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a b s t r a c t

In this paper, we introduce and study a new system of (A, η)-accretive mapping inclusions
in Banach spaces. Using the resolvent operator associated with (A, η)-accretive mappings,
we suggest a new general algorithm and establish the existence and uniqueness of
solutions for this system of (A, η)-accretive mapping inclusions. Under certain conditions,
we discuss the convergence and stability of iterative sequence generated by the algorithm.
Our results extend, improve and unify many known results on variational inequalities and
variational inclusions.
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1. Introduction

Variational inequalities theory, as a very effective and powerful tool of the current mathematical technology, has been
widely applied to mechanics, physics, optimization and control, economics and transportation equilibrium, engineering
sciences, etc. please see [1–31] and the references therein. Because of its wide applications, the classical variational
inequality has been generalized in various directions in the past years. Variational inclusion is an important generalization of
variational inequality and has been studied by many authors. We also know that one of the most important and interesting
problems in the theory of variational inequality is the development of an efficient and implementable algorithm for solving
various variational inequalities and variational inclusions. In recent years, many numerical methods have been developed
for solving various classes of variational inequalities and variational inclusions in Euclidean spaces or Hilbert spaces, such as
the projectionmethods and its variant forms, linear approximation, descent, and Newton’s methods. However, few iterative
algorithms have been developed for solving variational inequality and variational inclusion problems in Banach spaces.

Recently, Huang and Fang [32] were the first to introduce the generalized m-accretive mapping and give the definition
of the resolvent operator for the generalized m-accretive mappings in Banach spaces. They also showed some properties
of the resolvent operator for the generalized m-accretive mappings in Banach spaces. For further works, see Huang [15],
Jin and Liu [19] and the references therein. Very recently, inspired and motivated by the works of [8,10,11,15,18,23,30–32],
Lan et al. [22] and [24] introduced a new concept of (A, η)-accretive mappings, which generalizes the existing monotone or
accretive operators, and studied some properties of (A, η)-accretive mappings and defined resolvent operators associated
with (A, η)-accretive mappings. They also studied a class of variational inclusions using the resolvent operator associated
with (A, η)-accretive mappings.
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Inspired andmotivated by the recent researchworks in this field, in this paper,we shall introduce and study a new system
of (A, η)-accretive mapping inclusions in Banach spaces. Using the resolvent operator associated with (A, η)-accretive
mappings, we suggest a new general algorithm and establish the existence and uniqueness of solutions for this system of
(A, η)-accretivemapping inclusions. Under certain conditions,wediscuss the convergence and stability of iterative sequence
generated by the algorithm. Our results extend, improve and unify many known results on variational inequalities and
variational inclusions.

2. Preliminaries

Let X be a real Banach space with dual space X∗, 〈·, ·〉 be the dual pair between X and X∗, and 2X denote the family of all
nonempty subsets of X . The generalized duality mapping Jq : X → 2X∗

is defined by

Jq(x) = {f ∗
∈ X∗

: 〈x, f ∗
〉 = ‖x‖q, ‖f ∗

‖ = ‖x‖q−1
}, ∀x ∈ X,

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It is known that, in general, Jq(x) =

‖x‖q−2J2(x) for all x 6= 0 and Jq is single-valued if X∗ is strictly convex, and if X = H is a Hilbert space, then J2 becomes the
identity mapping on H .

The modulus of smoothness of X is the function ρX : [0, ∞) → [0, ∞) defined by

ρX (t) = sup
{
1
2
(‖x + y‖ + ‖x − y‖) − 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space X is called uniformly smooth if

lim
t→0

ρX (t)
t

= 0.

X is called q-uniformly smooth if there exists a constant c > 0, such that

ρX (t) ≤ ctq, q > 1.

Note that Jq is single-valued ifX is uniformly smooth. In the study of characteristic inequalities in q-uniformly smooth Banach
spaces, Xu [33] proved the following result:

Lemma 2.1 ([33]). Let X be a real uniformly smooth Banach space. Then X is q-uniformly smooth if and only if there exists a
constant Cq > 0, such that for all x, y ∈ X,

‖x + y‖q
≤ ‖x‖q

+ q〈y, Jq(x)〉 + Cq‖y‖q.

For i = 1, 2, let Xi be real qi-uniformly smooth Banach spaces with norm ‖ · ‖i. Let ηi : Xi × Xi → Xi, Ai : Xi → Xi,
F : X1 × X2 → X1, G : X1 × X2 → X2 be nonlinear mappings, and let M : X1 × X1 → 2X1 and N : X2 × X2 → 2X2 be (A1, η1)-
accretive and (A2, η2)-accretivemappingswith respect to the first argument, respectively. Nowwe consider the following problem:

Find (x, y) ∈ X1 × X2 such that{
0 ∈ F(x, y) + M(x, x),
0 ∈ G(x, y) + N(y, y). (2.1)

Problem (2.1) is called a system of (A, η)-accretive mapping inclusions.
We remark that for suitable choices of the mappings F ,G, A1, A2, η1, η2,M,N and the spaces X1, X2, problem (2.1) includes

many systems of variational inequality (inclusion) problems as special cases, see for example [1,6,8–11,14,15,20,29] and the
references therein.

Definition 2.1. Let X1, X2 be real Banach spaces. Let Q be a mapping from X1 × X2 → X1 × X2, (x0, y0) ∈ X1 × X2 and
(xn+1, yn+1) = f (Q , xn, yn) define an iterative procedure which yields a sequence of points {(xn, yn)} in X1 × X2, where f is
an iterative procedure involving themappingQ . Let F(Q ) = {(x, y) ∈ X1×X2 : (x, y) = Q (x, y)} 6= ∅. Suppose that {(xn, yn)}
converges to (x∗, y∗) ∈ F(Q ). Let {(un, vn)} be an arbitrary sequence in X1 × X2 and εn = ‖{(un+1, vn+1)} − f (Q , un, vn)‖
for each n ≥ 0. If limn→∞ εn = 0 implies that limn→∞(un, vn) = (x∗, y∗), then the iteration procedure defined by
(xn+1, yn+1) = f (Q , xn, yn) is said to be Q -stable or stable with respect to Q .

Lemma 2.2 ([34]). Let {an} be a nonnegative real sequence and {bn} be a real sequence in [0, 1] such that
∑

∞

n=0 bn = ∞. If
there exists a positive integer n1 such that

an+1 ≤ (1 − bn)an + bncn, ∀n ≥ n1,

where cn ≥ 0 for all n ≥ 0 and cn → 0 (n → ∞), then limn→∞ an = 0.
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Definition 2.2. Let A : X1 → X1 and F : X1 × X2 → X1 be single-valued mappings. F is said to be
(i) (α, β)-Lipschitz continuous, if there exist constants α > 0 and β > 0 such that

‖F(x1, y1) − F(x2, y2)‖1 ≤ α‖x1 − x2‖1 + β‖y1 − y2‖2, ∀x1, x2 ∈ X1, y1, y2 ∈ X2.

(ii) (a, b)-relaxed cocoercive with respect to A in the first argument if there exist constants a > 0 and b > 0 such that

〈F(x1, y) − F(x2, y), Jq1(A(x1) − A(x2))〉 ≥ (−a)‖F(x1, y) − F(x2, y)‖
q1
1 + b‖x1 − x2‖

q1
1 ,

for all x1, x2 ∈ X1, y ∈ X2.

Definition 2.3. A single-valuedmapping η : X ×X → X is said to be τ -Lipschitz continuous if there exists a constant τ > 0
such that ‖η(x, y)‖ ≤ τ‖x − y‖, ∀x, y ∈ X .

Definition 2.4. Let η : X × X → X and A : X → X be single-valued mappings. Then set-valued mapping M : X → 2X is
said to be

(i) accretive if

〈u − v, Jq(x − y)〉 ≥ 0, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

(ii) η-accretive if

〈u − v, Jq(η(x, y))〉 ≥ 0, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

(iii) strictly η-accretive ifM is η-accretive and equality holds if and only if x = y;
(iv) r-strongly η-accretive if there exists a constant r > 0 such that

〈u − v, Jq(η(x, y))〉 ≥ r‖x − y‖q, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

(v) α-relaxed η-accretive if there exists a constantm > 0 such that

〈u − v, Jq(η(x, y))〉 ≥ (−α)‖x − y‖q, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y).

In a similar way, we can define strict η-accretivity and strong η-accretivity of the single-valued mapping A.

Definition 2.5. Let A : X → X, η : X × X → X be two single-valued mappings. Then a set-valued mapping M : X → 2X is
called (A, η)-accretive ifM ism-relaxed η-accretive and (A + ρM)(X) = X for every ρ > 0.

Remark 2.1. For appropriate and suitable choices ofm, A, η and X , it is easy to see that Definition 2.5 includes a number of
definitions of monotone operators and accretive operators (see [22]).

In [22], Lan et al. showed that (A + ρM)−1 is a single-valued operator ifM : X → 2X is an (A, η)-accretive mapping and
A : X → X is a r-strongly η-accretivemapping. Based on this fact, we can define the resolvent operator Rη,M

ρ,A associated with
an (A, η)-accretive mappingM as follows:

Definition 2.6. Let A : X → X be a strictly η-accretive mapping and M : X → 2X be an (A, η)-accretive mapping. The
resolvent operator Rη,M

ρ,A : X → X is defined by

Rη,M
ρ,A (x) = (A + ρM)−1(x), ∀x ∈ X .

Lemma 2.3 ([22]). Let η : X × X → X be τ -Lipschitz continuous, A : X → X be a r-strongly η-accretive mapping and let
M : X → 2X be an (A, η)-accretive mapping. Then the resolvent operator Rη,M

ρ,A : X → X is τ q−1

r−ρm -Lipschitz continuous, i.e.,

‖Rη,M
ρ,A − Rη,M

ρ,A (y)‖ ≤
τ q−1

r − ρm
‖x − y‖, ∀x, y ∈ X,

where ρ ∈ (0, r
m ) is a constant.

3. Main results

Lemma 3.1. For any given (x, y) ∈ X1 × X2, (x, y) is a solution of problem (2.1) if and only if (x, y) satisfies{
x = Rη1,M(·,x)

ρ1,A1
[A1(x) − ρ1F(x, y)],

y = Rη2,N(·,y)
ρ2,A2

[A2(y) − ρ2G(x, y)],
(3.1)

where ρ1, ρ2 > 0 are constants.

Proof. This directly follows from Definition 2.6. �
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Based on Lemma 3.1 we suggest the following iterative algorithm for solving problem (2.1) as follows:

Algorithm 3.1. For i = 1, 2, assume that ηi, Ai,M,N, F ,G and Xi are the same as in problem (2.1). Let {αn}
∞

n=0 be a sequence
such that αn ∈ [0, 1] and

∑
∞

n=0 αn = ∞. For any given (x0, y0) ∈ X1 × X2, define the iterative sequence {(xn, yn)} by{
xn+1 = (1 − αn)xn + αnR

η1,M(·,xn)
ρ1,A1

[A1(xn) − ρ1F(xn, yn)],

yn+1 = (1 − αn)yn + αnR
η2,N(·,yn)
ρ2,A2

[A2(yn) − ρ2G(xn, yn)],
(3.2)

for n = 0, 1, 2, . . . .
Let {(un, vn)} be any sequence in X1 × X2 and define {εn} by

εn = ‖(un+1, vn+1) − (An, Bn)‖∗, (3.3)

where

An = (1 − αn)un + αnR
η1,M(·,un)
ρ1,A1

(A1(un) − ρ1F(un, vn)), (3.4)

Bn = (1 − αn)vn + αnR
η2,N(·,vn)
ρ2,A2

(A2(vn) − ρ2G(un, vn)), (3.5)

for n = 0, 1, 2, . . . .

Theorem 3.1. For i = 1, 2, let Xi be qi-uniformly smooth Banach space, ηi : Xi × Xi → Xi be τi-Lipschitz continuous, and
Ai : Xi → Xi be ri-strongly ηi-accretive and γi-Lipschitz continuous. Let F : X1 × X2 → X1 be (a, b)-relaxed cocoercive with
respect to A1 in the first argument and (µ1, ν1)-Lipschitz continuous, G : X1 ×X2 → X2 be (c, d)-relaxed cocoercive with respect
to A2 in the second argument and (µ2, ν2)-Lipschitz continuous. Let M : X1 × X1 → 2X1 and N : X2 × X2 → 2X2 be such that
for each fixed x ∈ X1, y ∈ X2, M(·, x) and N(·, y) are (A1, η1)-accretive and (A2, η2)-accretive mappings, respectively. Suppose
that there are constants ξ1, ξ2 > 0 such that

‖Rη1,M(·,x1)
ρ1,A1

(x) − Rη1,M(·,x2)
ρ1,A1

(x)‖1 ≤ ξ1‖x1 − x2‖1, ∀x, x1, x2 ∈ X1, (3.6)

‖Rη2,N(·,y1)
ρ2,A2

(y) − Rη2,N(·,y2)
ρ2,A2

(y)‖2 ≤ ξ2‖y1 − y2‖2, ∀y, y1, y2 ∈ X2. (3.7)

and ρ1 ∈

(
0, r1

m1

)
and ρ2 ∈ (0, r2

m2
) such that{

l1θ1 + ξ1 + ρ2µ2l2 < 1,
l2θ2 + ξ2 + ρ1ν1l1 < 1. (3.8)

where

θ1 = (γ
q1
1 − q1ρ1b + q1ρ1aµ

q1
1 + Cq1ρ

q1
1 µ

q1
1 )

1
q1

θ2 = (γ
q2
2 − q2ρ2d + q2ρ2cν

q2
2 + Cq2ρ

q2
2 ν

q2
2 )

1
q2 ,

l1 =
τ
q1−1
1

r1 − ρ1m1
, l2 =

τ
q2−1
2

r2 − ρ2m2
.

Then problem (2.1) admits a unique solution.

Proof. For any given ρi > 0 (i = 1, 2), define T : X1 × X2 → X1 and S : X1 × X2 → X2 by

T (x, y) = Rη1,M(·,x)
ρ1,A1

[A1(x) − ρ1F(x, y)],

S(x, y) = Rη2,N(·,y)
ρ2,A2

[A2(y) − ρ2G(x, y)],
(3.9)

for all (x, y) ∈ X1 × X2.
For any (x1, y1), (x2, y2) ∈ X1 × X2, it follows from (3.9) and Lemma 2.3 that

‖T (x1, y1) − T (x2, y2)‖1 ≤ ‖Rη1,M(·,x1)
ρ1,A1

[A1(x1) − ρ1F(x1, y1)] − Rη1,M(·,x2)
ρ1,A1

[A1(x2) − ρ1F(x2, y2)]‖1

≤ ‖Rη1,M(·,x1)
ρ1,A1

[A1(x1) − ρ1F(x1, y1)] − Rη1,M(·,x2)
ρ1,A1

[A1(x1) − ρ1F(x1, y1)]‖1

+ ‖Rη1,M(·,x2)
ρ1,A1

[A1(x1) − ρ1F(x1, y1)] − Rη1,M(·,x2)
ρ1,A1

[A1(x2) − ρ1F(x2, y2)]‖1

≤ ξ1‖x1 − x2‖1 + l1(‖A1(x1) − A1(x2) − ρ1(F(x1, y1) − F(x2, y1))‖1

+ ρ1‖F(x2, y1) − F(x2, y2)‖1), (3.10)

where l1 =
τ
q1−1
1

r1−ρ1m1
.
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By assumptions, we have

‖A1(x1) − A1(x2) − ρ1(F(x1, y1) − F(x2, y1))‖
q1
1

≤ ‖A1(x1) − A1(x2)‖
q1
1 − q1ρ1〈F(x1, y1) − F(x2, y1), Jq1(A1(x1) − A1(x2))〉

+ Cq1ρ
q1
1 ‖F(x1, y1) − F(x2, y1)‖

q1
1

≤ (γ
q1
1 − q1ρ1b + q1ρ1aµ

q1
1 + Cq1ρ

q1
1 µ

q1
1 )‖x1 − x2‖

q1
1 (3.11)

‖F(x2, y1) − F(x2, y2)‖1 ≤ ν1‖y1 − y2‖2. (3.12)

Combining (3.10)–(3.12), we have

‖T (x1, y1) − T (x2, y2)‖1 ≤ (l1θ1 + ξ1)‖x1 − x2‖1 + l1ρ1ν1‖y1 − y2‖2, (3.13)

where θ1 = (γ
q1
1 − q1ρ1b + q1ρ1aµ

q1
1 + Cq1ρ

q1
1 µ

q1
1 )

1
q1 .

Similarly, we can prove that

‖S(x1, y1) − S(x2, y2)‖2 ≤ (l2θ2 + ξ2)‖y1 − y2‖2 + l2ρ2µ2‖x1 − x2‖1. (3.14)

where θ2 = (γ
q2
2 − q2ρ2d + q2ρ2cν

q2
2 + Cq2ρ

q2
2 ν

q2
2 )

1
q2 , l2 =

τ
q2−1
2

r2−ρ2m2
.

By (3.13) and (3.14), we have

‖T (x1, y1) − T (x2, y2)‖1 + ‖S(x1, y1) − S(x2, y2)‖2 ≤ k1‖x1 − x2‖1 + k2‖y1 − y2‖2

≤ k(‖x1 − x2‖1 + ‖y1 − y2‖2), (3.15)

where k = max{k1, k2}, k1 = l1θ1 + ξ1 + ρ2µ2l2, k2 = l2θ2 + ξ2 + ρ1ν1l1.
Define the norm ‖ · ‖∗ on X1 × X2 by

‖(x, y)‖∗ = ‖x‖1 + ‖y‖2, (x, y) ∈ X1 × X2. (3.16)

It is easy to see that (X1 × X2, ‖ · ‖∗) is a Banach space. Define Q (x, y) : X1 × X2 → X1 × X2 by

Q (x, y) = (T (x, y), S(x, y)), ∀(x, y) ∈ X1 × X2.

By (3.8), we know that 0 < k < 1. This follows from (3.15) that

‖Q (x1, y1) − Q (x2, y2)‖∗ ≤ k‖(x1, y1) − (x2, y2)‖∗.

This proves that Q (x, y) : X1 × X2 → X1 × X2 is a contraction mapping. Hence, by the Banach contraction principle, there
exists a unique (x∗, y∗) ∈ X1 × X2 such that Q (x∗, y∗) = (x∗, y∗), which implies that{

x∗
= Rη1,M(·,x∗)

ρ1,A1
[A1(x∗) − ρ1F(x∗, y∗)],

y∗
= Rη2,N(·,y∗)

ρ2,A2
[A2(y∗) − ρ2G(x∗, y∗)].

This follows from Lemma 3.1 that (x∗, y∗) is the unique solution of problem (2.1). This completes the proof. �

Theorem 3.2. For i = 1, 2, let ηi, Ai,M,N, F ,G and Xi be the same as in Theorem 3.1 and let conditions (3.6)–(3.8) of
Theorem 3.1 hold. Then
(i) the sequence (xn, yn) generated by Algorithm 3.1 converges strongly to the unique solution (x∗, y∗) of problem (2.1).
(ii) if 0 < α < αn, then limn→∞(un, vn) = (x∗, y∗) if and only if limn→∞ εn = 0.

Proof. This follows from Theorem 3.1 that problem (2.1) has the unique solution (x∗, y∗). By Lemma 3.1, we have{
x∗

= Rη1,M(·,x∗)

ρ1,A1
[A1(x∗) − ρ1F(x∗, y∗)],

y∗
= Rη2,N(·,y∗)

ρ2,A2
[A2(y∗) − ρ2G(x∗, y∗)].

(3.17)

From (3.2) and (3.17) and using the same arguments as obtaining (3.10) and (3.14), we have that

‖xn+1 − x∗
‖1 ≤ (1 − αn)‖xn − x∗

‖1 + αn((l1θ1 + ξ1)‖xn − x∗
‖1 + l1ρ1ν1‖yn − y∗

‖2), (3.18)

‖yn+1 − y∗
‖2 ≤ (1 − αn)‖yn − y∗

‖2 + αn((l2θ2 + ξ2)‖yn − y∗
‖2 + l2ρ2µ2‖xn − x∗

‖1), (3.19)

where

θ1 = (γ
q1
1 − q1ρ1b + q1ρ1aµ

q1
1 + Cq1ρ

q1
1 µ

q1
1 )

1
q1 , l1 =

τ
q1−1
1

r1 − ρ1m1
,

θ2 = (γ
q2
2 − q2ρ2d + q2ρ2cν

q2
2 + Cq2ρ

q2
2 ν

q2
2 )

1
q2 , l2 =

τ
q2−1
2

r2 − ρ2m2
.
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By (3.16), (3.18) and (3.19), we obtain

‖(xn+1, yn+1) − (x∗, y∗)‖∗ = ‖xn+1 − x∗
‖1 + ‖yn+1 − y∗

‖2

≤ (1 − αn)‖(xn, yn) − (x∗, y∗)‖∗ + αn max{k1, k2}‖(xn, yn) − (x∗, y∗)‖∗

= (1 − (1 − k)αn)‖(xn, yn) − (x∗, y∗)‖∗, (3.20)

where k = max{k1, k2}, k1 = l1θ1 + ξ1 + ρ2µ2l2 and k2 = l2θ2 + ξ2 + ρ1ν1l1.
Set

an = ‖(xn, yn) − (x∗, y∗)‖∗, bn = (1 − k)αn, cn = 0.

This follows from (3.8), αn ∈ [0, 1] and
∑

∞

n=0 αn = ∞ that

bn ∈ [0, 1],
∞∑
n=0

bn = ∞.

Therefore, Lemma 2.2 and (3.20) imply that limn→∞ an = 0, i.e., ‖(xn, yn) − (x∗, y∗)‖∗ → 0 (n → ∞). Thus (xn, yn)
converges strongly to the unique solution (x∗, y∗) of problem (2.1).

Now we prove conclusion (ii). By (3.3)–(3.5), we obtain

‖(un+1, vn+1) − (x∗, y∗)‖∗ ≤ ‖(un+1, vn+1) − (An, Bn)‖∗ + ‖(An, Bn) − (x∗, y∗)‖∗

≤ εn + ‖An − x∗
‖1 + ‖Bn − y∗

‖2. (3.21)

As in the proof of inequality (3.18), it follows that

‖An − x∗
‖1 ≤ (1 − αn)‖un − x∗

‖1 + αn[(l1θ1 + ξ1)‖un − x∗
‖1 + l1ρ1ν1‖vn − y∗

‖2]1, (3.22)

‖Bn − y∗
‖2 ≤ (1 − αn)‖vn − y∗

‖2 + αn[(l2θ2 + ξ2)‖vn − y∗
‖2 + l2ρ2µ2‖un − x∗

‖1]. (3.23)

Since 0 < α < αn, by (3.22) and (3.23),

‖(un+1, vn+1) − (x∗, y∗)‖∗ ≤ (1 − (1 − max{k1, k2})αn)‖(un, vn) − (x∗, y∗)‖∗ + εn

≤ (1 − (1 − k)αn)‖(un, vn) − (x∗, y∗)‖∗ + (1 − k)αn
εn

(1 − k)α
,

where k = max{k1, k2},k1 = l1θ1 + ξ1 + ρ2µ2l2, k2 = l2θ2 + ξ2 + ρ1ν1l1.
Suppose that limn→∞ εn = 0. Then from

∑
∞

n=0 αn = ∞ and Lemma 2.2, we have limn→∞(un, vn) = (x∗, y∗).
Conversely, if limn→∞(un, vn) = (x∗, y∗), then

εn = ‖(un+1, vn+1) − (An, Bn)‖∗

≤ ‖(un+1, vn+1) − (x∗, y∗)‖∗ + ‖An − x∗
‖1 + ‖Bn − y∗

‖2

≤ ‖(un+1, vn+1) − (x∗, y∗)‖∗ + (1 − (1 − k)αn)‖(un, vn) − (x∗, y∗)‖∗ → 0 (n → ∞),

i.e., limn→∞ εn = 0. This completes the proof. �
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