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We describe the configuration of an infinite set V of vectors in R”. s> 1, fcx 
which the closure with respect to C(K) of the algebraic span of {f((v, )) : VE V. 
SE C(R)} is all of C(K). where K is any compact set in R’. This configuration 
also guarantees that for any sigmoidal function u E C(R), the span of 
[~(nr(v, ) i k): v E V; m, k E 2) is already dense in C(K). In particular, neural 
networks with one hidden layer of the form 

x c(i,k)a((i,x)+k~, 
,Lk,E/ 

where k E 2, c(i, k I E R. and i E Z’, can be designed to approximate any continuous 
functions II? s variables. ‘E 199? Academic Press. Inc. 

1. INTRODUCTION 

Mathematical models of neural networks were studie as early as 1943 
by McCulloch and Pitts (cf. Funahashi C7]). In recent years, with rapid 
advances in computer technologies and information sciences, neural 
networks have found important applications in various fields of technology 
(cf. [i, 8: 10, 12, 161). However, many mathematical problems on neural 
networks remain unsolved. One of the most challenging is the problem of 
designing a neural network with only one hidden layer, by using a single 
but arbitrary sigmoidal function a(t), such that any continuous function 
in s variables, where s 3 1 is usually quite large, can be uniformly 
approximated within a preassigned tolerance. While there is still nc 
constructive solution to this problem, the objective of this paper is to prove 
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that such a design is always possible for any sigmoidal function o(t), by 
using only integral scalings and translations in approximating continuous 
functions in any number of variables. Our approach differs from that in 
Cybenko [S] in that instead of using arguments in harmonic analysis, it 
establishes a density result on ridge functions. This should provide an 
intermediate step for coming up with a constructive proof. 

Our investigation was motivated by the important work of Cybenko 
[S, 63, and we thank Professor Cybenko for providing us with these two 
preprints and for raising several important related questions. In fact, 
Cybenko [5] already established such a possibility provided that all 
scalings a E IR’ and translates b E R! are used. In Section 2, we show that 
Cybenko’s proof of the one-variable result can be easily modified to show 
that integral scalings and translations are already sufficient. In establishing 
the general multivariable result, we first develop a general theory of 
approximation by ridge functions. This is done in Section 3. The proof of 
the multivariate result follows from applying the one-variable setting 
established in Section 2 and the density result of ridge functions established 
in Section 3. This will be given in Section 4. 

Hence, our approach is different from the derivation given by Funahashi 
in his recent paper [7] and from Cybenko’s work [5]. In [7], since an 
integral formula of Irie and Miyake [9] was used, the sigmodal function 
o(t) had to be assumed to be an increasing function. 

2. APPROXIMATION BY A SIGMOIDAL FUNCTION 

A continuous function o(t) in one real variable is called a sigmoidal 
function if it satisfies 

o(t) -+ 1 as t-t +03; 
a(t) + 0 as t+ -03. (2.1) 

Let s be any positive integer and denote, as usual, the set of integers by Z 
and the set of real numbers by R. The following result will be established 
in this paper. 

THEOREM 2.1. Let a E C(R) be any sigmoidal function and K any 
compact set in R”. Then the linear span 

S,(o):=span(a((~,m)+k):m~hS,k~H} 62.2) 

is dense in C(K). 

Here and throughout, ( ., . ) denotes, as usual, the inner product in R’. 
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For completeness, we include a proof of the univariate result by following 
Cybenko [S], where, by considering m E R” and k~ R! in (2.2), the density 
result is established by using the fact that the zero measure is the only 
Bore1 measure whose Fourier transform vanishes identically. 

For s= 1, we may assume, without loss of generality, that 
K= I:= [O, I]. Suppose, on the contrary, that the theorem is false. Then 
there exists a nontrivial regular Bore1 measure p on I which annihilates 
Sr(aj; that is, 

1 o(mx + k) dp(xj = 0, (2.3) 
i 

for all m and k E Z, but 

for some f E C(i). Let k, p, q E Z, with q > 0, be arbitrarily chosen and fixed, 
and consider the function 

Then it is clear from (2.1) that 

for each x E R as n + +co. Hence, by the Lebesgue Dominated 
Convergence Theorem and (2.3), we have 

which implies, by noting that k E Z is arbitrary, that 

(2.5 j 

Since p/q may be any arbitrary rational number in 10, 11, the contradiction 
of (2.5) with (2.4) establishes Theorem 1.1 for the case s= 1. 
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To establish Theorem 2.1 for s > 1, we note that for any regular Bore1 
measure p, we have 

p({x: (x, y)+a>O))=O, YER”,C(ER, (2.6) 

provided that 

p((x: (x,m)+k>O})=O, mEi?!‘, kE7!. 

Hence, by using an argument in Fourier transforms as in [S], we also 
establish Theorem 2.1 for any s b 1. However, this proof does not provide 
any information on the construction of approximants from S,(o) in (2.2). 
For this reason, we include a study of approximation by ridge functions in 
Section 3; and in Section 4, we show that even a stronger result than 
Theorem 2.1 is a consequence of this approach. 

3. APPROXIMATION BY RIDGE FUNCTIONS 

In this section, we establish a density result on ridge functions. Let v E R’ 
be nonzero. Then corresponding to any continuous function f of one 
variable, we have a “ridge function” f( ( ., v)) which is in C( R’). The 
reason for this terminology is that f( ( ., v)) is a constant, which happens 
to bef(O), on the (s - 1)-dimensional space v’, the orthogonal complement 
of v in R”. For any nonempty set Vc R’\(O) and any compact set Kc R”, 
let 

w K K) = closq,, p s an{f((.,v)):vE V,f~c(Iw)}. (3.1) 

The objective of this section is to identify those sets V for which 
M( V, K) = C(K). We first note that as pointed out by Sun [ 131 V cannot 
be too small as in the following. For more details, the reader is referred 
to the expanded version of this paper [3]. 

PROPOSITION 3.1. Let s > 2. Then a necessary condition for iW( V, I”) = 
C(Z’) is that V contains an infinite set 

P= {VI, v2, . ..> 

with different directions, in the sense that Ai vi + lj vj = 0 where Ai, 2, E R and 
i #j, implies that Ai = A, = 0. 

In the following, we see, however, that the necessary condition in 
Proposition 3.1 is not sufficient. For example, let 

V= {(k,m,O):k, mEz}\{O} 
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in R3. Then for any f~ C(R), we have 

f( (x, v)) =f(kx: + mq), 

where v = (k, m, 0) E V and x = (x1, x2, x3)+ so that 

D(O,OJlf(( ., v))=O. 

Here and throughout, the standard notation 

m=(m,, . . . . nz,)~Z~+, is used, and Z, := (kEZ’:k>Oj. 
To find sufficient conditions on V for which hl( V, K) = C(K), we need 

the following notion of “interpolation property.” First, let $. denote the 
space of polynomials in s variables of total degree 6 k and x5= lJkez+ ni- 

DEFINITION. A set % c [w’-’ is said to have the interpolation property 
relative to ?- I if for any positive integer k, there exist u,, . . . . u,~ E 42, where 

N=N;-’ := 
such that (u,, .~., II,} admits unique Lagrange interpolation from xi- ‘; 
that is, for any yl, . . . . yN in R, a unique polynomial pk E 7~:~ I can be found 
to satisfy pk(uj) = yj, j = 1, . . . . N. 

To apply this notion to study sufficient conditions on V, we first 
introduce a map z from R” to R’- ’ defined by 

T(xI, . ..) X~)=(~, ...) ~), Xi #O. 

Hence, by setting 

v’ := ((Xl, . ..) X,)E v:.rlZO), 

we have 

Tv={(z )...) $x’ )...) x,leV,x,iOj; 

and zP” may be considered as a “projection” of V’ into R”- ‘. Of course, 
to every u E TV’, there is some v E V’ such that TV = u. The following is the 
main result of this section. 
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THEOREM 3.1. Let V c R”\ (0 > be given such that z V’ has the interpola- 
tion property relative to xnsmm ‘. Then M( V, K) = C(K) for all compact sets K 
in IF. 

Prooj Since any compact set K necessarily lies in some [a, b]” and 
C(K) can be extended to C( [a, b]‘), we may assume, without loss of 
generality, that K= I”. In addition, since rcs is dense in C(P), it is sufficient 
to prove that rr’ c M( V, I’). For this purpose, let k be any positive integer, 
and consider the subspace H; of n; consisting of all homogeneous polyno- 
mials of degree k; that is, p E Hi if and only if p E rci and p(Ax) = ;Ikp(x), 
x E KY, for all constants 1. It is clear that 

u Hi=? (3.2) 
keH+ 

and the dimension of each Hi is 

(3.3) 

In fact, the collection of all monomials, 

xm := p . . . <yQ 
1 s 3 [ml :=m,+ ... +m,=k, 

of total degree k is a basis of Hi. In the following, we show that Hi has 
another basis consisting only of ridge functions (relative to the direction 
set V), so that in view of (3.2), it follows that rcs c M( V, I”), and this 
completes the proof of the theorem. 

To find this basis of ridge (polynomial) functions, we first choose a set 
of N( = Ni- ‘) distinct elements ur , . . . . u, from z V’ that admits unique 
Lagrange interpolation from rc;- *. That this is possible follows from the 
hypothesis of the theorem. Next, select vr, . . . . vN from v’ such that zvi=ui, 
i= 1 3 . . . . N. Now, the ridge (polynomial) functions we are looking for are 
given by 

gi(X)= (Xv V;)k= (bi,lXl + ... + bi,sX,)k, (3.4) 

i = 1, . . . . N, where x = (xi, . . . . x,) and vi = (b,,, . . . . b,,). It is clear that each 
gi is in Hi. Since the number of gls agrees with the dimension of H; as 
given in (3.3), in order to show that these ridge functions form a basis of 
Hi, it is sufficient to show that if 

F(x) := 2 cig,(x)=o, (3.5) 
i= 1 

then c1 = ... = cN= 0. Let us assume that (3.5) holds and that, on the 
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contrary, the row vector [c,, . . . . c,] is nontrivial. Then ifm,, . . . . m, are the 
N distinct elements in Z’ with Jm,J = . . . = lm,\,l = k, the set of identities 

(D”F)(x) = 0, i = 1, .,.P Iv, 

is equivalent to the system of linear equations 

c cp:“‘=o, i= 1, ~..: N; 
j=l 

or in matrix form, 

[c, ...c,v]A=O? 

where 

ym1 . . . p+ 
1 I 

A= . . . . . . . . 

Vrnl ‘V . . . VT” 1-v 

Since we have assumed that [c, ... c,“] is nontrivial, the matrix A must be 
singular, and hence, there is a nontrivial coiumn vector a = [a, I.. a,;ir 
that satisfies Aa = 0. That is, we have obtained a nontrivial function 
GE Hi, defined by 

G(x) = g uj xmj, 
j=l 

which satisfies the interpolatory condition 

G(vJ = 0, i = 1, . . . . N. 13.6) 

To return from R” to Rspl, we set y = rx for any x = (x,, . . . . x,) with 
x1 # 0, and consider the nontrivial h E 7~:~~ I defined by 

h(y) =h(tx) := x,“G(x) 

=j$l uj(i~.Yl~ ..9.?-IJm’3 

where y=(y19 . . . . yS- 1) E If%- ‘. Therefore, recalling that ui= rviY we have: 
from (3.6), that 

h(q) = 0, i = 1, . . . . i-v. 

Hence, since (II,, . . . . u,) admits unique Lagrange interpolation from n;- ‘> 
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the polynomial h must be identically zero. This contradicts a #O, and 
completes the proof of the theorem. 1 

For s > 2, it is clear that for V= Z’, we have z I/’ 3 Z”- I, which clearly 
has the interpolation property relative to rr’- ‘. Of course there is nothing 
special about the set Zs-‘. In fact, it is at least intuitively obvious that 
Z”- I can be generalized to 

A=A,x ... xA,-1, (3.7) 

where A I, . . . . A,- r are infinite sets in R. That is, we have the following. 

PROPOSITION 3.2. Let A,, . . . . A,_ 1 be infinite sets in R. Then the set A 
defined in (3.7) has the interpolation property relative to 7cs-‘. 

The proof of this result depends on the following lemma which is 
obvious. 

LEMMA 3.1. Let {x1 ,..., x,}c~!-~, s>,2. Suppose that the only poly- 
nomial p E 7~:~ ’ that satisfies p(x,) = . . . =p(x, j = 0 is the zero polynomial. 
Then there exists a subset ix,,,,, . . . . xmH}, where N = (“TTY ‘) as in (3.3), that 
admits unique Lagrange interpolation from ni- I. 

We now prove Proposition 3.2 by using induction on s. Since A, is an 
infinite set, the induction procedure can be initiated. Let k E Z + be fixed. 
By the induction hypothesis, there exists a subset B c A, x . . . x A,-, that 
admits unique Lagrange interpolation from 7~:~ 2. Let {t,, . . . . tk+ r ) be any 
set of distinct points in A,-, and define 

W= {(b, tj): bE B, i= 1, ...I k+ l} 

which is a subset of A, x ... x A,-,. It is sufficient to show that W admits 
unique Lagrange interpolation from rr;-‘. But this easily follows from 
Lemma 3.1. Indeed, if p E rri- ’ satisfies 

p(b, ti) = 0 for all (h ti) E W, 

then writing 

P(X) =PI(x 1,~~~,~,-2)x~-~+p2(~1,~~~,xs-2)~~I: 

+ .” +Pk+ Lb,, . . . . x,-Z), 

where x = (x,, . . . . x,-r) and pI, . . . . pk+ L are in rcime2, we have 

O=p(b, tj)=pl(b)t;+p,(b)t;-‘+ ... +Pk+l(b) 
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for i = 1, . ..) k + 1. Since t,, . . . . tk+ i are distinct, it follows that 

p,(b)=O, j= 2, . ..) k+ 1. 

This holds for all b E B, where B admits Lagrange interpolation from xi- ‘. 
Hence, p,, . . . . pk+ 1 are identically zero, or p is the zero polynomial. 

Hence, the following density result of Sun and Cheney [IS] is a conse- 
quence of Proposition 3.2 and Theorem 3.1. 

COROLLARY 3.1. Let s > 2 and Al, ...r A, be subsets of R, such that at 
most one of these sets is finite and the finite set, if any, cotztains a mnzero 
element. Then 

M(A,x ... xA,, K)=C(K) 

for any compact set K in R”. 

In fact, Sun and Cheney 1151 also observed that the condition in 
Corollary 3.1 is necessary. Other sets that admit unique Lagrange inter- 
polation from XI; can be found in the literature such as [2,4, 111~ We close 
this section with an obvious observation. Throughout this section, V’ and 
TV’ were defined by considering those vectors in Y with nonzero first 
entries. Of course, the same results are obtained by restricting our attention 
to the ith entry, for any i, 1 < ids. 

4. NEURAL NETWORKS WITH ONE WIDDEN LAYER 

We are now ready to complete the proof of Theorem 2. I for any s > 1 
using Theorem 3.1 on ridge functions. In fact, we establish the foil . 
somewhat stronger result which, in view of Corollary 3.1, 
Theorem 2.1 immediately. 

THEOREM 4.1. Let g E C(R) be anI1 sigmoidal.function and s > 1, Suppose 
that Vz W” is so chosen that r V’ has the interpolation property relative to 

xi-l. Then the linear span 

span(o((.,v)+kj:vE~~~/,liEZ) (4.1) 

is dense in C(K) for any compact subset K of R’. 

Proo$ As in the proof of Theorem 3.1, we assume, without loss of 



140 CHUI AND LI 

generality, that K = I”. Let E > 0 be arbitrarily given and f~ C(Z’). By 
Theorem 3.1, there exist functions jj E C(R) such that 

XEZS, (4.2 j 

for some vi, . . . . vk E V. Set 

[q, bj] = { (x, Vj) : x E zq. (4.3 1 

By the one-variable result established in Section 2, for each j, there exist 
rji~ R and mji, nj,e Z, i= 1, . . . . kj, such that 

fj(X) - 3 rjiO(RZj,X + nji) C&v X E [Uj, bj]. (4.4) 
i= 1 

Hence, in view of (4.3), we have, by applying (4.2) and (4.4), 

f(X)- i 5 rjio(mj,(x, Vj) +nji) X.5. 
j=l i=l 

This completes the proof of Theorem 4.1. 1 

It should be remarked that a constructive proof of Theorem 2.1 is still 
not available. This and the related complexity problems are very important 
mathematical problems in neural networks. The interested reader is 
referred to Cybenko [6] for an overview of this important collection of 
problems and of their applications to neural computing. 
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