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Gene Fusions Associated with
Recurrent Amplicons Represent a
Class of Passenger Aberrations in

Breast Cancer'?

Abstract

Application of high-throughput transcriptome sequencing has spurred highly sensitive detection and discovery of
gene fusions in cancer, but distinguishing potentially oncogenic fusions from random, “passenger” aberrations
has proven challenging. Here we examine a distinctive group of gene fusions that involve genes present in the
loci of chromosomal amplifications—a class of oncogenic aberrations that are widely prevalent in breast cancers.
Integrative analysis of a panel of 14 breast cancer cell lines comparing gene fusions discovered by high-throughput
transcriptome sequencing and genome-wide copy number aberrations assessed by array comparative genomic
hybridization, led to the identification of 77 gene fusions, of which more than 60% were localized to amplicons
including 17912, 17923, 20913, chr8qg, and others. Many of these fusions appeared to be recurrent or involved
highly expressed oncogenic drivers, frequently fused with multiple different partners, but sometimes displaying
loss of functional domains. As illustrative examples of the “amplicon-associated” gene fusions, we examined
here a recurrent gene fusion involving the mediator of mammalian target of rapamycin signaling, RPS6KB7 kinase
in BT-474, and the therapeutically important receptor tyrosine kinase £EGFR in MDA-MB-468 breast cancer cell line.
These gene fusions comprise a minor allelic fraction relative to the highly expressed full-length transcripts and
encode chimera lacking the kinase domains, which do not impart dependence on the respective cells. Our study
suggests that amplicon-associated gene fusions in breast cancer primarily represent a by-product of chromosomal
amplifications, which constitutes a subset of passenger aberrations and should be factored accordingly during
prioritization of gene fusion candidates.
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Introduction

Chromosomal amplifications and translocations are among the most
common somatic aberrations in cancers [1,2]. Gene amplification is
an important mechanism for oncogene overexpression and activation.
Numerous recurrent loci of chromosomal amplifications have been
characterized in breast cancer, which result in gain of copy number
and overexpression of oncogenes such as ERBB2 on 17q12 (the defin-
itive molecular aberration in 20%-30% of all breast cancers) [3,4], as
well as many other oncogenic drivers including Myc [5], EGFR [6],
FGFRI [7], CyclinD1 [8], RPS6KBI [9], and others [10]. Chromo-
somal translocations leading to generation of gene fusions represent
another prevalent mechanism for the expression of oncogenes in epi-
thelial cancers [11]. Recently, we described the discovery and charac-
terization of recurrent gene fusions in breast cancer involving MAST
family serine threonine kinases and Notch family of transcription factors
[12]. Interestingly, we also observed a large number of gene fusions,
including some recurrent fusions involving known oncogenes localized
at loci of chromosomal amplifications.

Here we carried out a systematic analysis of the association between
gene fusions and genomic amplification by integrating RNA-Seq data
with array comparative genomic hybridization (aCGH)-based whole-
genome copy number profiling from a panel of breast cancer cell lines.
We examined a set of “amplicon-associated gene fusions” that refer to
all the fusions where one or both gene partners are localized to a site of
chromosomal amplification. Specifically, we assessed the functional rel-
evance of two amplicon-associated fusion genes involving oncogenic
kinases EGFR and RPS6KBI in the context of prioritizing fusion can-
didates important in tumorigenesis. Our results suggest that recurrent
gene fusions localized to recurrent amplicons, displaying allelic imbal-
ance between the fusion partners, may represent an epiphenomenon of
genomic amplification cycles not essential for cancer development.

Materials and Methods

Gene Fusion Data Set

Chimeric transcript candidates were primarily obtained from
paired-end transcriptome sequencing of breast cancer from a total
of more than 49 cell lines and 40 tissue samples described previously
[12]. aCGH data were generated using Agilent Human Genome
244A CGH Microarrays (Agilent Technologies, Santa Clara, CA)
according to the manufacturer’s instructions, and data were analyzed
using CGH Analytics (Agilent Technologies). Copy number alterations
were assessed using ADM-2, with the threshold a setting of 6.0 and
a bin size of 10.

RNA Isolation and Complementary DNA Synthesis

Total RNA was isolated using TRIzol and RNeasy Kit (Invitrogen,
Carlsbad, CA) with DNase I digestion according to the manufacturer’s
instructions. RNA integrity was verified on an Agilent Bioanalyzer 2100
(Agilent Technologies). Complementary DNA was synthesized from total
RNA using Superscript 1T (Invitrogen) and random primers (Invitrogen).

Quantitative Real-time Polymerase Chain Reaction

Primers for validation of candidate gene fusions were designed using
the National Center for Biotechnology Information Primer Blast
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/), with primer pairs
spanning exon junctions amplifying 70- to 110-bp products for every
chimera tested. Quantitative polymerase chain reaction (QPCR) was per-
formed using SYBR Green MasterMix (Applied Biosystems, Carlsbad,

CA) on an Applied Biosystems StepOne Plus Real-Time PCR System.
All oligonucleotide primers were obtained from Integrated DNA Tech-
nologies and are listed in Table W1. GAPDH was used as endogenous
control. All assays were performed twice, and results were plotted as
average fold change relative to GAPDH.

Cell Proliferation Assays

Cells were transfected with small interfering RNAs (siRNAs) using
Oligofectamine reagent (Life Sciences, Carlsbad, CA), and 3 days
after transfection, the cells were plated for proliferation assays. At the
indicated times, cell numbers were counted using Coulter Counter

(Indianapolis, IN).

Western Blot

Cell pellets were sonicated in NP-40 lysis buffer (50 mM Tris-
HCI, 1% NP-40, pH 7.4; Sigma, St. Louis, MO), complete protease
inhibitor mixture (Roche, Indianapolis, IN), and phosphatase in-
hibitor (EMD Bioscience, San Diego, CA). Immunoblot analysis was
carried out using antibodies for ERBB2 (MS-730-PABX; Thermo
Scientific, Fremont, CA) and RPS6KBI (2708S; Cell Signaling, Danvers,
MA). Human B-actin antibody (Sigma, St. Louis, MO) was used as a

loading control.

Knockdown Assays

Short hairpin RNAs (shRNAs; Table W1) were transduced in
presence of 1 pg/ml polybrene. All siRNA transfections were performed
using Oligofectamine reagent (Life Sciences). For siRNA knockdown
experiments, multiple custom siRNA sequences targeting the ARIDI1A-
MAST?2 fusion (Thermo, Lafayette, CO) were used [12].

Results

Paired-end transcriptome sequencing of breast cancer cell lines and
tissues led to the identification of an average of more than four gene
fusions per breast cancer sample [12]. Interestingly, we observed that
some of the cell lines with the largest number of gene fusions also
harbored many well-known chromosomal amplifications, prompting
us to examine a likely association between genomic amplifications
and gene fusions. To assess copy number alterations at the chromo-
somal coordinates of the fusion genes, we analyzed aCGH (244K
Agilent array) data in a set of 14 cell lines (Table W2) and observed
that as many as 62% of the total number of fusions were associated
with regions of amplifications (Figure 14). The genes involved in
fusions were found to be significantly associated with their genomic
amplification status based on Fisher exact # test (P < .0004), in four
of six cell lines with the maximum number of fusions, including BT-
474, MCF7, HCC2218, and UACC893 (Figure 1B).

Examining the distribution of fusion genes in individual samples
revealed that a majority of the gene fusions were associated with
17q12 amplicon harboring ERBB2 and 17q23 amplicon that includes
genes such as BCAS3, RPS6KB1, and TMEM49, 20q13 amplicon with
BCAS4 and the chr8q amplicon commonly found amplified in breast
cancer (Table W2 and Figures 2 and W1). Interestingly, the breast
cancer cell line BT-474 that harbors both the chr17 amplicons and
the chr20 amplicon and MCF7 with prominent amplifications in
chr17, chr20, and chr8q showed the maximum number of gene fusions
observed in a sample, accounting for as many as 26 gene fusions asso-
ciated with amplicons compared against only 9 in unamplified loci
(Figures 1 and 2 and Table W2).



704  Amplicon Associated Gene Fusions in Breast Cancer  Kalyana-Sundaram et al. Neoplasia Vol. 14, No. 8, 2012
A 18. B Amplicon
n 16 ENon-Amplicon
B
Fusion Number of Total Measureable Ampl'lﬁed Not-am.pllfled .Ampllﬁec! Unaffected
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Partners | Amplifications Genes Genes
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MCF7 27 426 17691 11 16 415 17249 1.28E-11
HCC2218 9 446 17691 7 2 439 17243 2.13E-10
BT-474 31 5648 17691 25 6 5623 12038 3.19E-08
UACC-893 8 2902 17691 6 2 2896 14787 0.0004016
HCC1187 10 780 17691 2 8 778 16903 0.06908
HCC1395 12 2111 17691 1 11 2110 15569 0.783

Figure 1. Distribution of gene fusions across breast cancer cell lines. (A) Pie chart representation of the relative proportion of gene fusions

associated with loci of genomic amplifications compared to unamp

lified loci (left) and bar graph representation of the relative distribution

of gene fusions across different breast cancer cell lines (right). (B) Table summarizing the statistical significance of association between

gene fusions and chromosomal amplifications in breast cancer cell
t test, sorted by P value).

In the backdrop of a large number of somatic aberrations seen in
cancers, any “recurrent” events observed across samples are generally
regarded as potentially “driving” tumorigenesis. Interestingly, among
the more than 380 gene fusions reported in our compendium of breast
cancer fusions [12], as many as 62 genes were found to be recurrent
partners (appear at least twice). Among these, whereas the MAST
and Nozch fusions were shown to be functionally recurrent and poten-
tially driving aberrations in up to 5% to 7% of breast cancers, 33 of
other recurrent gene fusions were found to be associated with known
frequent amplicons, including ERBB2, BCAS3/4, and chr8q. Among
these, three fusions each involved the ikaros family zinc finger protein
3 transcription factor (/KZF3 on chr17q12 amplicon) and breast
carcinoma amplified sequence 3 (BCAS3 on chr17q23 amplicon) as
3’ partners—all with different 5" partners. Similarly, tripartite motif
containing 37 (TRIM37 on chr17q23) was a common 5’ partner in three
distinct gene fusions with different 3’ partners (Table W2). To further
expand our integrative analysis of copy number aberrations and gene
fusions, next we used the breast cancer aCGH data [13,14] and ob-
served gene fusion—associated amplicons in MCF7, BT-474, and MDA-
MB-468, HCC-1187 as seen in our data as well as in an additional
panel of cell lines, including ZR-75-30, SUM190, MDA-MB-361,
HCC-1428, and HCC-1569 (Figure W2). Clearly, apart from trig-
gering overexpression of constituent genes, our observations strongly
suggest that the loci of chromosomal amplifications also serve as “hot-
spots” for the generation of recurrent gene fusions.

Next, to assess whether amplicon-associated gene fusions impart
oncogenic phenotypes on the cells, we examined the open reading

lines with the highest number of gene fusions in A (using Fisher exact

frames (ORFs), functional domains/motifs, and conservation of fu-
sion architecture across different samples. Among recurrent fusion
candidates within amplicons, we focused on known cancer-associated
partner genes such as kinases, oncogenes, tumor suppressors, or known
fusion partners in the Mitelman Database of chromosomal aberrations
in cancer [15] and observed several functionally plausible gene fusions.
Here we describe our observations with two specific examples of gene
fusions involving oncogenic kinases.

The triple-negative breast cancer cell line MDA-MB-468 is known
to show an overexpression of epidermal growth factor receptor (EGFR)
[16]. In our transcriptome sequencing compendium of 89 breast cancer
cell lines and tissues, the highest expression of EGFR is observed in
MDA-MB-468 (Figure 3A), potentially resulting from a focal amplifi-
cation at chr7p12 (Figure 2). In addition, we detected an EGFR fusion
transcript (EGFR-POLDI) in this cell line, encoding the N-terminal
portion of EGFR, completely devoid of the tyrosine kinase domain
(Figure 34, inset). However, the uniform read-coverage observed across
the full length of the EGFR transcript in this sample (Figure 3B), pre-
cluded the existence of any exon imbalance, suggesting that even as the
kinase domain is lost in the fusion, the full-length EGFR protein is
expressed in this cell line. Further, we observed a remarkable mismatch
between the copy numbers of EGFR and its fusion partner POLDI
(Figure 3C) that supports a predominant expression of full-length
EGFR compared with the EGFR-POLDI chimera. This is unlike the
observation in case of MAST kinase fusions in breast cancer charac-
terized in our previous study [12], in which case a marked exon im-
balance in coverage was observed (Figure W3). Considering that the
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MDA-MB-468 harbors both MAST2 and EGFR fusions, we were in-
trigued to assess its relative “dependence” on both the kinases. Surpris-
ingly, a profound reduction in cell proliferation was observed on siRNA
knockdown of MAST2, whereas EGFR knockdown showed little effect
(Figure 3D). Next, testing the possibility of EGFR amplicon potentially
cooperating with MAST2, we found that the effect of combined
knockdown of EGFR and MAST2 was comparable with that of
MAST2 knockdown alone (Figure 3D), further suggesting that EGFR
amplification does not signify a driver aberration. In this context, the
EGFR fusion transcript that represents a miniscule fraction of overall
EGFR expression and encodes only the N-terminal portion lacking the
kinase domain was reckoned to be inconsequential.

Next, we looked at recurrent gene fusions involving oncogenic
serine threonine kinase ribosomal protein S6 kinase on chr17q23 fre-
quently amplified in breast cancers [17-20] identified in BT-474

BT- 474 (n=17)
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(RPS6KB1-SNF8) and MCF7 (RPS6KBI-VMPI). Both of these cell
lines harbor amplifications at the RPS6KBI locus and express the high-
est levels of RPS6KBI among all the samples examined (Figure 4A).
Both the chimeric transcripts retain only the first exon of RPS6KBI
and the respective open reading frames show a complete loss of the
kinase domain (Figure 44, inset). We also observed an even read cov-
erage across the RPS6KBI transcript in both fusion-positive cell lines,
similar to a representative benign mammary epithelial cell line, albeit
at a much higher level, indicating that full-length RPS6KBI protein
is encoded in these samples (Figures 4B and W4A). Further, the differ-
ence between the copy number observed between the fusion partners in
both the RPS6KBI fusions (Figures 4C and W4B) indicates an allelic
imbalance between the full-length and the putative fusion genes. Next,
considering that BT-474 is an ERBB2-positive cell line, we tested po-
tential dependence of these cells on the RPS6KB1 protein. Surprisingly,

MCF7 (n=18)
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Figure 2. Graphical representation of integrative analysis of gene fusions with copy number analysis. Circos plots of the genome-wide
distribution of gene fusions along with status of copy number alterations. Red and green peaks represent amplifications and deletions;
purple and cyan lines represent the fusions associated with amplicons and nonamplicons, respectively. “n” refers to the total number of

fusions identified.
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Figure 3. (A) Normalized expression (RPKM) of EGFR in descending order of expression in a panel of breast cancer samples obtained
from RNA-Seq. Schematic representation of wild-type EGFR and POLD1 proteins with putative breakpoints indicated by red arrows and
the domain structure of the putative fusion protein (inset). (B) Plot of normalized coverage of EGFR transcript in MDA-MB-468 cell line
showing the location of the breakpoint (indicated by red arrow). (C) Bar graph representing the copy number of EGFR and POLD7 in
MDA-MB-468. (D) Proliferation assay showing absolute cell count (y axis) over a time course (x axis) after knockdown with EGFR and/or
MAST2 siRNAs in MDA-MB-468. QPCR assessment of knockdown efficiencies relative to nontargeted control (NTC; inset).

similar to our observations with EGFR knockdown in MDA-MB-468
cells, here we observed only a small effect on cell proliferation after
shRNA knockdown of RPS6KBI, in dramatic contrast to the effect of
ERBB2 knockdown (Figure 4D). Notably, the shRNA knockdown of
RPS6KBI led to a significant depletion of the full-length protein yet it
did not affect cell proliferation compared with ERBB2 protein deple-
tion (Figure 4D, inset). Therefore, BT-474 cells do not display a depen-
dence on RPS6KB1 protein, and considering that the RPS6KB1 fusion
product is completely devoid of all functional domains of RPS6KBI1,
including the kinase domain, this fusion also likely represents a pas-
senger event.

Discussion

In our systematic search for gene fusions in breast cancer using high-
throughput transcriptome sequencing, we observed a notably large num-
ber of fusion genes associated with many well characterized recurrent
amplicons, including 17q12, 17q23, 20q13, and 8q, among others.
Amplicon-associated gene fusions were found to involve complex and
cryptic rearrangements, involving one or both partners within the am-
plicon site, with the chimeric transcript expression apparently concealed
in the backdrop of highly expressed wild-type genes. The gene fusions
considered here include only “expressed” chimeric transcripts derived
from known/annotated fusion partners. Chromosomal rearrangements
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that do not express chimeric transcripts or that involve unannotated
fusion partners are excluded from this analysis. This likely accounts
for the variability observed in the number of gene fusions scored across
multiple samples with known amplicons. Because many of the fusions
at the amplicons appeared to be recurrent, although frequently fused
with multiple different partners, it led us to examine whether the recur-
rence was incidentally associated with recurrent amplicons or signified
functionally important aberrations.

MDA-MB-468 represents a prototype triple-negative breast cancer
cell line with a “basal-like” gene expression profile that shows an

overexpression of the oncogenic kinase EGFR due to a focal ampli-
fication at chr7p12. Here we discovered a chimeric transcript involv-
ing EGFR. However, careful examination of this transcript revealed
that the fusion encodes N-terminal EGFR protein, without the kinase
domain. Transcriptome sequencing did not show evidence of fusion-
associated exon imbalance in EGFR expression, suggesting that full-
length EGFR is expressed in this cell line. In addition, the significantly
higher genomic copy number of EGFR compared to its fusion partner
POLDI suggests that a minor allelic fraction of the EGFR is involved
in fusion with POLDI, whereas other amplified copies of the gene
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Figure 4. (A) Normalized expression (RPKM) of RPSEKBT in descending order of expression in a panel of breast cancer samples obtained
from RNA-Seq. Schematic representation of wild-type RPS6KB1, TMEMA49, and SNF8 proteins with putative breakpoints indicated by red
arrows and the domain structure of the putative fusion proteins in BT-474 and MCF7 (inset). (B) Plot of normalized coverage of RPS6KB1
transcript in BT-474 cell line showing the location of the breakpoint (indicated by red arrow). (C) Bar graph representing the copy number
of RPS6KB1 and SNF8 in BT-474 (D) Proliferation assay showing absolute cell count (y axis) over a time course (x axis) after knockdown
with RPS6KB1 and/or ERBB2 shRNAs in BT-474. Western blot assessment of the knockdown efficiency relative to nontargeted control

(NTC). Actin was used as a loading control (inset).
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express the full-length molecule. Technically, the detection and mon-
itoring of the EGFR fusion transcript in the backdrop of extremely
high levels of wild-type EGFR transcript is challenging; therefore,
we chose to assess the dependency imparted by full-length EGFR.
Interestingly, the knockdown of EGFR had only a slight effect on
the proliferation of MDA-MB-468 cells, whereas a profound reduction
in cell proliferation was observed on the knockdown the fusion gene
MAST2. Combined knockdown of MAST2 and EGFR produced the
same effect as that by MAST? alone, further calling into question the
credentials of EGFR as a driver aberration in MDA-MB-468 cells.
Interestingly, MDA-MB-468 is known to be insensitive to EGFR
inhibitors like erlotinib [21] and gefitinib [22].

Similarly, the recurrent gene fusions involving RPS6KBI retain
only the first exon, and the chimeric ORFs show a complete loss of
the kinase domain in breast cancer cell lines BT-474 and MCF?7. Sim-
ilar to the EGFR fusion, DNA copy number analysis and RNA-Seq
data provided the evidence that full-length RPS6KB1 protein is en-
coded in both these cell lines. Notably, both BT-474 and MCF7 have
been shown to express high levels of full-length RPS6KB1 protein [23],
suggesting that these cells exhibit elevated activity of RPS6KB1 as
a result of amplification, independent of the fusion. Again, similar
to EGFR knockdown in MDA-MB-468, RPS6KBI knockdown in
BT-474 (an ERBB2-positive cell line) showed an insignificant effect
on cell proliferation compared to ERBB2 knockdown. Interestingly,
in a previous study, knockdown of RPS6KBI was found to have no
effect on apoptosis in both BT-474 and MCF7 breast cancer cells [24].

In the light of our observations, we surmise that repeated breaks
and rejoining of chromosomes during chromosomal amplifications
led to the generation of amplicon-associated gene fusions. Loci of re-
current genomic amplifications thus engender “pseudo” recurrent gene
fusions that may largely represent passenger aberrations involving ran-
dom breakpoints. The two cell lines with established drivers—ERBB2
in BT-474 and MAST2 in MDA-MB-468—made it possible for us to
assess the relative importance of amplicon fusions involving RPS6KB1
and EGFR, respectively. In cases where a driver is not clearly apparent,
a more careful examination of all plausible fusion candidates will be
required. Importantly, even as our study primarily pertains to breast
cancers based on available data and a well-documented preponderance
of copy number aberrations in breast cancers [10], we expect the asso-
ciation between amplicons and gene fusions to be consistent in other
cancers as well. We argue here for a measure of caution in considering
the functional implications of recurrent gene fusions associated with
amplifications because these may be simply a result of massive chromo-
somal upheaval at the amplicons, not representing clonally selected
oncogenic events.
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Table W1. Primer Sequences and siRNA/shRNA Clone Details.

Gene Symbol Clone ID

EGFR LU-003114-00-0002

ERBB2 SHCLNV-NM_004448

RPS6KBI SHCLNV-NM_003161

Primer Sequence

EGFR-Af1 GGGCCAGGTCTTGAAGGCTGT
EGFR-r1 ATCCCCAGGGCCACCACCAG
EGFR-f2 ACACCCTGGTCTGGAAGTACGCA
EGFR-12 AGTGGGAGACTAAAGTCAGACAGTGAA
EGFR-3 CCGAGGCAGGGAATGCGTGG
EGFR-r3 TGGCCTGAGGCAGGCACTCT
ERBB2-f1 TGCGCAGGCAGTGATGAGAGT
ERBB2-r1 TCTCGGGACTGGCAGGGAGC
ERBB2-f2 TCCTCCTCGCCCTCTTGCCC
ERBB2-r2 TCTCGGGACTGGCAGGGAGC
RPS6KBI1-f1 TGCTGACTGGAGCACCCCCA
RPS6KB1-r1 GCTTCTTGTGTGAGGTAGGGAGGC
GAPDH-f1 GGCTGAGAACGGGAAGCTTGTCA
GAPDH-r1 TCTCCATGGTGGTGAAGACGCCA
MAST2_f1 GAAGTGAGTGAGGATGGCTGCCTT
MAST2_rl GAGCCGCTCCATGCTGCTGTAC
MAST2_f2 ATTGAGGGCCATGGGGCATCT

MAST2_r2 CCCCATAGGCGCCATTGCTGATG
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Figure W1. UCSC tracks displaying the ERRB2 and RPS6KBT amplicons, with fusion genes highlighted in yellow.
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Figure W2. Graphical representation of integrative analysis of gene fusions with copy number analysis. Circos plots of the genome-wide
distribution of gene fusions along with status of copy number alterations. Red and green peaks represent amplifications and deletions; purple
line represents the fusions associated with amplicons and nonamplicons, respectively. “n” refers to the total number of fusions identified
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Figure W3. Plot of normalized coverage of MAST7 and MAST2 transcripts in MAST fusion-positive samples (breakpoint indicated by arrow).
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Figure W4. (A) Plot of normalized coverage of RPS6KBT transcript in BT-474, MCF7, and H16N2 cell lines. (B) Bar graph representing the
copy number of RPS6KBT and TMEMA49 in MCF7.





