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A b s t r a c t - - W e  introduce a stable numerical method for the recovery of the temperature and 
moisture distributions in a Liukov system with space dependent diffusion coefficients. In this problem, 
only Cauchy noisy data at the active boundary is given and no information about the amount and/or 
character of the noise in the data is assumed. The error analysis for the algorithm is discussed and 
a numerical example is presented. @ 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - I d e n t i f i c a t i o n  of parameters, Mollification, Finite differences, Luikov, Porous medi- 
um. 

T h e r m a l  d r y i n g  involves  t h e  v a p o r i z a t i o n  of m o i s t u r e  w i t h i n  a p r o d u c t  by  h e a t  a n d  t h e  e v a p o r a -  

t i on  of m o i s t u r e  f rom t h e  m e d i m n .  T h e r m a l  d r y i n g  in p o r o u s  m e d i u m  has  i m p o r t a n t  a p p l i c a t i o n s  

in m a n y  d i f fe rent  fields, i n c l u d i n g  food  a n d  e n v i r o n m e n t a l  eng inee r i ng .  A t h e o r e t i c a l  m o d e l  for 

t h e r m a l  d ry ing ,  or  m o r e  gene ra l l y  s i m u l t a n e o u s  h e a t  a n d  m a s s  t r a n s f e r ,  was  d e v e l o p e d  by  Luikov.  

T h i s  m o d e l  i n t e g r a t e s  severa l  d i f fe rent  phys i ca l  m e c h a n i s m s  of  m o i s t u r e  dif fusion.  T h e  gene ra l  

Lu ikov  m o d e l  for t h e r m a l  d r y i n g  in a p o r o u s  m e d i u m  is 

OM _ V 2 a l t M  + V 2 a 1 2 T  + V 2 a l a P  ' 
Ot 

cOT V~a21M + V2a22T + V2a2ap ' 
Ot 

OP 
-- V 2 a a t M  + V2a3~T + V 2 a a a P ,  

Ot 

where M, T, and P represent vapor diffusion, thermal diffusion, and hydrodynamic flow re- 

spectively, a n ,  a22, and aaa are diffusion coefficients and a12, ale, a21, a2a, aal, and a32 are 

0898-1221/06/$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. 
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coupling coefficients. For many agricultural products, knowledge of the diffusion coefficients are 
still limited. The coupling coefficients account for the combined effect of moisture, temperature,  
and total pressure gradients on moisture, total mass, and energy transfer. Note tha t  total pres- 
sure differences are only significant in relatively high temperatures.  Therefore, in most drying 
applications a~3 = a2a = a33 = 0. For an overview of drying principles and theory, see [1]. 

The authors of [2,3] discuss a Luikov system of the form, 

( u t )  = v t  (~  13rl)\(u~X)v~ , 0 < x < l ,  t > 0 ,  

with boundary  conditions, 

~ ( 0 , t )  = - Q ,  

v~(0, t) = - P n  Q, 

ux(1, t) = - B i q  u(1 ,  t)  -}- (1 - ]~o)Ko L u  g i m ( v ( Z ,  t) - 1) -t- BiqV(t), 
v~(1, t) = Bi,,,(1 - v(1, t)) - Pn u : (1 , t ) ,  

where V(t) is a transient function associated with the dry air flow, and initial conditions, 

u(z ,0 )  = u0, 

v ( z , o )  = vo.  

The constant coefficients a , /3,  % and r 1 are defined as 

a = 1 + E o K o L u P n ,  

/3 = - E o  Ko Lu,  

7 = - L n  Pn ,  

7 /= Lu.  

The terms Lu = am/a, Pn ,  Ko,  Biq, Bim, and Q refer to the Luikov number, Possnov number, 
Kossovitch number, heat Biot, mass Biot, and heat flux, respectively. The coefficients a and am 
represent the thermal diffusivity and the moisture diffusivity of the porous medium. Determin- 
istic, stochastic, and hybrid solutions are introduced in [2] for estimation of parameters in the 
above problem. 

In this paper, we consider nonhomogeneous thermal and moisture diffusivities of the porous 
medium so that  the Luikov number and all the coefficients a,/~, % and rl of the model, are space 
dependent functions. We will introduce a stable numerical marching scheme based on discrete 
mollification for the recovery of u(x,t), v(x,t), Ux(X,t), and v~(x,t) throughout  the domain 
[0, 1] × [0, 1] in the (x, t) plane satisfying 

\ y ( x )  

with boundary conditions, 

/3(x) ) ( Ux~ v~ / ' 0 < x < l ,  t > 0 ,  

u(O, t) = gl(t) ,  

v(o,  t) = g2(t) ,  

~= ( o , t )  = g~(t) ,  

v~(O, t) = ga(t). 
Note that  in this problem, 91, g2, g3, and g4 are only known approximately. 
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This problem is an inverse problem (Cauchy problem) involving a parabol ic  system. For other 

examples  of numerical  marching schemes based on mollification in parabol ic  systems see [4,5]. 

These algori thms do not  require any information about  the amount  a n d / o r  character is t ics  of the  

noise in the d a t a  and the mollification parameters  are chosen au tomat ica l ly  at  each step using the 

generalized cross val idat ion (GCV) method.  For general  references to  the  GCV method,  see [6,7]. 

This  paper  is organized as follows. Discrete mollif ication and numerical  differentiation will 

be presented in Section 1. In Section 2, the numerical  space marching a lgor i thm is specified. 

The s tabi l i ty  and error es t imates  for the approach are also presented in this  section. Section 3 
contains a numerical  example of interest .  

1. MOLLIFICATION 
In this chapter ,  discrete mollification is introduce and several results  re la ted  to numerical  differen- 
t ia t ion are presented.  A detai led descr ipt ion of this regular izat ion procedure  and its appl icat ion 

can be found in [8]. 

1.1. D i s c r e t e  M o l l i f i c a t i o n  

Let I = [0,1] and K = {x~ : i = 1, 2 , . . . , N }  C I satisfying 0 _< x l  < x2 < - "  < XN _< 1. Set 

{gi}i=l is a So = 0, sN = 1, and s~ = (1/2)(x~+1 + x~) for i = 1, 2 , . . . ,  N - 1. Suppose tha t  G = N 

discrete function defined on K ,  then the &mollif ication of G is defined as a convolution with  the 

Gauss ian  kernel, 

p~(t) = { 

where I~ = [-pS, pS], 5 > 0, p > 0, and 

Ap5 - x e x p  - ~ -  , t C I ~ ,  

o, t~I~, 

i = 1  s i  1 

Tha t  is, for every x C I5, 

1.2. N u m e r i c a l  D i f f e r e n t i a t i o n  

The first centered difference operator ,  

D 0 f ( x )  = 

is defined on 

f ( x  + A x )  -- f ( x - -  A x )  

2Ax  

/:5 = [p5 + Ax,  1 - p5 - Ax] .  

Let G ~ = {gi + q : ]c~l < c, i = 1 , 2 , . . . , N }  be a pe r tu rbed  discrete version of a function g, 

where e is the max imum noise level. The following lemma, establishes the  numerical  convergence 

of centered difference discrete mollified differentiation for a fixed 5. 

LEMMA 1.1. I f  g is uni formly Lipschitz  on I and the discrete funct ions G and G ~ sat is fy  

[ [ G -  Gc[[oo,K < e, then there exist  constants C, independent  orS ,  and C~ such that  []JzG c - 

J~gll~,~,_<c(~ + ~x) and 

Ox ~,f~ - 

The proof  of Lemma 1.1 can be found in [9]. 
We define the  discrete mollified centered difference D0~(G) = D0( J~G) ] i~nK,  by restr ic t ing 

Do(J~G)  to the  grid points  of [5 N K.  The  next theorem establishes a useful upper  bound for 

the opera tor  Do ~. 
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TItEOREM 1.2. There exists a constant C, independent o[6, such that 

IlD~oGIIoo,Kn[~ <_ C IIGIIoo,K. 

The proof of this theorem can also be found in [9]. 

2. T H E  I D E N T I F I C A T I O N  P R O B L E M  

The problem is to identify the vapor diffusion, u(x, t), vapor flux u~(x, t), moisture diffusion 
v(x, t) and moisture flux v~(x,t) ,  for all (x , t )  throughout  the domain [0, 1] x [0, 1] satisfying 

: 

with boundary  conditions, 
~ ( o , t )  = g~(t) ,  

~ (0 , t )  = g~(t) ,  

~ ( 0 ,  t) = g~(t) ,  

~ ( 0 , t )  = g~(t) .  

Note that  gl, 92, g3, and g4 are not known exactly. The available data  gl e, g2 ~, g3 ~, and g4 ~ are 

discrete noisy functions with maximum noise level e. We define A ( z ) =  (~(~)~(~) ~(~)),(~) and assume 

that  Idet(A(x))l _~ d > 0 for all x C [0, 1]. 
We begin by stabilizing the problem using mollification. In this regularization process, a 5- 

mollification is performed on each of the available data  functions, gl ~, g2 ~, g3 ~, and g4 e. Note 
0 tha t  &mollifications of gl ~, g2% g3 ~, and g4 ~ are taken with respect to t using 6 °, 6 °, 6 ~ ,  and 

6°~, respectively. 
The following numerical marching scheme, along with the mollification method, are applied 

in order to estimate u(x , t )  and v(x , t ) ,  as well as derivatives of these functions, throughout  
[0, 1] x [0, 1], where ~2(x, t) and ~(x, t) are the regularized functions. 

2.1. T h e  N u m e r i c a l  S p a c e  M a r c h i n g  S c h e m e  

Let N~ and Nt be positive integers, Ax  = h = 1/N~, A t  = k = 1/Nt ,  xi = ih, i = O, 1 , . . .  ,Nx,  
a n d t , , = n k ,  n - 0 , 1 , . . . , N t .  

We introduce the following discrete functions. 

R'~ '~ : the discrete 
R~ '~ : the discrete 
Q~/'~ : the discrete 
Q~,~ : the discrete 

W~ 'n : the discrete 
W~ ,'~ : the discrete 
S~, ,n : the discrete 

S ''~ : the discrete 

apprordmation 
approximation 
approximation 
approydmation 
approximation 
approximation 
approximation 
approxmlation 

to  ~( ih, nk ), 
to 9(ih, nk),  
to 55 (ih, nk),  
to 5~( ih, nk  ), 
to ~tt(ih , nk),  
to ~t(ih, nk),  
to uxt(ih, nk),  
to ~zt(ih, nk).  

The space marching algorithm is defined as follows. 
1. Select 6 ° 0 0 0 u, 6v, 6ux, and 6vx. 
2. Perform mollification of gl E, 92 E, g3 e, and 94 ~. Set the following. 

• ]:~O,n = gSogle(l~jg) and R °''~ = Y~og2~(nk). 
• e °'~ = J~o g3~(nk) and Qo,~ = j~o g4~(nk).  
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3. Perform mollified differentiation in t ime of d~ogx*(nk), J~g2*(nk),  
Js~ga~(nk) and d5%g4*(nk). Set the following. 

• W °'~ = Dt(dsogx~(nk)) and W ° ' '  = Dt(d~og~(nk)).  
• S °'n = Dt(d~%ga~(nk)) and S °''~ = Dt(d~og4*(nk)). 

The numerical  marching scheme in space is defined in Step 4. 

4. Init ial ize i = 0. Do while i _< N~ - 1. 
i~n a .  R / + l ' r ~  = R~2 ~ + h Q~d ~ and R/+~''~ = R~ ,n + h Q~ . 

Q~, + (h/det(A(ih)))(rl( ih)W~f ~ - /3( ih)W;,n) .  
c. Q~+I,,~ = Q~,n + (h/det (d( ih)) )  (-7(ih)W~, ,'~ + c~(ih)W¢,n). 
d. Select 5 ~+~ 5~ +1, 5~+1 2ff+l 

e. Perform mollified differentiation in t ime of Ri+L~ , Ri+Ln, ~,O{+Ln, Q/+I,~. Set the  follow- 

ing. 
• W~ +l,n = Dt(Js~+~Riu +l,n) and We +l,r~ = Dt(Js~+,Riv+l'n). 
• ,~i+l ,n i+1  n s / + l , n  = D t ( J ~ , O  , ~ and Dt(J5~+,S~+l,n). 

f. Set i = i + 1 .  

2.2. S t a b i l i t y  A n a l y s i s  

Denote ]Y~] = max~ [yi,n] and ]IY[]~ = max~ [yi]  . Theorems 2.1 and 2.2 establ ish s tabi l i ty  

and formal convergence, respectively, of the marching scheme presented above. 

THEOREM 2.1. There exists a constant Co such that 

max {IR~I ,IR~l ,IQ~I, IQ~I} <- exp(Co) max  {IR°l, IR°l, IQ° I , IQ°I}. 

PROOF. Using the numerical  marching scheme defined in Section 2.1, bounds  can be found for 

the discrete approximat ions  in terms of the  init ial  data .  

Note tha t  
IRL+I[ _< IRLI ÷ h IQLI, 
IRL÷~I _< IRaqi ÷ h IQLI. 

Applying  Theorem 1.2, there  exist constants  C1, C2, C3, and C4 such t ha t  ]W~[ _C1/(]5[_~)]Ru[< i 
and IWv~l _< c~/(151_~)ln~l , where [51_~ = m i n d S L s L  5~, '  5"x}- 

Therefore, 

[Q~I I~ IQhl ÷ h i~-~_ ~ (IRLI ÷ IRLI), 

I < - IQLI ÷ I~[_o~ (IRhI ÷ IRLI), 
where C - 1 /dmax{C1% C17], C2ct , C2/~}. Let  Co - max{ i ,  (2C/151-~) }. Then,  

i rn~x {IR~÷I I , IRL÷ll, IQ~÷~I, IQ~v÷l[} < (1 + C0h) max  {IR~I ,IRLI,IQXI,IQvl}. 
Calculat ing L i terat ions,  

max  {IR~I, IR~ I , Io~1, IQ~I> -< (1 ÷ Coh)Lmax {IR°I, IR°I, IQOl, Io°L} 
_< exp (Co)max  {IR°I, IR°I, IQ°I, IQ°I}. 

Thus, the  numerical  marching scheme is stable. 

2.3. E r r o r  E s t i m a t e s  

Denoting the error between the calculated discrete functions R~2 n, Q~n and the  restr ic t ion to 
the grid of the mollified exact  functions ~(ih, nk), Gx(ih, nk) by AR~ n = R~ "~ - ~ ( i h ,  nk) and 

AQ~n = Q~n _ dx(ih, nk), proceeding similar ly with the discrete functions re la ted to v(x, t), we 

def ine  A i = max{IzXR~l, Ia-~gl, IAQ~I, IAQ~I}. 
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THEOREM 2.2. There exists a constant Co such that A L ~ exp(C0)(A0 4- e + k). 

PROOF. Define C~ = maxi{Cs~, C~t, C5~, Cat~} where Cat, Cat, Cat~, and C~:~ represent the 
upper bound, in magnitude, of higher-order derivatives of the convolution kernels corresponding 
to the radii of mollification 5 i i i i ~, 5~, 5 ~ ,  and d~ ,  respectively, i = 0, 1 , . . . ,  N~. Neglecting the effect 
of the 5 mollification on the already mollified solutions g and ~ and their partial derivatives, the 
error estimates for ]:l i+l,n R i+l,n oi+l'n and Qi+Z,~ __~ , __ . . . . .  are obtain as follows, 

IAR~+~I ~ IAR~I 4- h(IA~l) 

and 

IA~L÷~ I < IA~LI + h(IAQ.I). 

According to Lemma 1.1, there exists constants C~ and C~ such that  

C1 i,rt iDt(Ja~R~ ) - gt(ih, nk)l < 
151-0o 

(IAR~I +/~) 4- c ~  ~ 

and 

Thus, 

and 

If 

then 

i,n 62 ID~(J~nv ) - ~(~h, nk)l < ~ (IAR~I + ~) + Ca~ ~. 

h 
I~Q~+~"~I = AQ'~ Jr det(A(ih)) (u(Dt(J~R~;'~) - (tt(ih, nk)) 

i,n - 9 (D~(&:R~ ) - ~t(~h,~k))l 
i,n h 

-< IAQ~ I+ d~5~-~-_ max{elr / ,C2J 3} (IAR~I + k )  +Cahk ~ 

h 
]AQ~÷I'~I = AQ'~"~ + det(A(ih))(7(Dt(J6¢ R~) - (tt(ih,nk)) 

+ ~(D~(Ja:n~ '~) - ~(~h,  ~k))l 
h i,n max(V~'y, C ~ }  (IAR~I + k) + C~hk ~. 

-< I/~Q~ I+  d ~o~0o'~'_ 

1 
1 max {C17/, C2/3} d 151_oo Co = max 1, d 151_~ - -  max {C1~/, C2a}, Ca} ,  

i < (1 + Cob)(max I R;I, IAQ I, I Qo[}) + Cohk 2 

= (1 + Coh) Ai + Cohk ~. 

Calculating L iterations, 

AL < (1 + C0h) L (A0 + ~ + k) 

< exp (Co) (A0 + ~ + k). 

Since Ao _< (C/15]_o~)@+h+k), for fixed 6, as e, h, and k tend to 0 so does AL. This establishes 

the formal convergence of the numerical method. 
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3.  N U M E R I C A L  E X A M P L E  

In this section, the numerical results of an example of interest is presented. To obtain the 
required data  functions u(0, t) and v(0, t) for the inverse problem, it is necessary to solve the 
direct problem. We set the following dimensionless values for the parameters in Luikov's model, 

L u  = 0.8(1 + z ) ,  

Pn = 0.32, 

Ko = 65, 

Eo = 0.02, 

Biq = 1.7, 

Bim = 3.0, 

Q = 2 . 5 .  

Thus, the system of partial differential equations becomes 

(u t )  ( ( 0 . 7 4 8 8 - - 1 . 0 4 )  ( ~  00)) (Uxx" ~ 
= (1 + x )  \_0.256 0.8 / + vt \ vxx / 0 < x < l ,  0 < t _ < l ,  

The functions 
V ( t ) =  ( u ( 1 , 0 ) + v x ( l ' 0 ) ( 1 - E ° ) K ° L u )  ( - 9 + l O e t 2 ) ~  

and g(t) = 3.1 - t, are chosen to satisfy the required compatibili ty conditions at t = 0 to avoid 
potential space located patches in the solution for positive times tha t  will render the solution of 
the inverse problem impossible. See [10]. 

The numerical solution of the direct problem is computed by the method of lines and the 
discrete perturbed data  functions for the inverse problem are generated by adding random errors 
to the "exact" computed solutions of the direct problem gl = u(0, t) and g2 = v(0, t) as well as 
the exact flux functions g3 = uz(O,t) = --2.5 and g4 = ?2x (O, t )  = --0.8. 

For the inverse problem, the mollification parameter p is set to 3 and all the radii of mollification 
are chosen automatically using GCV without any prior knowledge about  characteristics of the 
data. 

The relative weighted 12  e r r o r  for u is calculated as 

1/(M+ 1) 2 IR~ - ~ ( i h ) l  2 
i = 0  

The relative/2 errors for Ux, v, and Vx are computed in a similar fashion. 

with boundary  conditions, 

~x(0 , t )  = - 2 . 5 ,  

v = ( 0 , t )  = - o . 8 ,  

ux(1,t)  = - 1 . 7  u(1, t) + 152.88(1 + x)(v(1, t) - 1) + 1.TV(t), 

Vx(1,t) = 3(1 - v(1, t)) - 0.32 ux(1,t) ,  

and initial conditions 
u(x,O) = 2.5 z (z g(0) - 1), 

v(x ,  o) = 1.5 + o.8 x (x - 1). 
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EXAMPLE 3.1. Identify u(x, t), v(z, t), u~ (z, t), and v(x, t) satisfying 

( u t )  = ( (1_[_x ) (0 .7488- -1 .04"~  ( 1  00))  (ux="  ~ O < x < l ,  O < t < l ,  
vt -0 .256  0.8 J + 0 \v=~  ] ' - 

with boundary  conditions, 
u(o, t) = g~(t), 

v(o,t)  = g;(t) ,  

, ~ ( o , t )  = g;(t) ,  

v~(o,t)  _ g~( t )  

Relative 12 errors for u and v are reported in Table 1 as a function of c and as a function of At 
in Table 2. Both these results and those shown in Figures 1 through 4 emphasize the stability 
and consistency of the marching scheme. For Table 1 and Figures 1 through 4, N= = 100 and 
Nt = 128. In Table 2 and Figures 1 through 4, ~ = 0.01. 

T a b l e  1. 

u (x ,  t) v (z ,  t) 

0 .001  0 .00745  0 .04766  

0 .005  0 .00792  0 .04435  

0 .01 0 .00953  0 .12241  

T a b l e  2. 

~,(x, t)  v (x ,  t )  

0 . 00959  0 .12241  

0 .00953  0 .12241  

0 .00452  0 . 0 1 2 2 7  

A t  

1 

64 

1 

128 

1 

256 

16 

co 
uJ 
w 

uJ 
a .  

uJ 

£3 
DJ 
F- 
o-  

O 
L) 

z < 

O < 
X 
Lg 

14 

12 

10 

J# 

O 

Q 

0 /: 
¢ 

(~-.O " O  ~'- 
" O 

• Q "  

,::O 

/~O 

0 

1 ' I 
0.2 0.4 0.6 0.8 

TIME 

Figure i. Exact and computed temperatures at x = i. 
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/ 

/ 
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/ 
/ / 

/ / 

-4 
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1 4 - -  

I I I I I I I 

0.2 0.4 0.6 0.8 
TIME 

F i g u r e  2. E x a c t  a n d  c o m p u t e d  m o i s t u r e s  a t  x = 1. 

' I 
1 

c~ e£O..e o 
- . Q  

12 - -  " ' 9  
- {@ 

O. 
? 0 -  

",  G 

10 

8 

" 0 . 0 .  
" , , ' O  0 -  

\ -79  
O ,  

Q, 
\ 

2 . 

0 0.2 0.8 0.4 0.6 
T I M E  

F i g u r e  3. E x a c t  a n d  c o m p u t e d  h e a t  f l u x e s  a t  x 1. 
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25 

20 

15 

10 

oJ 
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, /  

, /  

,~ ) / "  , j  • J 

~-C)~O-O o 0 O 0 .C~ 
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TIME 

Figure 4. Exact and computed moisture fluxes at x = 1. 
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