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Abstract—We introduce a stable numerical method for the recovery of the temperature and
moisture distributions in a Liukov system with space dependent diffusion coefficients. In this problem,
only Cauchy noisy data at the active boundary is given and no information about the amount and/or
character of the noise in the data is assumed. The error analysis for the algorithm is discussed and
a numerical example is presented. © 2006 Elsevier Ltd. All rights reserved.
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Thermal drying involves the vaporization of moisture within a product by heat and the evapora-
tion of moisture from the medium. Thermal drying in porous medium has important applications
in many different fields, including food and environmental engineering. A theoretical model for
thermal drying, or more generally simultaneous heat and mass transfer, was developed by Luikov.
This model integrates several different physical mechanisms of moisture diffusion. The general
Luikov model for thermal drying in a porous medium is

oM
-—% = v2a11]\/f + VzalgT + V2a13P,
oT

Et— = V2a21M + V2a22T + V2a23P,
aP

s = V2a3 M + V?azT + vzaggp,

where M, T, and P represent vapor diffusion, thermal diffusion, and hydrodynamic flow re-
spectively, a1, ass, and asz are diffusion coefficients and aqs, a13, as1, ao3, azi, and asq are
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coupling coeflicients. For many agricultural products, knowledge of the diffusion coefficients are
still limited. The coupling coeflicients account for the combined effect of moisture, temperature,
and total pressure gradients on moisture, total mass, and energy transfer. Note that total pres-
sure differences are only significant in relatively high temperatures. Therefore, in most drying
applications aj3 = a3 = agz = 0. For an overview of drying principles and theory, see [1].

The authors of [2,3] discuss a Luikov system of the form,

<“t>=(o‘ ﬂ)(“”), O<z<1, t>0,
Ut YN Vax

with boundary conditions,

uz(0,8) =

0a(0,) = —PnQ,

uz(1,t) = —Bi, u(1,t) + (1 — Eo)KoLuBin,(v(1,t) — 1) + Bi,V(z),
ve(1,t) = Bi,.(1 —v(1,t)) — Pn u,(1,%),

where V() is a transient function associated with the dry air flow, and initial conditions,

u(z,0) = uo,
v(z,0) = vp.

The constant coeflicients «, 3, v, and 7 are defined as

a=1+FEoKoLuPn,

S =-FEoKoLu,
~v=-—LuPn,
n = Lu.

The terms Lu = a.,/a, Pn, Ko, Big, Bi,, and @ refer to the Luikov number, Possnov number,
Kossovitch number, heat Biot, mass Biot, and heat flux, respectively. The coefficients a and a,,
represent the thermal diffusivity and the moisture diffusivity of the porous medium. Determin-
istic, stochastic, and hybrid solutions are introduced in [2] for estimation of parameters in the
above problem.

In this paper, we consider nonhomogeneous thermal and moisture diffusivities of the porous
medium so that the Luikov number and all the coefficients &, 3, v, and 5 of the model, are space
dependent functions. We will introduce a stable numerical marching scheme based on discrete
mollification for the recovery of u(z,t), v(z,t), uz(z,t), and v, (z,t) throughout the domain
[0,1] x [0,1] in the (z,t) plane satisfying

(%)= (28 2 (=) o<e<u 1m0,

with boundary conditions,

u(0,t) = g1(¢),
v(0,t) = g2(t),
uz(0,1) = g3(t),
vz (0,1) = ga(?).

Note that in this problem, g, gq, g3, and g4 are only known approximately.
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This problem is an inverse problem (Cauchy problem) involving a parabolic system. For other
examples of numerical marching schemes based on mollification in parabolic systems see [4,5].
These algorithms do not require any information about the amount and/or characteristics of the
noise in the data and the mollification parameters are chosen automatically at each step using the
generalized cross validation (GCV) method. For general references to the GCV method, see [6,7].

This paper is organized as follows. Discrete mollification and numerical differentiation will
be presented in Section 1. In Section 2, the numerical space marching algorithm is specified.
The stability and error estimates for the approach are also presented in this section. Section 3
contains a numerical example of interest.

1. MOLLIFICATION

In this chapter, discrete mollification is introduce and several results related to numerical differen-
tiation are presented. A detailed description of this regularization procedure and its application
can be found in [8].

1.1. Discrete Mollification

Let I=[0,1]and K = {z;: ¢ =1,2,...,N} C I satisfying 0 < 1 < 29 <--- < zy < 1. Set
s0=0, sy =1, and s; = (1/2)(2iy1 + x) for i = 1,2,..., N — 1. Suppose that G = {g;}¥, is a
discrete function defined on K, then the é-mollification of GG is defined as a convolution with the
Gaussian kernel,

42
Apd~lexp (—5—2> , tels
0, t¢ s,
where Is = [—pé,pd], § > 0, p > 0, and

ps(t) =

That is, for every x € I,

JsG(x) = Z (/Si ps(z — $) ds) Gs-

i=1

1.2. Numerical Differentiation
The first centered difference operator,

Do (z) = flz + Az) —f(x—Am)’

2Azx

is defined on
I; =[pd+ Az, 1 —pé — Az].
Let G¢ = {g; + € : le&;| <€, ¢ =1,2,...,N} be a perturbed discrete version of a function g,
where € is the maximum noise level. The following lemma, establishes the numerical convergence
of centered difference discrete mollified differentiation for a fixed 6.

LEMMA 1.1. If g is uniformly Lipschitz on I and the discrete functions G and G° satisfy
|G — G%|lo.k < €, then there exist constants C, independent of §, and Cs such that ||JsG* —
I59llco,1;<C(€ + Az) and
<c(
00,15

The proof of Lemma 1.1 can be found in [9].

We define the discrete mollified centered difference D$(G) = Do (JsG) Iiva by restricting
Do (JsG) to the grid points of Is N K. The next theorem establishes a useful upper bound for
the operator DJ.

€+ Az

o
HDo(JJGG) - %Jag

> + Cs(Ax)>.
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THEOREM 1.2. There exists a constant C, independent of &, such that

C
IDEG oo, kit < 5 [1Clloo,xc-
The proof of this theorem can also be found in [9].

2. THE IDENTIFICATION PROBLEM

The problem is to identify the vapor diffusion, w(z,t), vapor flux u,(x,t), moisture diffusion
v(z,t) and moisture flux v;(z,t), for all (z,t) throughout the domain [0,1] x [0, 1] satisfying

(2)=G6 w) (), oeer 0

with boundary conditions,

u(0,t) = g1(¢),

v(0,t) = g2(1),

uz(0,8) = g3(t),

v5(0,8) = ga(t)-
Note that g1, g2, g3, and g4 are not known exactly. The available data ¢,°, g2°, ¢3°, and g4 are
discrete noisy functions with maximum noise level e. We define A(z) = (:Eg 583) and assume

that |det(A(z))| = d > 0 for all z € [0, 1].

We begin by stabilizing the problem using mollification. In this regularization process, a d-
mollification is performed on each of the available data functions, g1¢, g2°, ¢3¢, and g4°. Note
that 6-mollifications of g1, ¢2¢, g3, and g4 are taken with respect to t using 62, 69, 62, and
69, respectively.

The following numerical marching scheme, along with the mollification method, are applied
in order to estimate w(z,t) and v(z,t), as well as derivatives of these functions, throughout
[0,1] x [0,1], where @(z,t) and ©(z,t) are the regularized functions.

2.1. The Numerical Space Marching Scheme

Let N, and N, be positive integers, Az = h = 1/N,, At =k =1/N;, z; = ih,i=0,1,..., Ny,
and t,, = nk,n=0,1,..., N;.
We introduce the following discrete functions.

Ri™ ¢ the discrete approximation to 4(ih, nk),
Ri™: the discrete approximation to 9(ih, nk),
QL™ . the discrete approximation to @;(ih, nk),
Q5" : the discrete approximation to 9.(ih, nk),
W2m . the discrete approximation to @ (ih, nk),
Wim . the discrete approximation to #;(ih, nk),
SLn : the discrete approximation to @z (th, nk),
8™ the discrete approximation to G.¢(ih, nk).
The space marching algorithm is defined as follows.
1. Select 69, 82, 62, and 42,.
2. Perform mollification of g1¢, ¢2°%, g3¢, and g4°. Set the following.
e RY™ = Js0g1°(nk) and RO = Js0 g2 (nk).
o« Q¥ = Jso_g3€(nk) and Qo = Jso_ 94 (nk).
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3. Perform mollified differentiation in time of Js0g1°(nk), Js092°(nk),
Jso_g3¢(nk) and Jso_ga®(nk). Set the following.
o W™ =Dy(Js0g1(nk)) and W™ = Dy (Js0 g2(nk)).
e Sp™ =Dy(Jso_ga(nk)) and SY™ = Dy(Js0_ga®(nk)).
The numerical marching scheme in space is defined in Step 4.
4. Initialize ¢ =0. Do while 1 < N, — 1.
Ritln = Rim 4 h Q™ and REFI™ = RE™ 4 R Q47
QU™ = Qu + (h/det(A(ih))) (n(ih)Wp™ — B(iR)W™).
Q™ = Qu + (h/det(A(h))) (—y(R)WL™ + a(th)Wi™).
Select §i+1, §itl §itl gitl
Perform mollified differentiation in time of RifL™ Ritln Qitln Qitln Get the follow-
ing.
] W£+1’n = Dt(JzSi'fl R?—l’n) and W$+1’n = Dt(-]55+1 R?’l’n).
L] Si+1’n = Dg(JJi;1Q2‘+1’n) and Sf,+1’n = Dt(Jaitle,H’").
f. Seti=1i+1.

® &0 T

2.2. Stability Analysis

Denote |Y| = max, |Y*"| and Y|, = max; |Y?| . Theorems 2.1 and 2.2 establish stability
and formal convergence, respectively, of the marching scheme presented above.

THEOREM 2.1. There exists a constant Cy such that
max {|R|,|Ry],|Qc, @} < exp(Co) max {|Ry], |Ry],|Q2, @3]}

Proor. Using the numerical marching scheme defined in Section 2.1, bounds can be found for
the discrete approximations in terms of the initial data.
Note that _ . .
[REF < R+ b |@u,
[RS < [Ro|+ @y
Applying Theorem 1.2, there exist constants C;, Cz, Cs, and Cy such that |Wi| <C1/(|8]—o0)|RE|
and [WE| < Ca/(|6]—c0)|RE|, where 8] _oo = min,{d%, 8,68 ,, 88, ).

Therefore,
C
|6 1 _

Q] < |Qu] + h— (IR + |R.]),

Q] < [Qu] + h— ([Ru] + [Ri])

i5i_
where C = 1/dmax{C1~, C1n, Caa, Co8}. Let Cp = max{1,(2C/|6|_o)}. Then,

@5} < (1+ Cob) max {|RL|, |RY|, | QL.

o}

max{l

Calculating L iterations,
max {|RE[, [RY], QL] |@F]} < (1 + Coh)" max {|RY|, [RS], [Q2], |0}
< exp (Co) max { | Ry, | R3[| QU] . | QU] }

Thus, the numerical marching scheme is stable.

2.3. Error Estimates

Denoting the error between the calculated discrete functions R5™, Q4™ and the restriction to
the grid of the mollified exact functions @(ih, nk),u,(ih,nk) by ARY™ = RL™ — @(ih,nk) and
AQL™ = Q4™ — iy (ih, nk), proceeding similarly with the discrete functions related to v(z,t), we
define A; = max{|AR,|,|AR} |, |AQ,], 1AQ; [}
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THEOREM 2.2. There exists a constant Co such that Ap < exp(Co)(Ag + €+ k).

ProOF. Define Cs5 = max;{Cs;,Cs:,Csi_,Csi_} where Csi, Cyi, Csi _, and Cs: represent the
upper bound, in magnitude, of higher-order derivatives of the convolution kernels corresponding
to the radii of mollification 6%, 6%, 8¢ _, and §°_, respectively, i = 0,1,..., N,. Neglecting the effect

wr Yur Yuz» v

of the § mollification on the already mollified solutions & and ¥ and their partial derivatives, the
error estimates for Ri¥lm Ritln Qitln and Qi+ are obtain as follows,

ARG < [AR| + h(1AQL)

and

|AR,T| < |ARG|+ A(IAQL)).

According to Lemma 1.1, there exists constants C; and C; such that

. Ch
[Dt(J(;‘iLRL’”) — @y (ih,nk)| < H (|AR1 | + k) + Csk?
and
lDt(J(;éRfj’") — B4 (th,nk)| < WC (|AR1] + k) + Csk?®.
Thus,
) . h .
i+1ln) i,n e ; iny o~ s
‘AQu | = |AQu + det(A(zh)) (U(Dt(JéuRu ) ut(lhvnk))
— B(D:(Js; By™) — 0:(ih, nk)))|
) h .
< |AQY™| + 10| max{Ci7n,Ca} (tARu + k) + Cshk?
and
) , h
itln _ LTy i B — w4 (1
QU] = |AQY" + s (1 (DT RY) = ik )
+ a(Dy(Js; Ri™) — §,(ih, nk))|
. h
<|AQY + —— a0 = max{C1v, Cac} (|AR}| + k) + Cshk®.
If
Cp = max { > |5| max {C1n, C25}, ‘51| max {C17, Caa} ,C(;} ,
then

Doy =max {|ARS | AR [AQL], |3 )
< 1+ Coh) (max {| AR [AR; |, |AQ3 ] JAQS[}) + Cohi?
= (1 + Coh) & + Cohk?.

Calculating L iterations,
Ap <1+ Coh) (Ao +e+k)
<exp(Co)(Ag +e+k).

Since Ag < (C/|9]—o0)(e+ h+ k), for fixed §, as €, h, and k tend to 0 so does Ay. This establishes
the formal convergence of the numerical method.
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3. NUMERICAL EXAMPLE

In this section, the numerical results of an example of interest is presented. To obtain the
required data functions «(0,t) and v(0,t) for the inverse problem, it is necessary to solve the
direct problem. We set the following dimensionless values for the parameters in Luikov’s model,

Lu =0.8(1 + z),

Pn =0.32,

Ko = 65,

Eo = 0.02,

Bi, = 1.7,

Bi,, = 3.0,
Q=25.

Thus, the system of partial differential equations becomes

w) 0.7488 —1.04 1 0\ [ s
(U) = <(1+a:) (—0.256 0.8 ) + (0 O)) (Umz> O<z<l, 0<t<l,
with boundary conditions,
ug(0,8) = 2.5,
v2(0,¢) = —0.8,
uz(1,t) = —1.7 u(1,t) + 152.88(1 + z)(v(1,t) — 1) + 1.7V (t),
u2(1,1) = 3(1 — v(1, 1)) — 0.32 ug(1,1),

and initial conditions
u(z,0) =2.5 z (z g(0) — 1),

v(z,0) =1.54+08 z (z —1).

The functions

V() = (u(l,O) + =00 (1}_; E")KOLu) (—9 + 106”)

q

and g(t) = 3.1 — ¢, are chosen to satisfy the required compatibility conditions at ¢ = 0 to avoid
potential space located patches in the solution for positive times that will render the solution of
the inverse problem impossible. See [10].

The numerical solution of the direct problem is computed by the method of lines and the
discrete perturbed data functions for the inverse problem are generated by adding random errors
to the ”exact” computed solutions of the direct problem g; = u(0,t) and go = v(0,t) as well as
the exact flux functions g3 = u(0,t) = —2.5 and g4 = v,(0,t) = —0.8.

For the inverse problem, the mollification parameter p is set to 3 and all the radii of mollification
are chosen automatically using GCV without any prior knowledge about characteristics of the
data.

The relative weighted {2 error for u is calculated as

[1/(M +1) é |RL —u (ih)]2] v

1/2

[1/(M+ 1)i§0|u(ih)|2]

The relative /2 errors for u,, v, and v, are computed in a similar fashion.
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ExaMpLE 3.1. Identify u(z,t), v(z,t), uz(2,t), and v(z,t) satisfying

Uy 0.7488 —1.04 1 0 Uy
= ; <
<Ut> ((1+l)<_0'256 0.8 >+<O 0)) (v“>, 0<zr<l, 0<t<1,
with boundary conditions,

u(0,t) = g, (t),
v(0,1) = ga(t),
uz(0,1) = g3(1),
va (0, 1) = g4(t)-

Relative {2 errors for u and v are reported in Table 1 as a function of € and as a function of At

in Table 2. Both these results and those shown in Figures 1 through 4 emphasize the stability

and consistency of the marching scheme. For Table 1 and Figures 1 through 4, N, = 100 and
N; =128, In Table 2 and Figures 1 through 4, e = 0.01.

Table 1. Table 2.
€ u(z,t) v(z, t) At u(z,t) v(z, t)
0.001 0.00745 0.04766 6—14 0.00959 0.12241
0.005 0.00792 0.04435 Tl% 0.00953 0.12241
1
0.01 0.00953 0.12241 5% 0.00452 0.01227
16
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Figure 1. Exact and computed temperatures at z = 1.
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Figure 2. Exact and computed moistures at =z = 1.
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Figure 3. Exact and computed heat fluxes at z = 1.
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Figure 4. Exact and computed moisture fluxes at x = 1.
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