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a b s t r a c t

An important issue in construction of organic photovoltaic cells concerns the selective contacts. Here,
especially the modification of the hole-extraction is challenging, as energy levels have to match the
polymer's highest occupied molecular orbital (HOMO). We took the view to the mutual anode interface
and we sought for a solution-based alternative for commonly used PEDOT:PSS – with an eye on
improving the hole-extraction with an inorganic interlayer. We present copper iodide (CuI) as a versatile
inorganic p-type semiconductor that meets the requirements for enhanced charge extraction in donor
polymers. We applied two types of anthracene-containing PPE–PPV block–copolymers that recently
gained attention as efficient active absorbers in bulk heterojunction photovoltaic cells. We report on the
advantages using CuI as hole-selective contact and show an improvement of the power conversion
efficiency in polymer-based solar cells.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Thin film organic photovoltaic cells (OPVs) employ various
organic conductive polymers as a donor absorber-part in bulk
heterojunction type solar cells. They attract attention for their
solution processibility and are suggested as powerful option for
the photovoltaic market due to their flexibility, lightness and
moderate cost as well as low environmental impact [1–6]. One
significant concern discussed in all-solution based bulk hetero-
junction solar cells is the contact interface [7–10]. In order to
achieve efficient charge extraction, selective contacts have to be
applied between the active layer and electrodes to tune the work
function by preventing the exciton quenching at the electrode
surface and recombination of the photogenerated carriers [11,12].
Various types of interlayer materials are available to match the
corresponding active layer's energy levels, however, when strictly
following a solution-based route, the portfolio of available mate-
rials becomes limited. On the electron-selective side, for instance,
polyethyleneimine-based interlayers (PEI) have recently gained
B.V. This is an open access article u
attention to form excellent band-matching to the active layers
[13]. Calcinated ZnO and In2S3 derived from sol–gel processing
shows similar results [14,15]. On the hole-selective side, solution-
cast options are rare [16]. Predominantly most device structures
rely on PEDOT:PSS [17,18]. Taking into consideration various
reports on interface-problems related to the use of PEDOT:PSS and
the necessity to find additional useful options consequently
[19,10]. The variety of conjugated polymer–fullerene systems used
as the active layers leads to very individual demands on the hole-
contact side, which cannot be covered by PEDOT:PSS alone [20–
22]. This argument applies in particular for the non-thiophene-
based polymers that use p-phenylene-ethynylene and p-pheny-
lene-vinylene (PPE–PPV) backbones as an example [23–27]. Here
the interface matching with PEDOT:PSS can suffer from detri-
mental energy level offsets and/or degradation effects attributed
to residual water, ionic species and the layer's acidity [28,10]. In
order to overcome barriers and improve the mutual interface
between the polymer's HOMO and the electrode, thin films of the
copper (I) iodide have been applied in various photovoltaic devices
earlier [29–32]. In this work, we demonstrate the capability of
using solution-processed CuI as a hole selective contact (HSC) in
the conjugated systems based on the non-thiophene polymer.
Specifically, we use high molecular weight anthracene-containing
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. (a) Chemical structure of the donor polymers for the AnE-PVstat and AnE-
PVab. The schematic energy (b) and structural diagram (c) showing the solar cell
structure and highlighting the hole-selective contact side. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

S.A. Mohamed et al. / Solar Energy Materials & Solar Cells 143 (2015) 369–374370
poly (p-phenylene-ethynylene)-alt-poly (p-phenylene-vinylene)
(PPE–PPV) with and without statistical distribution of octyloxy and
2-ethylhexyloxy side chains as active layers in combination with
PCBM (see Fig. 1a) [23–27]. CuI as an interfacing layer is sand-
wiched between the active matrix and the final contact on the
anode-side. For a complementary study of the interface, we con-
ducted experiments with and without CuI as selective contact and
discuss its role serving as a useful solution-processible alternative
to PEDOT:PSS and as add-on contact layer in combination with
PEDOT:PSS. Finally, we report on an increase in the power con-
version efficiency by including CuI as a hole-selective contact
(HSC) layer.
2. Experimental

For the photovoltaic cells as an active matrix we employed
anthracene-containing poly (p-phenylene-ethynylene)-alt-poly
(p-phenylene-vinylene) (PPE–PPV) with and without statistical
distribution of octyloxy and 2-ethylhexyloxy side chains and
respectively donated AnE-PVstat and AnE-PVab for the donor part.
Both polymers have the same band gap 2.1 eV but different
structure as depicted in Fig. 1a. The detailed synthesis of the
polymers is described elsewhere [33,34]. As an acceptor part,
phenyl C61 butyric acid methyl ester (PC61BM, Sigma Aldrich) was
used as received. Aqueous solution of poly (3,4-ethylenediox-
ythiophene) doped with poly(styrene-sulfonic acid) (PEDOT:PSS,
Baytron/Clevios PH 500 ) is purchased from Heraeus and filtered
(0.45 m teflon filter) prior to use. Microcrystalline CuI powder is
synthesized and purified following the procedure from Mohamed
et al. [35]. The CuI solution for spin-casting is prepared in an inert
atmosphere by dissolving 10 mg ml�1 CuI powder in dry acet-
onitrile under vigorous stirring (3 h). The solar cells are fabricated
as followed: Patterned 2.5 cm2 glass-indium tin oxide (glass-ITO,
with a sheet resistance of 15 /squareΩ ) slides are rinsed with
deionized water and cleaned in an ultrasonic bath with a deter-
gent (Hellmanex, Hellma Inc.) followed by acetone, isopropyl
alcohol, and again deionized water for 15 min each. After washing,
samples are dried. Then, the substrates are treated with oxygen
plasma for 5 min right before usage. For the hole selective layer
(s) 100 μl of CuI solution is spun onto the top of glass-ITO at
2000 rpm for 1 s and 4000 rpm for 45 s and annealed on a hot
plate at 120 °C for 5 min. The same recipe is applied for PEDOT:PSS
(Baytron). The CuI thickness on top of glass-ITO and on top of
PEDOT:PSS respectively is similar and measured at 34 nm by a
DekTak profilometer (Bruker). The active layer AnE-PV:PCBM (1:2
ratio, 10 mg ml�1 in chlorobenzene) is spun on top at 1500 rpm
for 15 s. The samples are annealed again at 120 °C for 5 min
directly after the deposition and transferred to a nitrogen-filled
glovebox. Finally, for the electron selective contact 0.7 nm lithium
fluoride (LiF) and 100 nm aluminum are thermally evaporated
under a pressure of 2 �10�6 mbar. We used three different solar
cell structures. One batch (20 devices) of reference cells applied
PEDOT:PSS as HSC (black, control), one batch used CuI (red, CuI
solely) and another batch a combined device structure with
PEDOT:PSS and CuI on top (blue, combined). The solar cell device
structure and the energy diagram of the layers are depicted in
Fig. 1a and c. The photovoltaic cells are characterized in dark and
under simulated AM1.5 solar irradiation using a Steuernagel 575
sun simulator with 100 mW cm�2 intensity. A Keithley 236 source
meter is used to record the current density–voltage J–V char-
acteristics. We add the standard deviation s for all parameters per
batch (20 samples). The spectral photocurrent external quantum
efficiency (EQE) is measured using an optical fiber mono-
chromatized Xenon-lamp with a typical illumination density of 5–
10 W, connected to a ACTON Spectra Pro150 monochromator and
EG&G 7260 DSP Lock-in amplifier to measure the photocurrent
response. The short circuit current Jsc values are derived by inte-
grating spectral EQEs and corrected in all J–V plots and tables
accordingly. For the optical characterizations transmission mea-
surements are carried out at room temperature using a Perkin-
Elmer T80 UV/VIS Spectrophotometer with wavelength range
between 400 and 900 nm. A Woollam M-2000 (rotating com-
pensator) ellipsometer covering an energy range from 1.1 to 5 eV is
used for gaining the dielectric function and absorption coefficient
of CuI respectively. For this thin films on glass are characterized at
6 different angles (variable angle spectroscopic ellipsometry,
VASE). The optical data (real and imaginary part of the dielectric
function ϵ1, ϵ2) are derived from an optical model fit. The mor-
phology of the thin-films is characterized using an atomic force
microscope (AFM, Digital Instruments DIMENSION 3100, and
tapping mode). A Bruker Dektak profilometer was used to verify
thin films thicknesses.
3. Results and discussion

In order to elucidate the impact of CuI as hole-selective contact
(HSC), we present photovoltaic devices using both AnE-PVstat and
AnE-PVab. The corresponding chemical structures of the polymers,
the energy and device diagram are depicted in Fig. 1. We highlight
the hole-selective part of the cell and our strategy to improve the
interface between the donor polymer's HOMO and the work
function of the contact electrode (in this case indium tin oxide
ITO).

A major motivation in this work has been finding an alternative
for PEDOT:PSS – as mentioned earlier various detrimental effects
are associated with the polymer composite. Hence we pursue a
device study for implementation of solution-cast CuI as a possible
candidate. The first subject, we have been interested in, is the
optical properties. Different to similar inorganic selective contacts
as molybdenum(VI)oxide CuI's absorption (optical band gap
400 nm, peak absorption) critically overlaps with the active layer.
For application in a solar cell we therefore sought for an optical
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Fig. 2. (a) The dielectric function determined in detail by variable angle spectro-
scopic ellipsometry (VASE) from as-spun CuI layer on top of glass is shown for the
UV-visible part of the spectrum. (b) According to the dielectric function the
absorption coefficient α is derived. (c) We compare the optical transmittance of 34
nm CuI and ITO/glass with a control layer of PEDOT:PSS on ITO/glass.
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Fig. 3. (a) AFM topographies of thin-film CuI on plane ITO and ITO-PEDOT:PSS.
The-values vary from nm to nm with PEDOT:PSS acting as a smoothening layer. (b,
c) Impact of CuI on the nanomorphology of the bulk-heterojunction. Left-hand the
control devices are shown, right-hand side topographies with CuI underneath.
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crosscheck. We derive the dielectric function, absorption coeffi-
cient and the transmission using variable angle spectroscopic
ellipsometry (VASE) and in a separate experiment UV-VIS trans-
mission of solution-cast thin-film CuI. We denote that earlier
studies covered predominantly vacuum-deposited CuI films
[36,37].

The response of a 34 nm solution-cast thin-film reflects an
absorption feature at 400 nm (α¼0.5 cm�1). The optical model
fitting the experimental values Ψ ω( ) and Δ ω( ) at six incident
angles yield the dielectric function (ϵ1,ϵ2) of the material and the
calculated absorption coefficient α using Eq. (1)
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with c being the speed of light, ω the angular frequency and nr the
refractive index. The corresponding spectra are plotted in Fig. 2a
and b. For full consistency we have included the transmission of
CuI and PEDOT besides. Interestingly, the results reflect a higher
transmission for CuI in the visible-near infrared regime – except
for the mentioned band absorption below 500 nm (Fig. 2c).
Because of the absorption band we define layers below 34 nm to
suit the requirements in terms of transparency as hole-selective
contact on top of glass-ITO. The next step has been now a
comparison of CuI's thin film morphology on ITO (left) and on
ITO/PEDOT:PSS (right) by AFM (Fig. 3a). For both cases we report
on a homogeneous film formation of as-spun CuI. The root mean
square roughness RMS is found slightly increased on bare ITO as
compared to PEDOT:PSS coated ITO (Fig. 3a, 3.2 nm and 1.89 nm
for CuI on ITO and ITO/PEDOT:PSS respectively). For a complete
device study we are also interested, how the active layers are
impacted by CuI. We pursue an AFM study elucidating the
consecutive active layer's nanomorphology. Earlier contributions
have addressed morphological aspects in the polymer-fullerene
blends of AnE-PVstat and AnE-PVab and its impact on the cell
performance [25]. Within one active layer system, however, we
observe minor morphological changes followed by introduction of
CuI (Fig. 3cb ). Such consistency rules out a major contribution to
nanomorphology consequently, confirm our main statement to
assign CuI's role to improve on interfacial energy level alignment.

To confirm this statement further, we compare photovoltaic
devices based on two similar polymers both hole-contacted either
by CuI and PEDOT:PSS (control), respectively. The resulting J–V
curves of the photovoltaic cells are shown in Fig. 4 including the
linear and semi-logarithmic graphs for AnE-PVstat (left) and AnE-
PVab (right). We present the results from sets of control devices



Fig. 4. The J–V curves (linear, semi-logarithmic) of the glass/ITO/HSC/AnE-PVstat:PCBM/LiF/Al (left) and glass/ITO/HSC/AnE-PVab:PCBM/LiF/Al in dark and under illumi-
nation of AM 1.5G at 100 mW cm�2.

Table 1
Solar cell results measured under illumination.

HSC PCE (%) FF VOC (V) JSC (mA cm�2) RS (Ω) RSh (Ω)

AnE-PVab
PEDOT:PSS 1.070.05 5771.7 0.8470.02 1.8170.07 3372 1945760
CuI 1.370.06 5271.6 0.8270.02 2.4270.07 3473 827727
Combined 1.570.08 5771.6 0.8370.03 2.7070.10 2873 842727

AnE-PVstat
PEDOT:PSS 2.970.18 6371.7 0.7970.10 4.7670.30 15.571.4 1524737
CuI 3.270.19 6371.8 0.7670.02 5.4570.17 12.671.5 781727
Combined 3.570.18 5171.3 0.8470.02 6.6570.20 8.770.9 788730
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(black, PEDOT-PSS), sets of CuI-based (red) devices and, in addi-
tion, sets of combined devices (blue, double layer CuI on PEDOT:
PSS). The latter combinatorial strategy (double layer) has been
applied, in order to crosscheck for benefits from both HSC-types. It
is exactly the most promising approach, as VOC and JSC values have
improved significantly with respect to the single layer strategies.
An overview of all corresponding PV-parameters is presented in
Table 1. A detailed look to the J–V curves shows the control device
(black line) with PEDOT:PSS and a PCE of 1.0% and 2.9% for AnE-
PVstat and AnE-PVab. By introducing CuI instead, the efficiencies
are slightly increased to 1.3% and 3.2% respectively. Using CuI and
PEDOT:PSS the PCEs have been improved mainly due to higher
(or equal) VOC and JSC respectively.

Considering now all insights from optics, morphology and
devices we finally evaluate the merit for using solution processed
CuI thin-films. Our initial motivation has been mainly driven by
the need for alternative solution-based and transparent hole-
selective contact electrodes. Taking PEDOT:PSS now as a reference
point our complementary study demonstrates CuI as a serious
competitor – finally even beneficially improving photovoltaic
performances in our photovoltaic system. The optical study
reflects the transmission profile with a feature peak at 400 nm. To
meet a similar transparency like PEDOT:PSS, we suggest to limit
the CuI-thickness to maximum 35 nm. We additionally view to
nanomorphology, both CuI itself and its impact to the consecutive
active layers. Most important, in the latter we find consistency in
the nanomorphologies, which appears independent from the hole-
selective contact underneath. Differently, the device performance
is indeed impacted: CuI applied as a direct substitute or as add-on
layer on PEDOT:PSS serves as excellent hole-selective contact at
least equal to the control devices. Our choice for the polymer-
fullerene system has been made with care, to work out the role in
a particularly interface-sensitive PPV-system. We outline the
positive effects of CuI: Although they exhibit poorer serial resis-
tances and, in combination with PEDOT:PSS, also lower fill factors,
the JSC-values improved significantly. The reasons for the
enhancement relate to the presence of CuI – different to PEDOT:
PSS it is cast from non-aqueous solutions, it is neither acidic nor
basic and it offers similar smoothness as PEDOT:PSS. Hence we
assign the enhanced performance to an interfacial effect. Fur-
thermore, the spectral EQE measurements indicate no active
contribution of CuI to the charge-separation (Fig. 5) – the spectra
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Fig. 5. EQE for both type of polymers AnE-PVstat and AnE-PVab. The dashed lines correspond to the active layer's absorption.
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match the active layer's absorption shown in the dashed line in the
graph. Though the absorption in the 34 nm HSC-layer can lead to
reduced fill-factors and reduced serial resistances. Both subjects
are reflected in our photovoltaic devices, however they can be
resolved by optimizing the device design and layer-thickness in
future.
4. Conclusions

Alternative solution-processed hole-selective contacts in poly-
mer solar cells are rare – we took the view on this central front in
device research and introduced CuI as inorganic thin-film option.
The as-spun p-type semiconductor serves as an excellent contact
layer on a level with the predominantly used PEDOT:PSS. We point
out the advantages of interfacing non-thiophene based polymers
and show in a combinatorial strategy that CuI interlayers help
improving the PCE efficiency significantly. We include a detailed
characterization of the optical properties of as-spun CuI layers and
work out its absorption properties, film-form properties and
impact on the active layer's morphology. Its optical qualities
together with its thin-film properties and, in particular, its per-
formance in the device make CuI a versatile hole-selective alter-
native for organic photovoltaic applications.
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