When automation is desired (e.g., in a
simulation controlled by a script), a command-line in-
terface is available. A convenient method for imple-
menting whole genome scans is also provided.

In addition, SPLAT provides a number of graphical
features, such as the option to filter out irrelevant noise
for visual clarity, the ability to view multiple statistics
simultaneously, and the luxury of viewing contour
curves of the entire LOD surface. These features are
designed to aid the analyst in gaining insight from the
data set.

Methods and Results

Likelihood Framework

Genetic segregation to an offspring at any locus can be lik-
ened to flipping two distinct coins representing the maternal
and paternal inheritances. Sharing between siblings can be
thought of as the comparative results of flipping the same coins
again for a second offspring. Of the four possible outcomes,
there is one in which neither coin matches its first flip, two in
which exactly one coin matches its first flip, and one in which
both coins match. Thus, in the absence of linkage, sibs have
an expected sharing pattern of ( ), and the point ( ) on1 1 1 1 1, , ,4 2 4 4 2

the -plane is typically used as the null hypothesis for sibz z0 1

pair sharing.
The goal of linkage analysis is to estimate allele-sharing pro-

portions across the study population and to assess whether
there are any loci at which these proportions deviate signifi-
cantly from the expectation under the null hypothesis of no
linkage. Sharing-proportion estimations are performed within
a likelihood framework.

The likelihood equation, based on the multinomial proba-
bility mass function, provides a way to assess various (z0, z1)
points for compatibility with the observed genotype data. In
the case of complete data, where it is known explicitly for each

sib pair whether zero, one, or two alleles are shared IBD, the
likelihood is simply

n n n0 1 2L p z z z , (1)0 1 2

where nj is the number of sib pairs sharing j alleles IBD. Max-
imizing L with respect to the parameters, zj, gives an estimate
of the sharing proportions. In the complete data case, the max-
imum-likelihood estimates are simply , where .njẑ p n p � nj jn

For incomplete data, where sib pair sharing is not known
precisely, the likelihood of observing the data for each sib pair
resembles a conditional probability. The overall likelihood is
the product

L p z r � z r � z r ,� 0 i0 1 i1 2 i2
i

where rij is the probability of observing the genotype data,
given that the ith sib pair shares j alleles IBD. Dividing each
factor by the likelihood for the null sharing pattern, a p
( ), gives the likelihood ratio1 1 1, ,4 2 4

z r � z r � z r0 i0 1 i1 2 i2LR p .�
i a r � a r � a r0 i0 1 i1 2 i2

The decimal log of the likelihood ratio is a LOD score, the
statistic used to assess the significance of deviation from the
null hypothesis.

The first stage of linkage analysis is the calculation of rij

values. To do so, the SPLAT user must use a program such as
GENEHUNTER (Kruglyak et al. 1996) or Merlin (Abecasis
et al. 2002) to generate an “IBD file” summarizing inheritance
information. If the nuclear families are to be carved out of
large genotyped families, the program Loki (Heath 1997) may
be preferred, to fully utilize the inheritance information af-
forded by extended pedigrees. Loki IBDs can then easily be
converted to the GENEHUNTER format. Whichever program
is used, the file must be generated just once for a given genotype
data set, as it can be read into SPLAT, in conjunction with an
alterable phenotype file, any number of times. Detailed in-
structions on how to produce the IBD file can be found in the
SPLAT manual.

Each line of the externally generated IBD file describes in-
heritance information for one sib pair at a designated chro-
mosomal position. Specifically, GENEHUNTER reports the
probabilities, pj, that the sib pair shares j alleles, given the
genotype data. We can relate pj to rj with Bayes’s theorem. If
J is the event that a sib pair shares j alleles, and if D is the
event of observing the genotype data, then

( )p # P Dj

( )r { P DFJ p .j
a j

Thus, the LOD score in terms of the IBD probabilities is

LOD p log LR10

( )p log 4p z � 2p z � 4p z . (2)� 10 i0 0 i1 1 i2 2
i
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Figure 1 DSP linkage curve for diabetic nephropathy on a region of chromosome 3q (Moczulski et al. 1998) and contour curves (LOD
intervals of one-half) defining the LOD surface at the peak (40 cM).

Note that for complete data, where, for each i, pij is equal to
1 for exactly one value of j and equal to 0 for the other two,
the likelihood ratio collapses to the form expected from equa-
tion (1):

n n n0 1 2z z z0 1 2LOD p log .10 n n n0 1 21 1 1( ) ( ) ( )4 2 4

SPLAT first examines the phenotype data to designate the sib
pairs to be incorporated into the analysis. These can be affected
sib pairs (ASPs) or discordant sib pairs (DSPs). Then, upon
reading in the IBD probabilities, the program employs the ex-
pectation maximization (EM) algorithm to maximize the LOD
score (subject to the restrictions and options discussed below)
and to thereby determine the maximum-likelihood estimate of
the sharing pattern for each chromosomal position (fig. 1).

Sharing-Pattern Domain Restrictions

In figure 1, the maximum-likelihood sharing pattern, at the
center of the contour curves plotted for the position 40 cM,
emerged from an unrestricted domain; the sharing pattern was
allowed a full 2 df across the entire planar region defined for
probabilities (i.e., the projection of , with allz � z � z p 10 1 2

, onto the -plane). However, a study’s power can bez � 0 z zj o 1

increased by restricting the domain over which the maximum-
likelihood sharing pattern is sought to a subset where it is
most likely to be found. In doing so, the threshold value for
a LOD score to be considered significant is reduced, since the

unrestricted 2-df reference distribution is replaced by one com-
prising a mixture of 0-, 1-, and 2-df distributions. SPLAT in-
cludes an interactive feature for the analyst to define any log-
ically consistent linear or triangular domain restriction, and
options for several common constraints are built in.

The simplest modification to the domain is to restrict to
those sharing patterns for which mean sharing diverges from
the null in the direction of interest. That is, one may restrict
to for ASPs (or, more broadly, for sibs concordant form 1 1/2
any trait) or to for DSPs (fig. 2a), wherem ! 1/2

21
m { jz .� j2 jp0

Cutting the domain in half essentially reduces the problem to
a one-sided test. The utility of such restriction is apparent in
our DSP example, where, in addition to being discordant for
nephropathy, all sib pairs are concordant for diabetes. This
being the case, we find increased sharing (and, hence, high
LOD scores) in chromosomal regions linked to diabetes (fig.
3). Although this does provide an interesting means of checking
sample and data integrity, the peaks can be misleading in the
search for regions linked exclusively to nephropathy.

A stricter “possible triangle” restriction, based on principles
of biological consistency, was proposed for ASPs by Holmans
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Figure 2 Domain restriction. A, Line defined by MSH, , bifurcates the domain into the broadest regions consistent withz p 1 � 2z1 0

excess (ASP) and decreased (DSP) sharing. B, ASP and DSP triangles.

(1993), as was an analog for DSPs (Lunetta and Rogus 1998)
(fig. 2b). For ASPs,

1
2z � z �0 1 2

and, for DSPs,

1
2z � z � .0 1 2

The “no dominance variance” test is stricter yet. It restricts to
1 df by fixing z1 to a value of 1/2. Since the possible triangle
and no dominance variance restrictions are subsets of the mean
sharing–based restriction, misleading LOD scores, such as
those in figure 3, would also be prevented by applying either
of these.

When the analyst opts to utilize a restricted domain, such
as Holmans’s triangle, the program first calculates the unre-
stricted maximum-likelihood sharing pattern. If this point is
found to be within the specified domain restriction, then it is
accepted. However, if one of the restriction conditions is vi-
olated, the maximization is repeated—this time constrained to
the line defining the violated condition—and the sharing pat-
tern resulting from this second maximization is elected instead.
If both restriction conditions are violated by the unrestrained
maximization, then the maximum-likelihood sharing pattern
is the intersection of the restriction conditions—the point
( )—and the LOD score is 0. The sharing pattern arrived1 1 1, ,4 2 4

at by this process could alternatively be read directly from a
plot of the LOD surface, as in figure 1.

Sib pair classes need not be defined by true dichotomous
traits. Several ascertainment schemes are based instead on
threshold values of a quantitative trait, and an appropriate

domain restriction has been proposed for each. For example,
in the extreme discordant sib pair (EDSP) design (Risch and
Zhang 1995, 1996; Kruse et al. 1997), pairs are recruited such
that one sib is in the top decile of the population distribution
for a trait and the other is in the bottom decile. The appropriate
domain restriction for EDSP is

2 2
� z � z � 2z .0 1 03 3

Other examples include pairs concordant for either high or
low values (Xu et al. 1999). SPLAT is sufficiently flexible to
accommodate any of these designs or any user-defined
restriction.

Null Hypotheses

Rather than the point ( ), several statistics define the null1 1,4 2

hypothesis less restrictively as a line passing through this point.
An example is the line defined by mean sharing of one-half
(MSH), (fig. 2a). The mean sharing test (MST)z p 1 � 2z1 0

(Blackwelder and Elston 1985) assesses deviation from this
line, which is equivalent to testing whether sib pairs share two
alleles at a different frequency than that at which they share
zero alleles. In practice, the program need not directly maxi-
mize the likelihood on the null hypothesis line. Instead, it uti-
lizes the fact that the MST is equivalent to

L2df

L L2df 1/4, 1/2( )log p log10 10L LMSH MSH( )
L(1/4,1/2)

pLOD � LOD .2df MSH
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Figure 3 In regions linked to diabetes, such as the human leukocyte antigen region on chromosome 6, sib pairs discordant for nephropathy
but concordant for diabetes showing increased sharing and, in the absence of domain restriction, achieving a potentially misleading nonzero
LOD score.

Thus, the LOD score for the MST is simply the difference
between the unrestricted LOD score and the MSH LOD score.

Another possible null hypothesis, the proportions test (Day
and Simons 1976), stems from the expectation that z p 1/42

in the absence of linkage. Hence, one could test for deviation
from the line . Since others may be proposed inz p 3/4 � z1 0

the future, SPLAT allows the user to define the null hypothesis
as any line passing through ( ).1 1,4 2

Filtering

Even within the context of a restricted domain, potentially
misleading LOD score peaks may result when the sharing pat-
tern drifts away from ( ) yet remains close to the MSH line.1 1,4 2

Such a situation is not representative of true linkage. To ac-
count for this and to clean up plots of the results, SPLAT in-
cludes an option to eliminate spurious findings by zeroing out
LOD scores for all positions at which mean sharing is hovering
around 1/2 (i.e., if it is less than some threshold value for ASPs
or greater than a threshold value for DSPs).

Weighting

Since sibships collected for linkage studies can vary widely
in size, it is normally recommended to employ a weighting
scheme to prevent large families from contributing dispropor-
tionately to the results. Summands in equation (2) should be
scaled down, such that the number of pairs effectively con-
tributed by each family is equal to one fewer than the number
of sibs involved in the analysis (Hodge 1984). Under such a

scheme, the ASPs in families with n affected sibs are eachn(n�1)
2

weighted by the factor , and the nm DSPs in families with n2
n

affected and m unaffected sibs are each weighted by .n�m�1
nm

Although weighting is recommended and is turned on by de-
fault, SPLAT gives the user the ability to turn this option off.

Grid Scan

Linkage analysis programs typically determine sharing pat-
terns by utilizing an iterative procedure, such as the EM al-
gorithm (Dempster et al. 1977; Little and Rubin 1987), to
hone in on the maximum-likelihood solution, subject to a lim-
ited selection of constraints and null hypotheses. Although
SPLAT does this more flexibly than other programs, the ap-
proach has an inherent limitation: it does not convey the con-
text from which a constrained maximal solution has emerged.
This can be important, since several factors have the potential
to drive sharing patterns away from the null in a manner in-
consistent with actual linkage. One such factor is genotype
error (Olson et al. 2004), which is not always possible to
eliminate, since sib pair samples tend to be drawn from nuclear
families (sometimes with parents unavailable). Additional
complicating factors are the possibility of phenotype misclas-
sification and the limited sample sizes available for relatively
infrequent diseases. The results of an EM procedure often pro-
vide little insight as to whether a signal connotes linkage or
is merely a reflection of these obfuscating factors. It is, there-
fore, not prudent to ignore the broader context provided by
the entire LOD surface.
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To supply this context and to alleviate the “black box” feel
of analysis relying solely on an iterative algorithm method-
ology, we have implemented a novel grid-scanning process. At
any given locus, we can derive contour curves of the likelihood
surface by directly computing the sum in equation (2) at reg-
ular intervals across the -plane. Doing so provides an in-z z0 1

formative visual representation in which multiple statistics can
be depicted on the same graph. It is apparent immediately upon
inspection whether a high LOD score accompanies a mean-
ingful sharing pattern or is more likely an aberration. In SPLAT,
the left panel of the split-screen main window presents a chro-
mosomewide plot of LOD score versus position (subject to any
domain restriction and null hypothesis), and the right-hand
panel displays the contour plot for whichever locus the user
selects from a separate position control window (fig. 1). To-
gether they afford a potent account of potential linkage results.

User Interface

Beyond the theoretical considerations outlined above, a
number of practical issues arise in performing linkage analysis.
Analytic tasks must be repeated for each chromosome in a
genome scan. Not only can this be tedious, but it can make
documentation and file management a nontrivial task, espe-
cially when various phenotype definitions and/or analysis op-
tions are to be considered. The difficulty is exacerbated when
results must be plotted with a separate program (or on a dif-
ferent platform) from the one in which they were generated.
These bottlenecks can impede exploratory analysis. To stream-
line the process, we included a batch processing feature in
SPLAT that can automatically repeat analyses for multiple chro-
mosomes. In addition, the program has plotting capability and
a robust GUI. Users can browse to select the desired IBD and
phenotype files and to name the EM scan output file. This
makes it quite easy to run multiple analyses with varying phe-
notype definitions. Options for study design, domain restric-
tion, null hypothesis, filtering, and weighting are all easily set
by the user in a single window. The program can also be run
from the command line, which is useful for simulations in
which the user would like to use a controlling script to run
the program thousands of times with randomly generated data.

Multiple Testing

Any attempt to find regions of the genome linked to a phe-
notypic trait of interest must strike a balance between two
competing goals: maximizing the chance of finding truly rel-
evant regions (power) and minimizing the chance of implicat-
ing irrelevant regions (type I error). SPLAT was designed with
the mindset that, given the cost and effort associated with
typical genetic studies, researchers are usually highly motivated
to uncover promising leads, even at the cost of some additional
false positives. Specifically, SPLAT allows the analyst to quickly
and easily reconsider analyses under different clinical scenarios
and with alternative analytic options. Because such multiple
testing provides additional chances to obtain spurious findings,
the resulting P values should ideally be corrected to maintain
a given significance level, one that is neither biased upward
nor downward. Unfortunately, the easiest correction proce-
dure, the Bonferroni adjustment, can be substantially conser-
vative since it does not account for the potentially high cor-

relation across the tests. As a practical matter, therefore, we
recommend that a primary analysis plan be rigorously devel-
oped a priori and implemented exactly as planned. This means
that all aspects of the analysis, from phenotype definition to
choice of statistic, should be determined before the primary
analysis commences. The P values for this analysis can then
be assessed using, for example, the guidelines set forth by
Lander and Kruglyak (1995). After the primary analysis, the
investigator is then free to perform (possibly extensive) ex-
ploratory analysis, provided that the results are reported with
full disclosure of the extent of exploration. Should the analyst
wish to put forth a conservative bound on statistical signifi-
cance, a Bonferroni adjustment may be made by scaling up P
values by a factor equal to the number of tests performed.

Discussion

Many of the analytic challenges of sib pair analysis arise
from the fact that siblings may share up to two chro-
mosomes IBD at any given chromosomal location. In
the absence of consanguinity, this phenomenon does not
occur for other types of relative pairs, and, as a result,
statistical testing for nonsib pairs is naturally based on
a one-sample binomial test (Risch 1990a, 1990b,
1990c). For example, cousin pair analysis would test
whether the frequency of sharing one chromosome IBD
differs from the null value of 1/4. The multinomial an-
alog for sib pair analysis, however, is less clear cut. Two
decades ago, Blackwelder and Elston (1985) demon-
strated the superiority of the ASP means test (m p

) over the proportions test ( ) (Day and Si-1/2 z p 1/42

mons 1976) for a broad range of genetic models, but
Wu and Amos (2003) outlined a region in which the
reverse in true. Schaid and Nick (1990) derived a statistic
based on the maximum of these two statistics, and
Knapp (1991) suggested an alternative linear combi-
nation of the underlying multinomial probabilities.
More recently, Whittemore and Tu (1998) described a
general class of statistics encompassing both the means
test and the proportions test, and they introduced the
idea of choosing a “minmax” statistic from this class to
achieve robust performance across all possible genetic
models (i.e., to minimize the maximum possible loss of
efficiency). Such examples highlight the utility of an an-
alytic framework that allows the analyst to choose from
among a broad set of alternative test statistics.

Risch (1990b) pointed out that most common com-
plex diseases in man show little or no dominance effect
(under which the sibling recurrence risk would be similar
to that for offspring). If this condition is met, the power
of a study may be improved by imposing the domain
restriction of . However, if this assumption ap-z p 1/21

pears too stringent, Holmans (1993) showed that power
could still be improved by restricting maximization to
the set of possible haplotype-sharing probabilities, the
so-called possible triangle. In fact, other domain restric-
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tion strategies are possible (Holmans 1993; Greenwood
and Bull 1999), and we have described a methodology
to implement any logical constraint. It should be noted,
however, that, under some ascertainment schemes, re-
striction to sharing in a particular direction may not
necessarily be appropriate. In our example of sib pairs
concordant for diabetes but discordant for nephropathy,
restricting to regions of decreased sharing may exclude
chromosomal regions harboring a gene that elicits joint
susceptibility. In situations where the analyst feels that
the ascertainment scheme may influence the underlying
sharing in a manner contrary to such assumptions or
that the disease model may render them inappropriate,
she retains complete flexibility to perform unrestricted
analysis.

One nice feature of describing ASP test selection and
domain restriction in generality is that the concepts are
easily adaptable to other variations of dichotomous trait
sib pair analysis. For example, for diseases with high
sibling recurrence risk, Rogus and Krolewski (1996)
demonstrated the advantages of analyzing DSPs. As with
ASPs, there is a full array of legitimate test statistics (e.g.,
analogs of the means test and proportions test), and
domain restriction may rely on a stringent criterion of

or on the Holmans-type triangle defining legalz p 1/21

genetic models (Lunetta and Rogus 1998). A whole ad-
ditional class of dichotomous trait sib pair analysis was
born when Risch and Zhang (1996) conceived the idea
of EDSPs. The Holmans-type triangle for EDSPs was
described by Kruse et al. (1997). Later, Xu et al. (1999)
supplemented EDSPs with highly concordant sib pairs
in a genetic study of blood pressure.

Although many of the options described above have
been implemented piecemeal in various computer pro-
grams (e.g., MAPMAKER/SIBS, GENEHUNTER, AS-
PEX, Allegro, and Merlin, among others), no existing
program gives the user complete analytical freedom.
Typically, one can set various preferences, such as re-
stricting the program to a 1-df test; however, the range
of investigative options is bound to the discrete set of
statistical tests provided by any given package. Our ap-
proach, on the other hand, addresses linkage-analysis
needs quite generally and brings all the possibilities out-
lined above under one umbrella, allowing them to be
treated in the same manner. SPLAT is designed to handle
any traditional sib pair statistical test currently in use,
as well as any user-defined test yet to be proposed,
thereby offering the analyst a high degree of flexibility
and self-sufficiency for exploratory analysis. This flexi-
bility is enhanced by a grid scan of the likelihood surface.
The ability to simultaneously visualize multiple test sta-
tistics gives a complete picture of the actual genetic shar-
ing as well as the significance of potential linkage ac-
cording to any test of interest. Since SPLAT relies on other
programs to calculate IBD statistics and simply imports

these from a text file, it is indifferent to the source or
quantity of genotype data. Thus, it is equally well suited
for analyzing 10-cM microsatellite scans as for the in-
creasingly popular higher density and more accurate
SNP-based linkage panels.

Beyond the fundamental considerations of design, test,
and domain restriction, additional complexity has arisen
from more recent additions to the field, further under-
scoring the need for a flexible framework. Our approach
(and the software) could be adapted to accommodate
novel twists to sib pair linkage analysis involving co-
variates, imprinting, error detection, and the use of mul-
tiple sib pair definitions within a data set.

Greenwood and Bull (1999) generalized the ASP
model to allow for covariates, arguing that since envi-
ronmental factors can affect disease risk it is plausible
that they could change the ratio of disease penetrances
and, as a result, the evidence for linkage. Holmans’s
arguments, they point out, considered genetic effects
only. The triangle will continue to hold when gene-en-
vironment interactions affect only the size of the genetic
effect, but, when either the exposure changes the direc-
tion of the disease gene effect or there are sib pairs with
differing exposures, the sharing patterns may reside out-
side the triangle. When this is the case, the power com-
parisons may not be valid, so, to develop a new set of
constraints, they investigated three approaches: average
constraints, subgroup-triangle constraints, and simul-
taneous-boundary constraints. They further raise the is-
sue that different boundary constraints could be used if
it is anticipated that a gene might act recessively in one
group but additively or dominantly in another group,
but there is not likely to be good support for the hy-
pothesis of differing modes of inheritance in covariate
subgroups. Interestingly, in the models they investigated,
application of the no dominance variance restriction
gave better power than the triangles, echoing Lunetta
and Rogus (1998), who showed that there is only a very
small region of the full-parameter space where triangle
constraints are more powerful.

Knapp and Strauch (2004) extended the possible tri-
angle test to account for genomic imprinting, or parent-
of-origin effect, where affected individuals inherit mu-
tant alleles preferentially from one particular parent.
This effect, which can be brought about by DNA meth-
ylation or by differential packing density of DNA by
histones, is known to be present at many chromosomal
regions. To account for it in parametric linkage analysis,
they extend the trait model to contain two different het-
erozygote penetrances. For model-free analysis, they
propose extending the sharing pattern to a fourth com-
ponent, to distinguish the maternal and paternal sharing
of one allele: (z0, , , z2). The normal constraints onF Mz z1 1

probabilities would then restrict the sharing pattern to
a subset of �3, for which an analog of the Holmans
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triangle could be implemented, with the likelihood-ratio
test statistic following a mixture of x2 distributions with
0, 1, 2, and 3 df. Grid scanning would become cum-
bersome in three dimensions, but the EM portion of our
software, including allowance for generalized restric-
tions and null hypotheses, could be adapted to such
models, provided that the appropriate four-component
IBD extraction were available.

Olson et al. (2004) highlight the critical importance
of detecting genotype errors in a linkage study. This issue
is particularly relevant to sib pairs in which, if parents
are not present, Mendelian errors cannot be found with
certainty. Such errors will be even more difficult to detect
as the field moves toward high-density SNP genome
scans. To combat this, a quick graphical approach to
linkage analysis, such as the one we propose here, can
help to identify data sets for which a major source of
error exists. If a sib pair distribution is found to be
shifted substantially away from zero in either direction,
genotype error should be suspected. For example, a shift
toward increased allele sharing can indicate severe mis-
specification of allele frequencies.

Our framework could also be extended to handle mul-
tiple sib pair definitions within a single data set. Since
ASPs may be expected to show increased sharing in the
same chromosomal regions where DSPs for the same
trait show decreased sharing, it would seem sensible to
combine analysis of both classes (Guo and Elston 2000).
The optimal strategy to proceed with such analysis must
account for the relative distributions of the classes within
the families, among other complications.

The framework we have laid out can handle any sib
pair test based on a qualitative trait, whether it is mea-
sured qualitatively or is assessed by somehow dichot-
omizing a quantitative trait. Any consistent set of con-
straints, once derived for a particular ascertainment
method, can simply be plugged into the software we have
developed. Analysts working within this class of prob-
lems are thus granted a great deal of flexibility. The
approach is, however, limited to pairwise statistics; it is
not applicable to statistics which employ measures of
groupwise sharing, such as affected sib triples (Whitte-
more and Tu 1998). Furthermore, we consider only sib-
lings and do not trace sharing through generations, such
as in GENEHUNTER’s NPL statistic. Another limita-
tion is that we consider only autosomal chromosomes.
Data for pseudoautosomal regions could be analyzed
with this approach; however, care should be taken in
interpretation. The fact that same-sex pairs will generally
show increased sharing in these regions can elicit mis-
leading results if such sharing inequalities are not ac-
counted for (Dupuis and Van Eerdewegh 2000). Finally,
although quantitative traits can be considered with this
approach, they must be dichotomized and, therefore, are
not used directly.
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Web Resources
Accession numbers and URLs for data presented herein are as
follows:

Allegro, http://www.decode.com/software/allegro/
ASPEX, http://aspex.sourceforge.net/
Loki, http://loki.homeunix.net/
Merlin, http://www.sph.umich.edu/csg/abecasis/Merlin/index.html/
MIT Genome Center FTP Archive, http://www.broad.mit.edu/ftp/

distribution/software/ (for MAPMAKER/SIBS and GENEHUNTER)
SPLAT, http://www.joslinresearch.org/LabSites/Krolewski/splat/(for

computer program and manual)
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