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Abstract

This paper presents a variational model formulation that can be used for analyzing the three-dimen-

sional steady-state behavior of an extensible marine cable. The virtual work-energy functional, which in-

volves virtual strain energy due to a cable stretching, and virtual works done by the gravitational, inertial

and external drag forces, is formulated. Euler–Lagrange�s equations, obtained by considering the first

variation of the functional, are identical to those obtained by equilibrating forces on a cable infinitesimal

segment. Two mathematical simulations, namely, the finite element method and the shooting-optimization

technique, are employed to solve and evaluate the problems. The numerical investigations are carried out

for the case of a specified end tension, whereas the specified cable unstrained length case can be applied in
the algorithm procedure. The validity of the present model and the influence of various geometrical pa-

rameters on the cable equilibrium configuration are demonstrated. The effects of cable extensibility and the

omnidirectionality of current actions are presented and discussed.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

With the increases in deployment of cables in deep-ocean engineering, the determination of
cable configurations as well as cable tensile forces has become the important parameters in the
design process. As far as the hydrodynamic drag forces are concerned, the performance of marine
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cables must be considered in three-dimensional space. Hence, to accomplish a fundamental un-
derstanding of cable behaviors, accurate three-dimensional modelling of cable should be fully
accounted for in the analysis.

The research work by De Zoysa [1] on the three-dimensional steady-state analysis of under
cable towing a sea buggy was recognized by a number of researchers in the past. In that paper the
static equilibrium equations of the problem are solved by using a shooting method. The obtained
results showed the variations of tension components at the buggy end with respect to different
directions made by the currents. Chucheepsakul and Subwonglee [2] solved the same problem
using a variational approach. Wang et al. [3] used the shooting-optimization technique to yield
more accuracy of the results. Friswell [4] corrected the hydrodynamic force model used by Wang
et al. [3] and suggested approximate guidelines on choosing optimum cable length in the operating
systems, in addition to the cable profile and tensile force developments. All of the aforementioned
studies, however, do not take into consideration the effect of axial extensibility, which is essential
for determining the cable configuration. This restriction may not yield an accurate analysis, es-
pecially in the case of cables having high extensibility.

Recently, a various of mathematical models of extensible cables has been considered by many
researchers. A brief review of their work should be mentioned herein. Webster [5] presented the
finite element approach to simulate the non-linear effects under hydrodynamic actions. Huyse
et al. [6] modified the riser model to a three-dimensional tensioned string and used the cylindrical
coordinates to obtain the admissible configuration. Dreyer and Van Vuuren [7] derived the nu-
merical solutions of both continuous and discrete models through the concept of inextensible
cable (elastic modulus is assumed to be large). Vassalos [8] provided detailed information on
explaining the appropriate models in the design of marine structure. However, the essential pa-
rameters associated with the static behavior have not been tackled rigorously in their study [5–8].
Vaz and Patel [9] were particularly interested in investigating the cable configuration during in-
stallation in sheared current field. They demonstrated the importance of current profile for pre-
dicting of suspended line behaviors, especially when imposing a more complex three-dimensional
current profile. Nevertheless, the influence of cable extensibility has not yet been thoroughly in-
vestigated. Thus, it is the main objective of this study to examine the geometrical parameters for
any cable equilibrium configuration by including the extensibility effect under the omnidirec-
tionality of the current actions. The important factors in the preliminary design stage include the
cable tension distribution, elongation and geometric relations, such as cable unstrained or
strained arc-length, vertical and horizontal angles of any point along a cable.

In the present paper numerical computations based on the finite element approach are used.
The numerical technique presented in this study is computationally efficient to carry out for the
solution in which the top tension is specified. However, the technique is not limited to the solution
in which the total arc-length of cable is specified. A more detail description of this technique for
two-dimensional case can be found in Chucheepsakul et al. [10]. As an alternative check, the
shooting method is also used to validate the numerical solutions obtained from the variational
approach.

The following assumptions are made throughout this analysis:

(1) A cable is installed with two stationary supports at the bottom and top end positions. Each
end is held by the pinned support.
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(2) The effect of bending, shear and torsional rigidities is neglected.
(3) The material of cable is assumed to be linearly elastic and the material density per unit volume

remains invariant during stretching.

Numerical results are demonstrated tabularly and graphically for two case studies, namely, the
practical cases of specified top tension and specified cable unstrained arc-length.
2. Cable model and governing equations

A typical cable model in its relationship to a fixed Cartesian reference frame called the global
coordinate system is represented in Fig. 1a, which also shows the rotated system, i.e., the local
coordinate system. This system is useful since it allows a simplified expression of the equations.
The geometric compatibility relation of both systems can be expressed as the following matrix
notation,
~ii
~jj
~kk

8<
:

9=
; ¼

cos/ cos h � sin h � sin/ cos h
cos/ sin h cos h � sin/ sin h

sin/ 0 cos/

2
4

3
5 ~pp

~qq
~rr

8<
:

9=
; ð1Þ
in which unit vectors~ii,~jj,~kk and~pp,~qq,~rr represent for the sets of global and local coordinate systems,
respectively. The cable orientation at any point is defined by / and h, where / is the vertical angle
between the XY plane and vector~pp, h is the horizontal angle between the XZ plane and projection
line of vector~pp, when vector~qq lies on the XY plane. The bottom end of the cable is anchored at the
seabed, while the top end is tied to the floating structure. With regard to Fig. 1b, it can be seen the
circular plan view of the cable configuration, in which h0 is the horizontal angle between X -axis
and the projection line of cable chord length on XY plane, R is the distance along the seabed
between the top and bottom ends.

The current velocity is a function of depth only and is given by ~VV ¼ vxðz0Þ~iiþ vyðz0Þ~jj. In terms
of the local coordinate system, the current profile is taken as ~VV ¼ ps~pp þ qs~qqþ rs~rr, namely
ps ¼ vxðz0Þ cos/ cos hþ vyðz0Þ cos/ sin h ð2aÞ

qs ¼ �vxðz0Þ sin hþ vyðz0Þ cos h ð2bÞ

rs ¼ �vxðz0Þ sin/ cos h� vyðz0Þ sin/ sin h ð2cÞ

For stationary cable, the drag force is given by DF ¼ Dp~pp þ Dq~qqþ Dr~rr, in which Dp, Dq and Dr

are the components of drag force along the direction of vectors ~pp, ~qq and~rr, respectively. Simple
time-independent hydrodynamic loading models are chosen here, where the tangential and normal
forces are proportional to the square of tangential and normal fluid velocities. Thus, DF becomes
DF ¼ CTpsjpsj~pp þ CNðqs �~qqþ rs �~rrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2s þ r2s

q
ð3Þ

CT ¼ 1
2
qwDpCDTð1� me0Þ and CN ¼ 1

2
qwDCDNð1� me0Þ ð4a;bÞ
in which qw is the density of seawater, CDT and CDN are the tangential and normal drag coeffi-
cients, Dð1� me0Þ is the deformed cable diameter, and m is the Poisson�s ratio.



Fig. 1. (a) Reference configuration and coordinate systems of marine cables. (b) Circular plan view of cable model.

(c) Forces on cable infinitesimal segment.

784 S. Chucheepsakul et al. / Appl. Math. Modelling 27 (2003) 781–803
Referring to Fig. 1c, the equilibrium equations for an infinitesimal element of an immersed
cable as given by Berteaux [11] can be written along the direction of ~pp, ~qq,~rr as
dT
ds0

¼ we sin/
ð1þ e0Þ

� Dp

dh
ds0

¼ � Dq

T cos/
d/
ds0

¼ we cos/
ð1þ e0Þ

�
� Dr

��
T

ð5a;b;cÞ
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where T is the cable effective tension and not the actual tension that controls the extensibility of
the cable. The effective tension [12] is written as
T ¼ EAe0 þ 2mqwgAð1� me0Þ2ðZH � z0Þ ð6Þ
3. Variational formulation

Fig. 2 shows an infinitesimal element of cable in which u, v and w are the components of
displacement from the equilibrium position in the direction of unit vectors~ii,~jj,~kk, respectively. The
derivatives of its length ds0 in each direction are
dx0 ¼ cos/ cos hds0; dy0 ¼ cos/ sin hds0 and dz0 ¼ sin/ds0 ð7a;b;cÞ

Differentiation of Eq. (7) with respect to z0 (0), the cable stretched length is
ds0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x020 þ y 020

q
dz0 ð8Þ
Let
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x020 þ y020

p
be s00. Another form of ds0 using the Lagrangian strain definition is
ds0 ¼ ð1þ e0Þds ð9aÞ

Thus,
ds ¼ s00
1þ e0

dz0 ð9bÞ
in which ds is the unstretched cable length. Likewise, the arc-length d�ss, the strain �ee and the dis-
placements u, v and w at the displaced state are given by
d�ss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx00 þ u0Þ2 þ ðy 00 þ v0Þ2 þ ð1þ w0Þ2

q
dz0 ð10aÞ

d�ss ¼ ð1þ �eeÞds ð10bÞ
Fig. 2. Two different states of cables.
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From Eqs. (8)–(10), one can write the dynamic strain as
�ee ¼ d�ss� ds
ds

¼ 1þ e0
s00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx00 þ u0Þ2 þ ðy00 þ v0Þ2 þ ð1þ w0Þ2

q
� 1 ð11Þ
and its variation can be written as
d�ee ¼ 1þ e0
s00

ðx00 þ u0Þdu0 þ ðy00 þ v0Þdv0 þ ð1þ w0Þdw0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx00 þ u0Þ2 þ ðy 00 þ v0Þ2 þ ð1þ w0Þ2

q
2
64

3
75 ð12Þ
3.1. Strain energy due to axial deformation

The strain energy due to axial deformation is caused by two actions, namely, pulling on the
cable due to tension and the squeezing of the cable due to hydrostatic pressure, as proposed by
Sparks [13]. The strain energy expression is written as
U ¼
Z St

0

1

2
EA�ee2 dsþ

Z �SSt

0

2mqwgA0ðZH � z0Þd�ss ð13Þ
where St is the total undeformed arc-length, �SSt is the total deformed arc-length, E is Young�s
modulus, A and A0 is the undeformed and deformed cable cross-sectional areas respectively. Using
Eqs. (9), (11) and (12), the variation of Eq. (13) becomes
dU ¼
Z ZH

0

Ta

��
þ Tb 1

�
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2k
p

��
ðx00 þ u0Þdu0 þ ðy 00 þ v0Þdv0 þ ð1þ w0Þdw0

s00

� ��
dz0 ð14Þ

k ¼
x00u

0 þ y 00v
0 þ w0 þ 1

2
ðu02 þ v02 þ w02Þ

s020
ð15Þ
in which Ta ¼ EAe0 þ 2mqwgA0ðZH � z0Þ and Tb ¼ EA� 2mqwgA0ðZH � z0Þ, when ZH is the total sea
depth. It is seen that Eq. (6) and Ta are identical to the usual form of the cable effective tension. If
Poisson�s ratio m is set to be zero so that there is no reduction in cable diameter, then Ta is equal to
the cable actual tension and axial strain is proportional to this tension [14]. By neglecting the small
quantities of higher order terms, and using the binomial approximation, Eq. (15) reduces to
k ffi x00u
0 þ y 00v

0 þ w0

s020
and

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k

p ffi 1� k ð16a;bÞ
Substituting Eq. (16) into Eq. (14) yields
dU ¼
Z ZH

0

Ta
s00
ðx00

��
þ u0Þ þ Tb

s030
ðx020 u0 þ x00y

0
0v

0 þ x00w
0Þ
�
du0

þ Ta
s00
ðy00

�
þ v0Þ þ Tb

s030
ðx00y 00u0 þ y 020 v

0 þ y00w
0Þ
�
dv0

þ Ta
s00
ð1

�
þ w0Þ þ Tb

s030
ðx00u0 þ y00v

0 þ w0Þ
�
dw0

�
dz0 ð17Þ
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3.2. Virtual work done by external forces

The virtual work done by effective weight of a submerged cable is expressed as
dWe ¼ �
Z ZH

0

wes00
1þ e0

dwdz0 ð18Þ
where we is the effective weight of the cable.
The virtual work done by hydrodynamic forces is written as
dWH ¼
Z ZH

0

s00½ðDpu þ Dqu þ DruÞduþ ðDpv þ Dqv þ DrvÞdvþ ðDpw þ Dqw þ DrwÞdw�dz0 ð19Þ
in which the subscripts u, v and w denote the forces per unit length components corresponding
to the Cartesian system.

The virtual work done by inertia force is
dWi ¼ �
Z ZH

0

ð�mm€uuduþ �mm€vvdvþ �mm€wwdwÞdz0 ð20Þ
where �mm ¼ ðwC=gð1þ e0ÞÞs00 is the cable mass per unit stretched length at the equilibrium state,
and wC is the cable weight per unit unstretched length.
3.3. Euler’s equations

The virtual work-energy of the marine cable system is written as
dP ¼ dU � dWe � dWH � dWi ¼ 0 ð21Þ

Substitution of Eqs. (17)–(20) into Eq. (21), then integration by part of Eq. (21) is per-
formed by evaluating du ¼ dv ¼ dw ¼ 0 at boundary conditions, i.e., z0 ¼ 0 and z0 ¼ ZH. Then,
Euler�s equations associated with the virtual displacement du, dv and dw are obtained respectively
as
Ta
s00
ðx00

�
þ u0Þ þ Tb

s030
ðx020 u0 þ x00y

0
0v

0 þ x00w
0Þ
�0
� �mm€uu ¼ �ðDpu þ Dqu þ DruÞs00 ð22Þ

Ta
s00
ðy 00

�
þ v0Þ þ Tb

s030
ðx00y00u0 þ y020 v

0 þ y00w
0Þ
�0
� �mm€vv ¼ �ðDpv þ Dqv þ DrvÞs00 ð23Þ

Ta
s00
ð1

�
þ w0Þ þ Tb

s030
ðx00u0 þ y00v

0 þ w0Þ
�0
� �mm€ww ¼ � Dpw

�
þ Dqw þ Drw �

we

1þ e0

�
s00 ð24Þ
3.4. Equilibrium equations

Applying the initial conditions u ¼ v ¼ w ¼ u0 ¼ v0 ¼ w0 ¼ u00 ¼ v00 ¼ w00 ¼ €uu ¼ €vv ¼ €ww ¼ 0 on
Eqs. (22)–(24), the following equilibrium equations are obtained
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Tax00
s00

� �0

þ ðDpu þ Dqu þ DruÞs00 ¼ 0 ð25Þ

Tay00
s00

� �0

þ ðDpv þ Dqv þ DrvÞs00 ¼ 0 ð26Þ

Ta
s00

� �0

þ Dpw

�
þ Dqw þ Drw �

we

1þ e0

�
s00 ¼ 0 ð27Þ
It is noted that when assembling these equations using vector relations yields the equilibrium
equation, which is identical to Eq. (5).
4. Mathematical simulations

Eqs. (25)–(27) are the system of non-linear differential equations, analytical solution to these
equations are not be obtainable. Numerical solutions using the finite element method or the
shooting-optimization may be used for practical problems. For the purposes of comparison and
validation of the results, the two numerical methods are employed in this investigation. In the
finite element procedure, the variational formulation given in Eqs. (17)–(21) is involved while in
the shooting-optimization method the governing differential equation given in Eqs. (5) is used. In
each method, either top tension or the cable unstrained arc-length may be either known a prior or
may be determined.

4.1. Finite element method

For independent variable z0, only the variation of horizontal displacement is considered,
dw ¼ dw0 ¼ 0. The reference of three-dimensional equilibrium configuration is determined by
substitution of Eqs. (17)–(20) into Eq. (21) again, and then Eq. (21) is rearranged in the form of
a hybrid formulation as follows
dP ¼ d
Z ZH

0

Ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx00 þ u0Þ2 þ ðy00 þ v0Þ2

q�
� Fus00u� Fvs00v

�
dz0 ¼ 0 ð28Þ
in which Fu ¼ Dpu þ Dqu þ Dru and Fv ¼ Dpv þ Dqv þ Drv. At the displaced state, x ¼ x0 þ u,
y ¼ y0 þ v, hence x0 ¼ x00 þ u0, dx ¼ du, dx0 ¼ du0, y0 ¼ y 00 þ v0, dy ¼ dv and dy0 ¼ dv0. At the equi-
librium state, x ¼ x0 and y ¼ y0, then Eq. (28) can be simplified to
dP ¼ d
Z ZH

0

Ta
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x020 þ y 020

q�
� Fus00x0 � Fvs00y0

�
dz0 ¼ 0 ð29Þ
This formulation is suitable and efficient for a practical cable problem of which the top tension is
specified, the total cable arc-length either unstrained or strained is to be determined. Three un-
knowns to be involved in the algorithm are x0ðz0Þ, y0ðz0Þ and e0ðz0Þ. The relevant equilibrium
equation corresponding to the tangential direction of a cable segment (5a), representing the cable
tension at any point, is converted to the following integral expression
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Taðz0Þ ¼ TH �
Z ZH

Z0

we

ð1þ e0Þ

�
� Dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x020 þ y 020

q �
dz0 ð30Þ
in which TH is the specified tension at the top end. The combination of Eqs. (29) and (30) are used
to solve for the cable static problem.

Since the vertical axis is chosen as an independent variable, the total water depth is discretized
into number of regions or elements, each with an equal length h as depicted in Fig. 3. In the
analysis, the horizontal projection of element coordinates x0ðz0Þ and y0ðz0Þ on XZ and YZ planes
consist of two components which are linear and non-linear. The linear parts ðxL; yLÞ are directly
obtained from the prescribed positions of cable while the non-linear parts ðxNL; yNLÞ are ap-
proximated by a cubic polynomials shape function in z0, thus
xNL

yNL

� �
¼ ½N �fqg ð31Þ
Fig. 3. Modelling for horizontal projection of the finite element coordinates on XZ and YZ planes.
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where
½N � ¼ N1 N2 0 0 N3 N4 0 0

0 0 N1 N2 0 0 N3 N4

� �
ð32Þ

N1 ¼ 1� 3ðz20=h2Þ þ 2ðz30=h3Þ; N2 ¼ z0 � 2ðz20=hÞ þ ðz30=h2Þ
N3 ¼ 3ðz20=h2Þ � 2ðz30=h3Þ; N4 ¼ �ðz20=hÞ þ ðz30=h2Þ

ð33a–dÞ

fqg ¼ xNLð0Þ x0NLð0Þ yNLð0Þ y 0NLð0Þ xNLðhÞ x0NLðhÞ yNLðhÞ y0NLðhÞ
	 
T ð34Þ
in which ½N � is the matrix of the shape function and fqg is the degree of freedom of nodal dis-
placement and rotation. For the kinematic relations of strain, the matrix notations can be written as
e0 ¼ bLcfeg ð35Þ

bLc ¼ 1� z0=h z0=hb c ð36Þ

feg ¼ e0ð0Þ e0ðhÞb cT ð37Þ

where bLc is the matrix of the strain shape function and feg is the nodal strain. The global equi-
librium condition dP ¼ ðop=oqiÞdqi ¼ 0 yields a system of non-linear equations. Consequently, by
the Newton–Raphson iterative algorithm, one can write the incremental process as
½K�fDQg ¼ �fRg ð38Þ
Consider the kth element, the contributions to the square matrix ½K�k and to the vector fRgk are as
follows,
½K�k ¼
o2pk

oqioqj

� �
¼

Z h

0

½N 0�TTa½N 0�
ð1þ x020 þ y 020 Þ

3=2
dz0 ð39Þ

fRgk ¼
opk

oqi

� �
¼

Z h

0

½N 0�Ta
ð1þ x020 þ y020 Þ

1=2

x00
y00

� �"
� ½N �T Fu

Fv

� �#
dz0 ð40Þ
in which h is an element height, fQg and fqg are the global and local degrees of freedom, re-
spectively. Eqs. (39) and (40) are evaluated by using Gaussian quadrature numerical integration
with four points. The boundary conditions are the zero value of non-linear parts of coordinates at
z0 ¼ 0 and ZH. The step-by-step iteration procedure can be comprehensively described as follows:

• The initial estimated value of global strain fHg and global degrees of freedom fQg are assumed
to be zero.

• The values of Fu, Fv and Ta are calculated consecutively.
• After the components of ½K�k and fRgk are numerically evaluated, all element matrices are as-

sembled together to form the global systems.
• By applying boundary conditions, the solutions of fDQg are obtained using Eq. (38).
• The new value of nodal strain is updated by the Newton–Raphson process; that is, enþ1 ¼

en � f ðenÞ=f 0ðenÞ, in which n¼ step of iteration,
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f ðen0Þ ¼ EAen0 þ 2vqwgAð1� ven0Þ
2ðZH � z0Þ � TH þ

Z ZH

Z0

we

ð1þ en0Þ

�
� Dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x020 þ y 020

q �
dz0
and f 0ðen0Þ is approximated using the forward difference formula; namely f 0ðen0Þ ¼ ðf ðen0 þ DÞ�
f ðen0ÞÞ=D. Since the spatial variation of the initial static strain of cable is very small compared to
unity, the spatial step length used D is assumed to be a constant and it is set to be equal to 1 · 10�8.

• Then an incremental global strain fDHg is obtained.
• Adding an incremental global displacement fDQg to Q and repeating overall steps, the iterative

procedures are terminated when fDQg and fDHg are negligible or the error tolerance is
achieved.

4.2. Shooting-optimization method

The following governing eight first-order differential equations, Eqs. (41)–(44), together with
the eight known end conditions, Eq. (45) or (46), may be solved for T , h, /, x0, y0, s0, s and e0 as
functions of z0. Let ni, i ¼ 1; 2; . . . ; 8 be the unknown parameters. In view of these governing
equations and their associated initial conditions at the seabed, z0 ¼ 0, the preceding differen-
tial equations corresponding to the equilibrium of cable segment, Eq. (5), can be rearranged as
follows
dT
dz0

¼ we

ð1þ e0Þ

�
� Dp

sin/

�
; T ð0Þ ¼ n1

dh
dz0

¼
�
� Dq

T cos/ sin/

�
; hð0Þ ¼ n2

d/
dz0

¼ we cos/
ð1þ e0Þ

�
� Dr

��
T sin/; /ð0Þ ¼ n3

ð41a;b;cÞ
Differentiation of Eq. (6) with respect to z0 gives
de0
dz0

¼ dT=dz0 þ 2mqwgAð1� me0Þ2

fEA� 4m2qwgAð1� me0ÞðZH � z0Þg
; eð0Þ ¼ n4 ð42Þ
From the geometrical considerations, Eqs. (7a)–(7c) can be rewritten as
dx0
dz0

¼ cos/ cos h
sin/

� �
; x0ð0Þ ¼ 0

dy0
dz0

¼ cos/ sin h
sin/

� �
; y0ð0Þ ¼ 0

ds0
dz0

¼ 1

sin/

� �
; s0ð0Þ ¼ 0

ð43a;b;cÞ
Finally, from the strain definition, Eq. (9a) can also be rewritten as
ds
dz0

¼ 1

sin/ð1þ e0Þ

� �
; sð0Þ ¼ 0 ð44Þ
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The terminal boundary conditions depend on whether the top tension force or the unstrained
cable length is specified, namely, for the case of specified top tension,
hðzHÞ ¼ f5; /ðzHÞ ¼ f6; s0ðzHÞ ¼ f7; sðzHÞ ¼ f8

T ðzHÞ ¼ TH; x0ðzHÞ ¼ R cos h0; y0ðzHÞ ¼ R sin h0; e0ðzHÞ ¼
TH
EA

ð45a–hÞ
for the case of specified cable unstrained length,
hðzHÞ ¼ f5; /ðzHÞ ¼ f6; s0ðzHÞ ¼ f7; sðzHÞ ¼ SL

T ðzHÞ ¼ f8; x0ðzHÞ ¼ R cos h0; y0ðzHÞ ¼ R sin h0; e0ðzHÞ ¼
f8
EA

ð46a–hÞ
Instead of solving a set of algebraic equations formed from the error between the prescribed
and computed terminal boundary values, the error norms are minimized by an optimization al-
gorithm. The numerical procedure starts from the initial estimated values of T , h, / and e at the
bottom end. Then, the integration is carried out from z0 ¼ 0 to z0 ¼ ZH using the fifth-order Cash–
Karp Runge–Kutta method as given in Press et al. [15]. An objective function W for the opti-
mization exercise is minimized using the downhill simplex method proposed by Nelder and Meade
[16], depending on the specified values, namely, for the case of specified top tension,
Minimize
x0;y0;T

W ¼ jx0ðZHÞ �Rcosh0j þ jy0ðZHÞ �Rsinh0j þ jTðZHÞ � THj ð47Þ
or for the case of specified cable unstrained length,
Minimize
x0;y0;s

W ¼ jx0ðZHÞ �Rcosh0j þ jy0ðZHÞ �Rsinh0j þ jsðZHÞ � SLj ð48Þ
Consequently, the overall steps are iterated until the allowable error is achieved. It should be
remarked that the integration with respect to z0 coordinate (from the seabed to the surface) has an
implicit constraint that cable profile must lie above the seabed.
5. Computational results and discussion

Three case studies for some typical problems are presented. The first case provides confirmation
of the accuracy of the variational formulation. The finite element method (FEM) and the
shooting-optimization method (SOM) have been cross-checked for the validity of the cable model
and mathematical examinations. The latter two cases consider the static behavior of cable, using
the specified top tension or cable unstrained length to be the main type of analyses.

The cable data input parameters are as follows: ZH ¼ 500 m; R ¼ 300 m; uniform current ve-
locity in X -axis direction V ¼ 3:7 km/h; cable diameter D ¼ 0:023 m; weight of cable in seawater
we ¼ 12:3 N/m; CDN ¼ 1:0; CDT ¼ 0:05; qw ¼ 1021 kg/m3, and E ¼ 0:1628� 107 kN/m2, and
m ¼ 0. The specified unstrained arc-length is 550 m and the specified top tension is 25 kN.

Numerical results given in Tables 1 and 2 show the cable tension components corresponding to
the global directions at the bottom end and the cable strained length SL0 versus the variations in
values of h0 from 0� to 180�, for the case of specified top tension and cable unstrained length,
respectively. The calculated length of SL0 is equal to

PNel

k¼1

R h
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x020 þ y 020

p
dz0, in which Nel is the



Table 2

Comparisons of cable tension components at the bottom end and cable strained length for the specified cable unstrained

arc-length case, FEM: finite element method, SOM: shooting-optimization method

h0 (deg) Cable tension components at the buggy end Strained length

Tx (N) Ty (N) Tz (N) SL0 (m)

FEM SOM FEM SOM FEM SOM FEM SOM

0 23 641.42 23 641.38 0.00 0.00 31 267.32 31 267.22 584.16 584.16

30 21 078.43 21 078.44 10 398.89 10 398.83 31 397.11 31 397.05 584.19 584.19

60 13 875.21 13 875.27 18 226.10 18 226.12 31 798.84 31 798.88 584.18 584.18

90 3525.51 3525.50 21 387.09 21 387.02 32 344.99 32 344.86 584.00 584.00

120 )7370.06 )7370.05 18 747.21 18 747.21 32 752.48 32 752.43 583.62 583.62

150 )15 613.49 )15 613.50 10 871.71 10 871.72 32 895.07 32 895.07 583.27 583.27

180 )18 671.59 )18 671.58 0.00 0.00 32 905.56 32 905.52 583.14 583.14

Table 1

Comparisons of cable tension components at the bottom end and cable strained length for the specified top tension

case, FEM: finite element method, SOM: shooting-optimization method

h0 (deg) Cable tension components at the buggy end Strained length

Tx (N) Ty (N) Tz (N) SL0 (m)

FEM SOM FEM SOM FEM SOM FEM SOM

0 13 044.77 13 044.82 0.00 0.00 13 917.31 13 917.26 587.18 587.18

30 11 860.48 11 860.42 5175.70 5175.96 14 004.11 14 004.06 587.26 587.26

60 8495.60 8495.53 9168.76 9168.88 14 379.29 14 379.25 587.21 587.21

90 3421.33 3421.33 11 057.45 11 057.49 15 122.85 15 122.82 586.44 586.44

120 )2401.31 )2401.30 10 051.88 10 051.10 15 986.69 15 986.68 584.99 584.99

150 )7179.69 )7179.69 5986.84 5986.84 16 565.44 16 565.43 583.71 583.71

180 )9024.86 )9024.87 0.00 0.00 16 735.33 16 735.32 583.25 583.25
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number of elements used in FEM. This study used 20 elements in the calculation. It is seen that
both methods yield almost identical results. In spite of the fact that on convergence of SOM is
limited by an initial estimated condition, this method is efficient and robust, especially when the
initial estimate is close to the solution. The solution of FEM is based on the total number of
prescribed elements, whereas the solution of SOM is based on an adaptive step-size controlled by
an algorithm in the Runge–Kutta process. To gain further insights into the cable static behavior,
the following examples for various cable geometrical parameters are studied. For the sake of
convenience, the following dimensionless quantities are introduced as an extensibility index,
namely TH=EA and weSL=EA.
5.1. Specified top tension case

In this case, it was known that the maximum and minimum tensions occur at the cable top and
bottom ends respectively, and the tension distribution is a function of ocean depth. A preliminary
numerical investigation was carried out to demonstrate the effect of axial extensibility, using the
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forgoing input data and FEM. The parameter of TH=EA, fixed in value of top tension and cable
diameter, is assumed to be equal to 1.0, 0.1, 0.01, 0.001 and 0.0001. The value of elastic modulus
was varied considerably so that the extensibility effect can be clearly seen, and a value of pre-
scribed angle h0 was also varied so that the significance of omnidirectional current actions is
involved by maintaining the uniform current profile in the X -axis direction.

Fig. 4a–c illustrate the distribution of cable tension components corresponding to the global
directions at the bottom end in each value of TH=EA under the variations of h0 from 0� to 180�. It
can be seen that the changes in a value of h0 and cable extensibility have effect on the tension in

each direction as well as the resultant forces, namely Tb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2
x þ T 2

y þ T 2
z

q
, as shown numerically

in Table 3. The tension Tb decreases with the decreasing values of TH=EA and with the increasing
values of h0. This tension is the important parameter in designing a cable and is capable of
prediction to the cable sag condition [1,9].
Fig. 4. Variation in tension components at the bottom end in each value of TH=EA, for a different value of angle h0, for
the specified top tension case: (a) tension in X -axis direction, (b) tension in Y -axis direction and (c) tension in Z-axis
direction.



Table 3

Calculated values of the resultant forces at the bottom end and cable unstrained length in each value of TH=EA, for the
specified top tension case

h0
(deg)

TH=EA ¼ 1:0 TH=EA ¼ 0:1 TH=EA ¼ 0:01 TH=EA ¼ 0:001 TH=EA ¼ 0:0001

Tb (N) SL (m) Tb (N) SL (m) Tb (N) SL (m) Tb (N) SL (m) Tb (N) SL (m)

0 21 855.66 301.77 19 382.31 539.06 18 934.62 582.13 18 886.46 586.77 18 881.61 587.23

30 21 848.02 302.06 19 374.84 539.21 18 927.20 582.23 18 879.05 586.86 18 874.20 587.33

60 21 832.78 302.54 19 359.85 539.29 18 912.32 582.19 18 864.18 586.81 18 859.32 587.27

90 21 824.19 302.50 19 351.14 538.64 18 903.60 581.40 18 855.46 586.00 18 850.61 586.47

120 21 815.76 302.27 19 342.98 537.41 18 895.53 579.94 18 847.40 584.51 18 842.55 584.97

150 21 800.52 302.25 19 328.14 536.38 18 880.84 578.65 18 832.73 583.20 18 827.88 583.66

180 21 792.84 302.30 19 320.62 536.03 18 873.38 578.19 18 825.27 582.73 18 820.42 583.18
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In each value of TH=EA, the calculated unstrained length of SL equal toPNel

k¼1

R h
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x020 þ y 020 =ð1þ e0Þ

p
dz0 is not quite different under the variations of h0. The shortest

length can be found when cable having high extensible cable (TH=EA ¼ 1:0), however, the length is
increased under high elongation and almost equal to the lower one at the equilibrium state, as
shown in Fig. 5. The effect of extensibility on the cable unstrained and strained length can be
clearly seen when TH=EA is greater than 0.1. The shortest strained length may be approximated
when h0 is equal to 180�.

The next investigation was to consider the cable orientation under the influence of current time-
independent forces, in terms of magnitude and direction. Three values of velocity were considered,
V is taken to have value of 0, 2.0, 3.7 km/h, and TH=EA was taken to be 0.1. Figs. 6 and 7 present
the distributions of vertical angle / and horizontal angle h against the ocean depth under the
variations of h0 for any nodal point along the cable, where / is measured from XY plane and h is
Fig. 5. Variation in total cable strained length in each value of angle h0, for a different value of TH=EA, for the specified
top tension case.



Fig. 7. Distribution of horizontal angle h at any point along a cable against ocean depth, for a different value of angle

h0, for the specified top tension case and TH=EA ¼ 0:1: (a) V ¼ 2:0 km/h and (b) V ¼ 3:7 km/h ( : no current).

Fig. 6. Distribution of vertical angle / at any point along a cable against ocean depth, for a different value of angle h0,
for the specified top tension case and TH=EA ¼ 0:1: (a) V ¼ 2:0 km/h and (b) V ¼ 3:7 km/h.

796 S. Chucheepsakul et al. / Appl. Math. Modelling 27 (2003) 781–803
measured from the~ii direction. These illustrations are useful for evaluating the cable equilibrium
profile in space with the different action of current forces instead of cable sag prediction.

As shown in Fig. 6a for V ¼ 2:0 km/h, the distribution of / is varied along the depth, and the
values of / at the top and bottom ends are respectively greater and less than the value of /a. For
h0 ¼ 0�, it may be speculated that cable is more slack than the others since values of / are
maximum and minimum at the top and bottom ends, respectively. When h0 ¼ 90�, the plot is
identical to the case of no current.

As shown in Fig. 6b, when the magnitude of V is increased to 3.7 km/h, the plots for h0 equal to
120�, 150� and 180� are different from the former case. For h0 ¼ 120�, the value of / in the range
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of 250–500 m depth aligns closely to the angle /a. Hence, the sag of cable is apparently small for
this situation. For h0 ¼ 150� and 180�, the values of / at the top and bottom ends are respectively
less and greater than /a. Therefore, the profiles are formed in the contrary direction with respect
to a normal shape of the other prescribed angles h0. This feature may be explained as current
forces in the lateral direction having a more significant influence on the cable configuration more
than the cable effective self-weight. This effect becomes significance especially as the magnitude of
V increases.
Fig. 8. Variation in the resultant forces at the bottom end in each current magnitude, for a different value of angle h0,
for the specified top tension case and TH=EA ¼ 0:1.

Fig. 9. Variation of cable strained and unstrained lengths in each current magnitude, for a different value of angle h0,
for the specified top tension case and TH=EA ¼ 0:1.
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Fig. 7a presents how the current forces displace the cable laterally, which is more noticeable
with the higher magnitude of the current velocity, as compared with Fig. 7b. The vertical lines in
the plots are used to represent for the absence of currents in each specified value of h0. It may be
seen that cable configuration entirely lies in the vertical plane because there is no force to disturb
the cable from the plane, as is well-known for the case of a submerged cable. For h0 ¼ 0� and 180�
(not shown herein), the current direction is parallel to the cable configuration line, therefore the
force component in the bi-normal direction (~qq) is not generated. This makes a cable lies in the
vertical plane and only in the distribution of vertical angle has been presented in Fig. 6.

Fig. 8 shows the influence of changes in the magnitude of current velocity on the resultant
forces at the bottom end in each value of h0. It can be seen that, for the ranges of 0� < h0 < 90�
and 90� < h0 < 180�, respectively, tension Tb increases and decreases with the increasing magni-
Fig. 10. Variation in tension components at the bottom end in each value of weSL=EA, for a different value of angle h0,
for the specified cable unstrained arc-length case: (a) tension in X -axis direction, (b) tension in Y -axis direction and

(c) tension in Z-axis direction.
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tude of current velocity. Moreover, the cable strained and unstrained lengths increase with the
increasing magnitude of current velocity, as presented in Fig. 9.
5.2. Specified unstrained arc-length case

Although the numerical algorithm mentioned above is efficient for solving the cable problem
with the case of specified top tension, this algorithm can be treated using the concept of specified
unstrained length. Firstly, the initial trial value of top tension is assigned, and then the approx-
imated unstrained length is calculated. If the computed length is not equal to the prescribed one,
then a new trial value of tension will be assumed and the procedure is repeated until the allowable
error is achieved.
Table 4

Calculated values of the resultant forces at the bottom and top ends in each value of weSL=EA, for the specified cable

unstrained arc-length case

h0 (deg) weSL=EA ¼ 0:1 weSL=EA ¼ 0:01 weSL=EA ¼ 0:001 WeSL=EA ¼ 0:0001

Tb (N) TH (N) Tb (N) TH (N) Tb (N) TH (N) Tb (N) TH (N)

0 21 403.77 25 337.52 39 897.99 45 390.63 99 605.96 105 368.65 142 913.56 148 750.00

30 21 374.50 25 372.05 39 881.10 45 447.08 99 609.28 105 153.04 142 838.37 148 750.00

60 21 291.62 25 418.22 39 774.90 45 488.28 99 492.51 105 479.74 142 687.98 148 750.00

90 21 172.94 25 374.98 39 483.72 45 275.88 99 027.31 105 090.33 140 737.33 146 875.00

120 21 014.82 25 292.22 38 987.38 44 858.40 98 182.48 104 321.29 137 302.34 143 515.63

150 20 837.21 25 248.79 38 491.45 44 512.63 97 375.51 103 664.55 133 401.68 139 765.63

180 20 762.51 25 240.96 38 398.26 44 394.38 97 068.48 103 432.62 131 920.12 138 359.38

Fig. 11. Variation in total cable strained length in each value of angle h0, for a different value of weSL=EA, for the

specified cable unstrained arc-length case.
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In accordance with the representation of specified top tension case, the following results are
shown to demonstrate the effect of extensibility and the omnidirectionality of current forces. By
assuming a parameter of weSL=EA ¼ 0:1, 0.01, 0.001, 0.0001, the value of we=A is kept constant,
whereas the specified cable unstrained length SL is equal to 400, 550, 575 and 582 m, and the
corresponding cable elastic modulus E is equal to 0.118 · 106, 0.163 · 107, 0.170 · 108, 0.172 · 109
kN/m2, respectively. Once again, Fig. 10a–c illustrate the distributions of cable tension compo-
nents at the bottom end in each value of weSL=EA and under the variations of h0 from 0� to 180�. It
can be clearly seen that the changes in a value of h0 and cable extensibility have effects on the
tension in each direction and also on the resulting force Tb, which decreases consecutively from
Fig. 13. Distribution of horizontal angle h at any point along a cable against ocean depth, for a different value of angle

h0, for the specified cable unstrained arc-length case and weSL=EA ¼ 0:01: (a) V ¼ 2:0 km/h and (b) V ¼ 3:7 km/h

( : no current).

Fig. 12. Distribution of vertical angle / at any point along a cable against ocean depth, for a different value of angle h0,
for the specified cable unstrained arc-length case and weSL=EA ¼ 0:01: (a) V ¼ 2:0 km/h and (b) V ¼ 3:7 km/h.
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h0 ¼ 0� to 180�, as shown in Table 4. In each value of weSL=EA, the maximum required top tension
TH can be found when h0 ¼ 60�, approximately.

Fig. 11 shows the computed cable strained length for each angle h0. It is worth noticing that
these strained lengths are comparable (in the range of 583–586 m), even though the specified
unstrained cable lengths are quite different (400–582 m) for each value of weSL=EA. This can be
explained that the highly extensible (small E) cable with shorter length can be stretched consid-
erably more than that of the low extensible (large E) cable with longer length. Figs. 12 and 13 are
Fig. 14. Variation in the resultant forces at the top and bottom ends in each current magnitude, for a different value of

angle h0, for the specified cable unstrained arc-length case and weSL=EA ¼ 0:01.

Fig. 15. Variation of cable strained length in each current magnitude, for a different value of angle h0, for the specified
cable unstrained arc-length case and weSL=EA ¼ 0:01.
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plotted to show the distribution of / and h for weSL=EA ¼ 0:01, under the variation in magnitude
and direction of current velocity. It can be seen that the results in these figures are in good
agreement with those in the aforementioned case. Fig. 14 shows the effect of current on the re-
sultant forces at the top and bottom ends under the variation in value of h0. The results show that
tensions TH and Tb increase with the increasing magnitude of current velocity as well as the
strained length, as shown in Fig. 15.
6. Conclusions

The variational model formulation and computational results for analyzing the three-dimen-
sional steady-state behavior of an extensible marine cable is presented. Two mathematical sim-
ulations were used to solve and evaluate the problems, namely, the finite element approach and
the shooting-optimization procedure, which gave almost identical results. The cable model and
algorithm technique proposed in this study is efficient and robust when the top tension is specified.
Numerical investigations were carried out for the specified top tension case and specified cable
unstrained arc-length case. A number of parametric studies have been presented to evaluate cable
profile, the tensile force development and the cable length estimation. The combined effects of
axial extensibility and the current forces, both in terms of magnitude and directions, have been
shown to be significant on the static behavior of extensible marine cable.
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