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Equilibrium self-association of tropomyosin
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It has recently been reported that tropomyosin exists exclusively as a dimer in physiological salt
conditions. It is shown in the present work using analytical ultracentrifugation that, on the con-
trary, tropomyosin is in equilibrium between monomer, dimer and tetramer with a weak tendency
to dimerize and tetramerize. Such a finding has consequences for the assembly of the tropomyosin–
actin complex.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The tropomyosin molecule is a 66 kDa (muscle tropomyosin)
coiled-coil of two parallel polypeptide chains that bind end-to-
end, i.e. head-to-tail, along actin filaments [1–4]. Tropomyosin con-
trols the stability of actin filaments in non-muscle cells [3,5] and its
end-to-end interaction adds cooperativity to its binding to actin [6]
and to the switching on/off of actin filaments in muscle cells [7]. The
nature of the oligomeric size of free tropomyosin, i.e. unbound to
actin, might determine the nature and kinetics of its binding to actin
and thus determine its function in space and time. A recent report
has concluded that free tropomyosin from skeletal muscle and
non-muscle sources is a monodisperse dimer of tropomyosin mole-
cules, i.e. a tetramer of polypeptide chains, without the equilibrium
presence of monomers or higher order oligomers [8]. We re-investi-
gated this question with analytical ultracentrifugation for two main
reasons. First of all, we would have expected tropomyosin dimers to
be in equilibrium with the monomer and/or larger species based on
our recent electron microscopy study [9] and on the general under-
standing that the increased viscosity of skeletal muscle tropomyosin
solutions with decreasing ionic strength [10] is due to end-to-end
polymer formation [10–14]. Second, the techniques of gel filtration
and sucrose gradient ultracentrifugation used in the previous report
[8] can result in misleading conclusions. The technique of analytical
ultracentrifugation does not share these shortcomings.
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2. Materials and methods

Tropomyosin from rabbit skeletal striated muscle was prepared
as reported [15] and its concentration determined from its absorp-
tion at 277 nm using an extinction coefficient A1%

277 nm = 2.4 cm�1

[16]. All experiments were conducted at 20 �C on tropomyosin dia-
lyzed extensively vs. Buffer A (150 mM KCl, 10 mM Mops, 2 mM
DTT, 0.1 mM EDTA, 0.01% NaN3, pH 7.5). Analytical ultracentrifuga-
tion [17] and its analysis using SENDAL software [18], available
from http://sedanal/bbri.org/, have been described previously.
The order at which speeds of the different sedimentation equilib-
rium runs were performed was important: If the higher speed
was run first, we were unable to attain equilibrium at the lower
speed because the protein at the bottom of the cell equilibrated
only extremely slowly upon lowering the speed. However, if the
lower speeds were run first we were able to attain equilibrium at
each speed. The approach to equilibrium was monitored using
the sensitive program WinMatch (available on-line from the Uni-
versity of Connecticut: http://www.biotech.uconn.edu/auf/ or at
RASMB software archives: http://rasmb.org/). Equilibrium was
considered established when there were no further changes over
a 12 h period by least squares criteria.

3. Results and discussion

Sedimentation velocity of skeletal muscle tropomyosin was run
in ionic conditions close to physiological, as used in the previous re-
port [8]. Sedimentation velocity exhibited a single broad peak
whose weight average sedimentation coefficient shifted with dilu-
tion from sw(20,w) = 3.03 S to a value of 2.80 S over a concentration
lsevier B.V. All rights reserved.
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Fig. 1. Sedimentation velocity of skeletal muscle tropomyosin. (A) Concentration-
normalized sedimentation distribution patterns, g(s⁄)/Co, vertical axis, versus
apparent sedimentation coefficient, s⁄, horizontal axis. Tropomyosin concentra-
tions: 0.13 (red), 0.26 (blue), 0.5 (green), 0.94 (black), 1.8 (orange) mg/ml. (B)
Weight average sedimentation coefficient, sw(20,w), versus concentration of runs in
(A).

Fig. 2. Sedimentation equilibrium of skeletal muscle tropomyosin. Runs at three loading
(A, B, C); 11000 rpm (D, E, F). Vertical axis: concentration in fringes; and horizontal axis: c
a model of tropomyosin in equilibrium between monomer, dimer, and tetramer. Residua
from the fitted solid line.
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range of 1.8 to 0.13 mg/mL (Fig. 1). A shift in sedimentation
coefficient indicates that the tropomyosin is in equilibrium between
at least two species. Since tropomyosin in solution is thought to
associate in an end-to-end fashion, the sedimentation coefficient
could remain relatively constant with dilution even though there
might be a major shift in the equilibrium species present. Therefore
it was necessary to perform sedimentation equilibrium in order to
determine the stoichiometry and equilibrium states of tropomyosin.

Sedimentation equilibrium data were fit globally with a num-
ber of tropomyosin monomer–dimer–trimer–tetramer–penta-
mer–hexamer models and a model for dimer alone. The root
mean square deviation for all models varied between ±0.0134
fringes for the best bit (Fig. 2) to ±0.057 fringes for dimer alone,
the worst fit (Fig. 3). The data were best fit (Fig. 2) with a mono-
mer–dimer–tetramer equilibrium model with a monomer–dimer
dissociation constant Kd = 42.9 ± 1.6 lM and a dimer–tetramer
dissociation constant Kd = 18 ± 12 lM. Global fitting also revealed
the presence of about 2% (mole/mole) of a species with molar
mass corresponding to tropomyosin tetramer not participating
in the reversible equilibria and referred to as incompetent tetra-
mer. At a concentration of 1 mg/ml tropomyosin, this would
translate to an equilibrium mixture consisting of 9.7 lM mono-
mer, 2.2 lM dimer, 0.27 lM tetramer and 0.092 lM incompetent
tetramer. This indicates that the tropomyosin is predominantly in
the monomer state with a weak tendency to dimerize and tetra-
merize. Since most of the tropomyosin (about 6 mg/ml [19,20])
in a muscle cell is bound to actin, the above numbers are most
likely an upper limit to the proportion of free tropomyosin dimer
and tetramer in a muscle cell. A previous work has also demon-
strated a heterogeneous population of cardiac muscle tropomyo-
sin species over a wide range of ionic strengths [21]. Whenever
tropomyosin trimer was included in modeling its equilibrium con-
centration was vanishingly small, indicating that it must be ther-
modynamically unstable compared to the dimer and tetramer. It
is not clear what the incompetent tetramer species is, possibly a
denatured tropomyosin aggregate.

The data were also fit to a model of dimer alone, an example of
which is shown in Fig. 3. The systematic varying residuals and
obvious poor fit, conclusively rules out the sole presence of dimer.
concentrations: Co (A, D), 1 mg/ml; Co/3 (B, E); Co/9 (C, F) and two speeds: 8000 rpm
ell radius in cm. Solid lines through the data points represent a fit to the points using
ls are shown below each plot. In some cases the data points cannot be distinguished



Fig. 3. Sedimentation equilibrium of skeletal muscle tropomyosin fit to a mono-
disperse dimer model. Run at 11000 rpm at 0.333 mg/ml tropomyosin. Vertical
axis: concentration in fringes; horizonal axis: cell radius in cm. Solid line through
data points represent a fit to the points using a model of tropomyosin as a
monodisperse dimer. Residuals are shown below the plot.
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These results are in contrast to the previously reported work [8]
that concluded that the tropomyosin was exclusively a dimer
molecule (a tetramer of chains) under these conditions. The exclu-
sive formation of a dimer would imply that tropomyosin binds
strongly to itself head-to-head or tail-to-tail. Since tropomyosin
binds head-to-tail on actin filaments, a head-to-head or tail-to-tail
dimer would have to undergo significant rearrangement upon
binding to actin. However the present results of tropomyosin in
solution together with electron microscopic [9] or X-ray crystallo-
graphic [22] studies of fixed tropomyosin indicate that tropomyo-
sin binds to itself head-to-tail which would present a much lower
barrier to its binding to actin and consequently a more rapid bind-
ing. A rapid binding might be critical to the response time of tropo-
myosin in its stabilization of actin filaments during its role in the
motility of non-muscle cells [3,5].

We suspect that the methods used in the previous work [8] re-
sulted in misleading conclusions. Their use of the method of Siegel
& Monty [23], i.e. a combination of the results from the two separate
techniques of sucrose density sedimentation and gel filtration chro-
matography, is nearly impossible to apply to a reversibly interacting
system since the concentrations are not well defined because both
are zone transport methods [24]. Moreover, the typical concentra-
tions of sucrose used in density gradient sedimentation have been
well documented to induce protein dimerization and aggregation
[25–27].
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